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Te global construction of rockfll dams has now surpassed the 300 m height level. Despite great achievements in dam design and
construction, monitoring techniques have lagged behind the development of high rockfll dams. Existing deformation monitoring
techniques are ill-suited to the high earth and water pressures, and extended monitoring periods are required for ultrahigh rockfll
dams. Tis study introduces, for the frst time, the use of a shape accel array (SAA) to monitor internal displacement in a 300 m
high earth core rockfll dam. Te SAA employs a rope-like array of capacitive MEMS accelerometers for deformation mea-
surement. Compared to conventional monitoring techniques, SAA is a data-intensive monitoring technique. Based on the
intensive data obtained from SAA, we employed a parameter inversion method, utilizing multiobjective optimization algorithm,
the nondominated sorting genetic algorithm-III (NSGA-III), to inverse the constitutive model parameters of the rockfll dam.Te
multiobjective parameter inversion method maximizes the use of multisource monitoring data for predicting rockfll dam
deformation.

1. Introduction

Rockfll dams, one of the most promising types of dams,
have seen remarkable technological advancements in recent
years [1]. From 100 to 200 m dams, technology has suc-
cessfully advanced to building 300 m ultrahigh dams [2].
Since the 1960s, many ultrahigh rockfll dams have been
constructed, such as the Chicoasen dam (261 m, Mexico),
the Nurek dam (300 m, USSR), the Shuangjiangkou dam
(315 m, China), and the Rumei dam (315 m, China). Ac-
curate and long-term monitoring data of these structures
contain valuable space-time information that aids in
studying the deformation mechanism of rockfll dams,
confrming the accuracy of constitutive models, and
assessing the safety of design, construction, and operation
[3]. Table 1 outlines typical issues of conventional moni-
toring instruments caused by various factors.

Creating novel monitoring instruments that are ap-
propriate for ultrahigh rockfll dams is crucial due to the
difculties encountered with conventional monitoring in-
struments, such as sparse monitoring points and massive
construction interference. Te monitoring instruments
should be suitable for the complicated and challenging
circumstances of ultrahigh rockfll dams, which involve high
pressures and large shears.

Microelectromechanical systems (MEMS) have been
applied in various aspects, because they are characterized by
their compact size, light weight, and low cost. For example,
by integrating gas detecting sensors into MEMS platforms, it
is feasible to create miniaturized, portable sensing devices
with extremely minimal power requirements [7]. Besides, it
is possible to use multipleMEMS inertial measurement units
for the robot’s position estimation, maintaining real-time
updates of its location and operating status, and thus further
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achieving autonomous driving functions [8]. MEMS has
made remarkable achievements in the feld of biomedicines
and has been developed to the extent of manufacturing
MEMS microcoils to stimulate biological nerve tissues [9].
High-performance MEMS sensors are in signifcant demand
for geophysical applications, including natural disasters such
as earthquake monitoring, earth tides, and volcano activity
monitoring, exploration of earthquake, gravity, and mag-
netic resources, and gravity-assisted navigation, drilling
process monitoring [10]. Terefore, it is feasible to apply
MEMS to the deformation measurement of rockfll dam
engineering.

One of the representatives of deformation measurement
usingMEMS as the core component is shape accel array (SAA),
which achieves precise, continuous, and steady deformation
data acquisition. SAA was frst studied by Bennett et al. to
monitor the deformation of an unstable slope [11] and evaluate
the landslide by the monitoring data acquired [12]. Sub-
sequently, Wang et al. successfully applied SAA to seabed
landslide monitoring and successfully established a system that
could record hydrodynamic data andmonitor seabed landslide
deformation [13]. Yan et al. used SAA techniques to capture
temporal variations in distributed track settlement profles,
analyze track safety issues, and inform trackmaintenance plans
[14]. In our study, we applied SAA tomonitor a 300-meter high
rockfll dam to reduce the infuence of burial on construction
and provide more deformation monitoring points. Te great
information of spatio-temporal information contained support
fnite element parameter inversion analysis, which works for
more accurate prediction of dam deformation.

Sophisticated monitoring instruments and monitoring
data are essential for evaluating dam safety and predicting
dam deformation accurately. Tese monitoring data and
prediction results can provide a precise assessment of dam
safety.

