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Te unscented Kalman flter (UKF) serves as an efcient estimator widely utilized for the recursive identifcation of parameters.
However, the UKF is not well suited for tracking time-variant parameters. Moreover, the unscented transformation (UT) used in
the UKF typically relies on Cholesky decomposition to perform the square root operation of the covariance matrix. Tis method
necessitates the matrix to maintain symmetry and positive defniteness. Due to the adverse infuence of rounding error and noise,
it becomes challenging to guarantee the positive defniteness of the matrix in each recursive step for practical engineering. Te
square root UKF (SRUKF) eliminates the need for the square root operation in the UT by directly updating the square root of the
covariance matrix during each recursion. However, the SRUKF still relies on the rank 1 update to the Cholesky factorization to
perform the recursive process, which also necessitates the matrix to be positive defnite. Furthermore, the SRUKF is inefective in
the identifcation of time-variant parameters. Terefore, this paper proposes a modifcation to the SRUKF that ensures un-
conditional numerical stability by utilizing QR decomposition. Subsequently, the modifed square root UKF (MSRUKF) method
is enhanced by incorporating an adaptive forgetting factor that can be adjusted based on the residual information from each
recursive