Te prediction of dam deformation currently mainly
includes data-driven prediction methods based on time
series forecasting [15–17], as well as model-driven prediction
methods basically based on the fnite element method
(FEM). FEM plays a crucial role in dam deformation pre-
diction. Many scholars have devoted themselves to studying
advanced constitutive models to more accurately charac-
terize the relationship between stress and strain of soil. For
example, Guan et al. coupled machine learning with the
fnite element method to directly learn the constitutive

relationship from the data set [18]. In practical FEM cal-
culations, parameters for rockfll dams are often obtained
from laboratory experiments or feld trials. However, these
parameters can be infuenced by experimental conditions,
scale efects, random sampling, and other factors, which can
result in inaccurate parameters that cause great error in FEM
calculation [19]. Terefore, it is very important for the FEM
calculation of the dam to identify the parameters accurately
through appropriate parameter inversion analysis.

Many scholars have studied the parameter inversion
analysis method for rockfll dams in recent years. For in-
stance, Yu et al. proposed an efective Bayesian inversion
method for reservoir parameters, which utilizes a data-
driven error model and considers interactions among pre-
dictive performance metrics [20]. Li et al. adopts extreme
learning machine (ELM) as a surrogate model to estimate
the simulation results of a physical model, utilizing NSGA-II
algorithm for multiobjective parameter inversion analysis
[21]. Xu and Wu combine an unsaturated seepage model,
principal component analysis (PCA), and NSGA-II to obtain
more accurate parameters [22]. In addition, many scholars
have conducted inverse analysis on various model param-
eters of concrete dams, including the formulation of ob-
jective functions, optimization of surrogate models,
selection of multiobjective optimization algorithms, and
development of multiobjective decision criteria [23–27].
Tese innovative works have also inspired the progress of
our research. Efcient and accurate parameter inversion
methods should be investigated to improve the evaluation of
the safety status of rockfll dams. FEM results obtained using
parameters acquired through parameter inversion, along
with precise monitoring data for dam deformation, may
signifcantly impact the assessment of dam safety.

Temain contributions and innovations of this paper are
as follows: (1)We use the SAA to acquire crucial information
of the deformation of a 300 m rockfll dam. Te installation
of the SAA in an ultrahigh rockfll dam substantially de-
creases construction difculties and the infuence of in-
strument burial, greatly increases monitoring points for dam
body deformation, and promotes dam safety monitoring. (2)
We utilize the more efcient and dense deformation
monitoring data obtained by the SAA. To adapt to the
multimaterial zoning and multisource monitoring features
at a 300 m rockfll dam, we perform an NSGA-III multi-
objective optimization algorithm-based parameter inversion

Table 1: Conventional instruments and monitoring difculties.

Instruments Monitoring difculties

Horizontal displacement gauge of tensional wire Steel wire creep, thermal expansion, cold contraction, and the infuence of the
junction disc on the steel wire support [4]

Hydraulic overfow settlement gauge

Te resistance of liquid increases exponentially along a long pipeline and interferes
with observations. Better burial technology is needed, such as 1% strictly refned
burial gradient, and massive construction interference to provide the connected

water-containing pipeline [5]

Electromagnetic settlement gauge

Easily demagnetized during long-term monitoring and large construction impact
[6]. During the installation process, a protective tube with a diameter of about one
meter is required to protect this instrument. Te diameter of the construction

impact reaches about three meters
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analysis that uses SAA monitoring data as primary data and
additional typical monitoring instrument data as
supplementary data.

Te overall structure of this paper is as follows: Te
second section of this paper explains the structure and
operating concept of the SAA, while the third section de-
scribes its application at the dam. Te fourth section details
the specifc procedure of the parameter inversion method
based onNSGA-III.Te ffth section applies this approach to
multisource settlement monitoring data primarily based on
SAAs, then analyzes and summarizes the fndings.

2. Structure and Monitoring Principle of
the SAA

Te SAA uses a high-precision capacitive MEMS acceler-
ometer for continuous acceleration monitoring and employs
Kalman fltering to reduce observation system noise. Dis-
placement of each monitoring point is determined by
summing the displacements of each SAA part.

2.1. Structure and Monitoring Principle of the SAA. One
section of SAA consists of a high-precision capacitive
MEMS accelerometer, a rigid pipe, a fexible hose, and
cables. Te MEMS accelerometer is the most important
component and is installed in the middle of the pipe,
connected via an RS-485 bus. Data are transferred and
stored in an external logger through the cable. Te SAA is
user-friendly, providing easy access to dam monitoring
information through integrated software. Other compo-
nents make contributions to improving accuracy and
simplifying layout. For example, the horizontally embed-
ded SAA is protected by a PE pipe, while the vertically
embedded SAA is buried in the inclinometer pipe. Te
forced centring device is designed to ensure that the SAA
can fexibly change position in the center of the in-
clinometer pipe. Table 2 and Figure 1 show the specifc
structure and functions of SAA.

2.2. Calculation Method of Monitoring Point Displacement.
TeMEMS sensors in the SAA are arranged in a linear array.
Te quaternion or Euler angle approach is used for MEMS
accelerometer attitude analysis [28, 29].

Te SAA employs only a MEMS accelerometer, making
the solution simple. Each section of the SAAmeasures a point,
and the multiple sections of the SAA are linked to monitor
multipoints. After solving the data for each section of the
SAA, the computed data value at each monitoring point may
be acquired.Te specifc data calculation process is as follows:

2.2.1. Determining Shaft Inclination. Te MEMS acceler-
ometer measures acceleration and outputs
(accXi, accYi, accZi), the acceleration of i th SAA in three
diferent orthogonal directions, (X, Y, Z). In equation (1),
the corresponding inclinations can be obtained, where θXi

,
θXi

, and θXi
denote the inclination angle formed by the

current time position of the SAA and the initial position,
respectively, A is the constant value bias of the MEMS
accelerometer, K is the calibration factor of the MEMS
accelerometer, and G is the gravitational acceleration.

accXi � A + K · G · sin θXi

accYi � A + K · G · sin θYi

accZi � A + K · G · sin θZi

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

. (1)

2.2.2. Determining the Displacement Based on the Inclination
Angle. Te displacement of the nth node may be determined
by summing the displacement outputs from each section,
given that the length of each SAA is L. Te inclination angles
of each SAA are calculated in the frst step. Ten, the dis-
placement of the nth monitoring point can be obtained
according to the following equation:
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. (2)

Te two-axis MEMS accelerometer is often utilized in
place of the three-axis MEMS accelerometer in practical
engineering applications due to its lower cost. In terms of
computation, SAA using two-axis and tri-axis MEMS ac-
celerometers difers by one additional axis and one
fewer axis.

3. Application of the SAA in an Ultrahigh
Central Core Rockfill Dam Project

Te SAA in this research is manufactured by Beijing
Shengkerui Technology Co., Ltd. For settlement monitoring,
the SAA employs two-axis MEMS accelerometers, whereas
three-axis MEMS accelerometers are used for measuring
horizontal displacement.

3.1. Engineering Background of a Central Core Rockfll Dam.
Te dam in our research, situated on a river in China, is
a rockfll core dam with a crest elevation of 2878.00 m,
bottom elevation of 2582.00 m, riverbed dam height of
295.00 m, and core wall top width of 6.00 m. It comprises
of an impervious body, flter layer, transition layer, and
rockfll area. Te seepage-proof body has a straight core
wall of gravel soil, while the shell is flled with rockfll
material. Te core wall and dam shell rockfll include flter
and transition layers. A 1.0 m thick concrete cover plate is
placed on the bank slope between the core wall and dam
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abutment on both sides, with a 4.0 m thick contact clay at
the core wall-plate interface. Upstream and downstream
of the core wall are two layers of flter protection dirt.

Te central core rockfll dam is equipped with various
innovative monitoring equipment, including the SAA, pipe
robots [30], and distributed optical fbre monitoring

(b)

Capacitive MEMS
Accelerometer

Labels

Rigid Pipe Flexible
Hose

Rigid Pipe Fixed depression
device

Orientation and
guide wheels

Joint

Forced Centring
Device

SAA is wrapped with the PE pipe
PE Pipe

SAA is buried into the inclinometer
Inclinometer Pipe

(a)

(c)

(d)

pipe when vertically buried

when horizontally buried

Figure 1: Structure diagram of the SAA. (a) Appearance of SAA. (b) Each part of SAA. (c) Auxiliary device. (d) Monitoring SAA.

Table 2: Components and function table of the SAA.

Components Function

High-precision MEMS accelerometer Measure the acceleration of the dam deformation and then accurately obtain the
displacement of the monitoring point, the core component of the SAA

Rigid pipe Protect the MEMS accelerometer, provide strong shear resistance, torsion
resistance, and tensile resistance

Flexible hose Make the SAA installation convenient so that the arrangement is fexible and
customizable based on the demands for monitoring and detecting dam deformation

Forced centring device Ensures that the MEMS accelerometer can deform with the dam deformation,
measures the acceleration, and gets the displacement

Orientation and guide wheels Ensure that the SAA can be easily taken out of the pipeline to prevent it from being
stuck when it is installed in the pipeline

Fixed depression device
Prevent large errors of subsequent monitoring points caused by excessive

movement of the starting point and facilitate the installation of the SAA by pressing
it into the PE hose
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instruments [31, 32], in addition to conventional monitoring
instruments such as hydraulic overfow settlement gauge,
horizontal displacement gauge of tensional wire, electro-
magnetic settlement gauge, and cross beam settlers. Tese
instruments provide multisource data, which can be fused to
create an integrated intelligent safety analysis platform for the
dam body. Te SAA is the representative innovative internal
monitoring device installed in the upstream and downstream
rockfll areas and gravel soil core wall of the dam. Te project
and dam material zoning map is shown in Figure 2.

3.2. Installation Process of the SAA in the Rockfll Dam.
Te SAA embedding process for this rockfll dam is sig-
nifcantly easier compared to the challenging construction
technology required by horizontal displacement gauges of
tensional wire and hydraulic overfow settlement gauges.
Te embedding procedures of SAA are as follows:

To monitor the uneven settling of the dam, SAAs are
embedded at diferent elevations in the upstream rockfll region
and the core wall of the rockfll dam, with a simpler installation
process than traditional inclinometer tube displacement meters.
First, we need to transport the SAA to the construction site and
inspect the instruments to ensure they are in good condition.
After confrming that the instruments are not damaged during
manufacturing or transportation, we apply butter for lubrica-
tion on the SAA and place it into the PE pipe. We connect the
SAA to the solar power generation device to ensure long-term
automated monitoring. However, the hard retaining wall of the
SAA is susceptible to brittle fracture, which can lead to failure of
the SAA. To prevent such damage, the pipes can be flled with
fne sand instead of cement. To embed the SAA in the dam,
a trench of xm× 1.5 m× 1.3 m is excavated along the dam axis
at the cushion layer location. After leveling the trench bed,
a 23 cm thick layer of clay is backflled and compactedmanually.
Te SAA is then surrounded with a PE pipe, fxed to the
cushion, and flled with concrete mortar, surrounding the
sensor with 55 cm of fne sand and backflling with contact clay
follows. After manually and uniformly compressing the trench
with a vibrator, the dam flling material is used to fnish the
embedding. Figure 3 illustrates the SAA embedding process.

3.3. Layout of the SAA in the Rockfll Dam. Te rockfll dam
includes 13 sets of SAAs that are organized in a total length
of 1147 meters. Te SAA includes a two-axis MEMS ac-
celerometer to reduce expenses. Figure 4 depicts the precise
burial position and length of the SAA.

Te layout drawings illustrate the horizontal placement of
SAA on the core wall section and the 3-3 monitoring section
with a 1 m spacing, featuring closely spaced monitoring points.
Te length of 1147 meters of SAA in the rockfll dam provides
extensive monitoring data over an extended period and spatial
range, surpassing the limitations of hydraulic overfow settle-
ment gauges and electromagnetic settlement gauges with wider
measurement intervals and vertical arrangement, respectively.

3.4. Analysis of SAA Data in the Rockfll Dam. Te IN-R11
and IN-R12 SAAs were installed vertically within the rockfll
dam to measure horizontal displacement. IN-R12 was

intended to be buried after flling the top of the dam, but its
installation was delayed due to material shortages and
a limited monitoring period. Te other SAAs were installed
horizontally to measure settlement. Te position of each
instrument’s monitoring point is calculated based on the
origin at the contact point between the instrument and the
dam body. Monitoring data of IN-R1 to IN-R7, and IN-R11
are presented in Figure 5.

Based on the data collected from diferent SAAs, overall
monitoring data conform to the deformation law of a rockfll
dam. Te monitoring data from SAAs showed the following
patterns: the settlement in the middle of the core wall is
greater than that near the riverbank; there is not much
diference in the settlement quantity between both sides of
the dam with the central axis as the reference, which con-
frms the rationality of the SAA monitoring data; over time,
the settlement amount of the dam body shows an increasing
trend. As for horizontal displacement, only the IN-R11 data
are available as a reference. Overall, the downstream dis-
placement measured by SAA increases over time and the
pattern presented spatially, due to the infuence of water
storage, has certain reference value.

Certain embedded SAAs are damaged, with certain
monitoring points exhibiting erratic variations. Earlier re-
search indicates that the load distribution within rockfll dams
is nonuniform, similar to that of the loads of train tracks,
leading to rheological soil deformation. Tis may cause in-
consistent pressure on embedded SAAs and continuing
plastic deformation of the soil mass, potentially changing the
observation data’s point or damaging the instrument [14, 32].

4. Multiobjective Parameter Inversion Method
Based on Multisource Monitoring Data

Parameter inversion is a common approach to determine
rockfll dam calculation parameters. Multiobjective pa-
rameter inversion is employed, utilizing deformation
monitoring data from various instruments, multimaterial
zoning, and the objective function value based on the degree
of ftting between deformation monitoring and calculation
values. A constitutive model, parameters, multiobjective
functions, optimization algorithm, and machine learning
surrogate model are required for this approach.

4.1. Constitutive Model Selection. Stress and deformation
calculations of ultrahigh rockfll dam and parameter in-
version both require a suitable rockfll constitutive model.

Zhang et al. [33] compared the rockfll constitutive
model under the complex stress path of the rockfll dam and
concluded that Duncan-Chang EB, one of the most well-
known nonlinear elastic models, can describe the nonlinear
relation of rock deformation more accurately. Te param-
eters of the Duncan-Chang EB model have simple mea-
surements and clear physical concepts. Tis model is widely
applied in the design of rockfll dams and has many engi-
neering reference bases [34]. As a result, the constitutive
model for the FEM computation of this ultrahigh rockfll
dam is the Duncan-Chang EB model.
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Figure 3: Photographs of embedding the SAA at the construction site. (a) Transport the packaged SAA to the construction site. (b) On-site
SAA inspection. (c) Apply butter to the SAA and place it in the PE pipe. (d) Burying the SAA in the trench. (e) Solar power generation
system. (f ) Connection between generation system and SAA.
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Figure 2: Layout plan and dam material zoning map of the ultrahigh rockfll dam project. (a) Te specifc horizontal plane layout. (b) Dam
material zoning map.
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Te tangent elastic modulus, unloading elastic modulus,
and tangent bulk modulus of the Duncan-Chang EB model
are calculated as follows:

Et � KPa

σ3
Pa

 

n

1 − Rf

σ1 − σ3( (1 − sinφ)

2c cosφ + 2σ3 sinφ
 , (3)

Eur � KurPa

σ3
Pa

 

nur

, (4)

Bt � KbPa

σ3
Pa

 

m

, (5)

where Et is the tangent elastic modulus; K is the tangent
modulus; n is the tangent modulus index; Eur is the
unloading rebound elastic modulus; Kur is the unloading
modulus; nur is the unloading modulus index; Bt is the
tangent bulk modulus; Kb is the bulk modulus; m is the bulk
modulus index and Rf is the material failure ratio; c is the
cohesion of the material; Pa is the unit atmospheric pressure;
and φ is the internal friction angle, considering the change
with the confning pressure, which is shown as follows

φ � φ0 − ∆φ lg
σ3
Pa

 , (6)
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where φ0 is the value of φ when σ3 is equal to the unit
atmospheric pressure and ∆φ is the coefcient of change of
the friction angle. Te Duncan–Chang E-B model includes 9
main parameters, K, n, Kb, m, Rf, c, φ, Kur and nur.

A Merchant viscoelastic model based on exponential
attenuation is also used to account for the rheological de-
formation of rockfll dams over time. Equations (7) to (9)
can be used to express the rheological deformation, fnal
volumetric rheology, and fnal shear rheology of a rockfll
dam as follows:

εt � εf 1 − e
− λt

 , (7)

εVf � α
σ3
Pa

 

n1

+ β
q

Pa

 

n2

, (8)

cf � δ
Sl

1 − Sl

 

n3

, (9)

where εt is the rheological deformation; εf is the fnal fow
variable over time; εVf is the fnal volume fow variable; cf is
the fnal shear rheology; and λ, α, β, δ, n1, n2, and n3 are the
seven calculation parameters of the rheological model,
where λ refects the rheological rate and α, β and δ refect the
fnal rheological deformation.

4.2. Multiobjective Function. Parameter inversion involves
fnding appropriate parameters to approximate the moni-
tored displacement value and calculated displacement value.
Relevant objective functions in diferent material zones of

high rockfll dams are constructed, and deformation mon-
itoring data from several monitoring sensors are introduced.
Equation (10) shows the constructed multiobjective function
as follows:
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⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(10)

where the function f(x) contains n optimization objective
functions, and xi and x∗i are the monitoring displacement
value and FEM calculation value of m(n) internal monitoring
points selected from the nth material partition of the
dam body.

4.3. Multiobjective Optimization Algorithm. Te objective
optimization method has been efectively used in various
areas of research; it originated from multiobjective opti-
mization algorithms with exceptional performance, such as
NSGA [35–37], PSO [38, 39], and Jaya [40, 41]. Among
many multiobjective optimization algorithms, NSGA can
ensure the uniform distribution of the nondominated op-
timal solution, the diversity of the population, and high
computational efciency [42–44].

Deb and Jain [45] and Jain and Deb [46] updated the
NSGA algorithm to NSGA-III in 2018. Te core foun-
dation of the NSGA-III algorithm is GA. A rapid non-
dominated sorting algorithm, present and associated
reference points, and other selection mechanisms are used
to improve population individuals, iterate to the con-
vergence algebra, and search for a Pareto optimal solution
set in genetic operator selection. Using NSGA-III, we
solve parameter inversion as a multiobjective optimiza-
tion problem. Figure 6 depicts the generational fow of
NSGA-III.

4.4. Machine Learning Surrogate Model. Calculating ob-
jective function values for all parameter combination in-
dividuals for each target space through FEM demands
signifcant computing space and time. Te machine
learning regression algorithm’s superior simulation ca-
pacity can replace FEM calculation in the iterative process
and increase the efciency of parameter inversion calcu-
lation by mapping material parameters to deformation
calculation results.

We train samples using Support Vector Machine
(SVM), Random Forest (RF), Extreme Gradient Boost
(XGBoost), and Artifcial Neural Network (ANN). Besides,
we use the mean absolute error ratio (MAPE), root mean
square error (RMSE), and the determination coefcient
(R2) to evaluate each machine learning surrogate model
and choose the best one. MAPE, RMSE, and R2 are cal-
culated as follows:

Figure 6: Procedure of NSGA-III.
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where x∗i is the prediction results of the centralized surrogate
model and xi is the actual result.

4.5.MultiobjectiveParameter InversionProcess. Based on the
multiobjective function construction strategy described above,
the NSGA-III multiobjective optimization algorithm and
machine learning surrogate model are used to propose

a multiobjective parameter inversion method that can adapt to
the multimaterial zoning characteristics of ultrahigh rockfll
dams and fully utilize multisource deformation monitoring
data. Figure 7 shows the parameter inversion method.

5. Application of Inversion Based on SAA and
Other Multisource Monitoring Data

It is worth mentioning that the FEM calculations in this
paper were performed using the model that we developed
based on ABAQUS. Te surrogate model and multiobjective
optimization algorithm were implemented using Python
and can be found in the open-source libraries Keras and
Pymoo, respectively.

5.1. Establishment of a Multiobjective Function Model and
Parameter Selection. Because there are many multisource
deformation monitoring points of the ultrahigh rockfll dam
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Figure 7: Multiobjective parameter inversion process of rockfll dam.
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and SAA data are densely distributed in time and space,
mainly SAA data are chosen when selecting the inversion
monitoring points to ensure that instrument performance
does not afect calculation accuracy. Inversion computation
uses monitoring data from the core wall section and 3-3
section before the frst impoundment (December 2020), the
second impoundment (June 2021), and the last monitoring
period (September 2021). Table 3 shows the selected in-
strument zones and measuring locations.

Based on the multiobjective function construction
method, the 2-norm of the diference between the mon-
itoring settlement value and the calculated settlement
value of the selected monitoring points in the four main
material partitions of the rockfll area and the core wall
area is used as the partition objective function to build a 4-
objective optimization model, as shown in the following
equation:

F(x) �

minF(x) � f
(1)

, f
(2)

, f
(3)

, f
(4)

 
T
,

y � y
(1)

, y
(2)

, y
(3)

, y
(4)

 
T
,

f
(i)

i�1,2,3,4 �
1

m(i)n(i)


m(i)

j�1


n(i)

k�1

U
(i)∗
jk

U
(i)
jk

− 1⎛⎝ ⎞⎠

2
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦

0.5

,

y
(i)

i�1,2,3,4 � y
(i)
1 , y

(i)
2 , . . . y

(i)
d , . . . , y

(i)
D 

 ,

y
(i)min
d ≤y

(i)
d ≤y

(i)max
d ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

where f(1), f(2), f(3), and f(4) are the objective functions of
rockfll areas I, II, and III and the core wall, respectively; m(i)

is the number of monitoring points selected in the ith
partition; n(i) is the characteristic time point selected for
each monitoring point; U

(i)∗

jk is the settlement calculation
value of the jth monitoring point in the zone at the kth time
point; and U

(i)
jk is the corresponding measured value. y(i) is

the parameter to be back analysed in the partition, which is
K, n, Kb, and m in the Duncan-Chang E-B model and λ, α, β,
and δ in the Merchant seven parameter model; y

(i)min
d and

y
(i)max
d are the upper and lower limits of the parameters to be

back analysed.

5.2. Sample Design and Surrogate Model Training.
Considering that it is difcult to ensure the accuracy of the
inversion results in the target search space with too many
dimensions, some parameters have little impact on the stress
and deformation of the dam body, and it is difcult for some
parameters to be accurately determined through indoor and
on-site experiments. Tus, eight parameters, K, n, Kb, m, λ,
α, β, and δ of the Duncan-Chang EB model and Merchant
viscoelastic model are fnally selected as the parameter set to
be back analysed.

Te fnite element model illustrated in Figure 8 has
150,776 elements and 150,397 nodes. We obtained 520 sets
of parameter samples using orthogonal test design and
random sample design methods and performed 520 groups
of FEM forward computations.Tese works were carried out
using our self-developed secondary development model
based on ABAQUS.

We utilize ANN, XGBoost, RF, and SVR for regression.
Te parameter combinations are used as input and the FEM
results are used as output. 75% of the data is used as the
training set, while the remaining 25% is used as the testing
set. Normalizing the fnal projected and measured values
yields Figure 9. Te accuracy and generalization capabilities
of the characterization training model increase when RMSE,
MAE, and R2 approach 100%.

Figure 9 shows that the expected output from the ANN
training model matches the predicted output best, and
each partition has the maximum accuracy. Te ftting
results of XGBoost and RF are inferior to those of ANN
but comparable to SVR. When the sample size and kernel
function mapping dimension are enormous, the calcu-
lation amount is large, and the ftting efect is low, making
the SVR unsuitable. It should be noted that the type of
ANN used in this study is the basic fully connected
neural network. Based on various metrics shown in
Figure 9, ANN is fully capable of ftting parameters to
FEM results and outperforms the other three models in
this regard.

5.3. Multiobjective Optimization. We utilize NSGA-III to
optimize the 4-objective model iteratively. Te algorithm’s
parameters are as follows: the initial population size is 520,
the maximum evolutionary algebra is 400, the probability of
variation is 0.1, and the cross-over and variation parameters
are 30 and 20, respectively. Figure 10 shows the objective
function values and mean values for each iteration.

Table 3: Number of inversion monitoring points selected in each material partition and monitoring instrument.

SAA Hydraulic overfow settlement
gauges

Electromagnetic
settlement gauge Sum

Core wall 21 0 9 30
Rockfll area I 9 4 3 18
Rockfll area II 0 0 6 6
Rockfll area III 0 12 0 12
Sum 30 16 18 66
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Figure 8: Finite element model of the ultrahigh rockfll dam.
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Te multiobjective evaluation index evaluates the con-
vergence and dispersion of the optimal solution set. Te
hypervolume indicator is consistent with the optimization
solution set. Its physical meaning is the hypercube volume
formed by the solution set individual and the reference point
in the target space.Te larger the indicator value is, the more
dominant the optimization solution set. Te reference point
can be set as (1.1, 1.1, 1.1, 1.1) when the leading edge is
unknown. Figure 11 shows the calculated hypervolume
indicator.

After 100 generations of NSGA-III iteration, objective
function value and the hypervolume indicator show that
population evolution converges to a higher level. Figure 12
shows a Pareto frontier with 255 Pareto optimal options after
optimization. Te linear weights for the goal functions are
0.25 for rockfll area I, 0.20 for rockfll II, 0.25 for rockfll area
III, and 0.30 for the core wall. Te parameter combination
with the minimal value of 0.25f1 + 0.2f2 + 0.25f3 + 0.3f4

is the fnal multiobjective optimization parameter, which is
shown as the yellow line in Figure 12.

5.4. Evaluation of the Multiobjective Parameter Inversion
Efect. To demonstrate the signifcance of SAA monitoring
data in parameter inversion and to validate the rationality of
the parameter inversion method proposed, we similarly
substitute the parameter inversion results without SAA data
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Table 4: Parameter inversion result table.

Whether SAA data is included (yes/no)
Inversion results

Rockfll area I Rockfll area II Rockfll area III Core wall

Duncan–Chang E-B model

K
Y 1840.0 1695.8 1560.5 452.2
N 1750.2 1653.4 1564.3 270.6

n
Y 0.427 0.126 0.405 0.611
N 0.427 0.129 0.404 0.206

Kb

Y 429.5 557.2 574.0 700.6
N 153.7 331.7 548.2 697.4

m
Y 0.29 0.08 0.285 0.582
N 0.298 0.225 0.277 0.514

Merchant model

λ Y 3.72×10−4 3.69×10−4 3.64×10−4 3.60×10−4

N 3.65×10−4 3.77×10−4 3.61× 10−4 5.1× 10−4

α Y 9.83×10−3 9.77×10−3 9.71× 10−3 9.72×10−3

N 1.04×10−2 1.16×10−2 1.04×10−2 2.90×10−2

β Y 2.81× 10−3 2.80×10−3 2.78×10−3 2.78×10−3

N 2.98×10−3 3.32×10−3 2.97×10−3 8.31× 10−3

δ Y 1.50×10−2 1.49×10−2 1.48×10−2 1.48×10−2

N 1.59×10−2 1.77×10−2 1.58×10−2 4.42×10−2
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Figure 13: Cloud charts of settlement distribution. (a) Top view of the overall settlement of the dam body. (b) 3-3 monitoring section. (c)
Core wall section.
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into the FEM calculation and obtain the results. Table 4
shows inversion values of the parameters.

Table 4 shows that the inclusion of SAAmonitoring data
has a signifcant impact on the parameter inversion results,
which confrms the importance of SAA in the analysis of
parameter inversion. To further verify the efectiveness of the
parameters obtained by the inversion method in evaluating
the overall safety level of the dam with FEM calculations, we
conducted calculations using these two sets of parameters in
the fnite element model. Te result of settlement cloud map
of the dam is shown in Figure 13, which displays the top
view, the 3-3 monitoring section, and the core wall section.

Based on the calculation results, it can be observed that
the inclusion of SAA data in the parameter inversion
analysis resulted in lower maximum settlement calculated
values during the various stages of dam construction. Prior
to the frst impoundment in December 2020, the maximum
settlement calculated with SAA data was 3.03 m, which
accounted for 1.03% of the maximum dam height. Similarly,
during the second impoundment in June 2021, the maxi-
mum settlement with SAA data was 3.49 m, accounting for
1.18% of the maximum dam height. Finally, at the com-
pletion of dam flling in December 2021, the maximum
settlement calculated with SAA data was 3.69 m, accounting
for 1.25% of the maximum dam height. In contrast, the
maximum settlement values calculated without SAA data
were higher for all stages of construction, with values of 5.27
m, 5.93 m, and 6.20 m, accounting for 1.79%, 2.01%, and
2.10% of the maximum dam height, respectively. Based on
the parameters, the overall FEM result with SAA data of the
dam is within a reasonable range, and the distributions and

development trends of the FEM results follow the standard
rockfll dam deformation laws.

We have extracted the calculated values of some single
monitoring points, whose location can be found in the
subgraph c in Figure 13, from the FEM calculation with or
without SAA data, as well as the instrument monitoring
values for comparison. Specifc data is illustrated in Figure 14.

Figure 14 indicates that the FEM calculation results
obtained by multiobjective optimization parameters con-
form to the general law in the distribution law of settlement
and can achieve a good approximation of the numerical
values between local monitoring points and values. How-
ever, when SAA data are missing, the parameter inversion
results are bad, indicating the importance of SAA
monitoring data.

Te results show that the multiobjective parameter in-
version method can well realize the global approximation and
local optimization in the multiobjective parameter inversion
of a 300 m high rockfll dam. Te results also show that the
optimization parameters can well refect the deformation
characteristics of rockfll materials under actual engineering
conditions and that the method is accurate and reliable.

6. Conclusions

Tis study was the frst to utilize SAA in a 300 m ultrahigh
rockfll dam, which signifcantly enhanced the monitoring
capabilities of the dam while minimizing construction-re-
lated interference and difculties. SAAs can be vertically
buried in the inclinometer pipe for long-term monitoring
and easily replaced. With numerous monitoring points,
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Figure 14: Comparison of settlement monitoring results and predicted values at some monitoring points. (a) Monitoring point at 20 m for
IN-R2. (b) Monitoring point at 90 m for IN-R3. (c) Monitoring point at 160 m for IN-R5.
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SAAs provide more comprehensive internal deformation
monitoring than other instruments. Tis ultrahigh rockfll
dam has 1147 efective monitoring points, enriching the
monitoring data and enabling the use of multisource data for
parameter inversion.

Using new settlement monitoring data from the SAA
instrument, we proposed a multiobjective parameter in-
version method that adapts to the multimaterial zoning and
multisource monitoring layout of the 300 m rockfll dam.
We used the NSGA-III algorithm to optimize and co-
ordinate the inversion process and fully utilized the mul-
tisource monitoring data of each subarea to enhance the
accuracy of parameter inversion. We optimize the overall
parameters of the rockfll dam and coordinate with the
multimaterial zones, so that the parameters of each material
zone can be optimized at the same time. Furthermore,
through parameter inversion, we have validated the sig-
nifcance of SAA data, demonstrating that SAA can con-
tribute to both deformation monitoring and prediction of
dam body simultaneously.

To improve the accuracy of monitoring data in the fu-
ture, we will strive to investigate ways to properly process
SAA data when they fuctuate signifcantly. To provide
a more thorough result, we will simultaneously enrich the
parameter inversion process and update and refne the
surrogate model and optimization method utilized in pa-
rameter inversion.
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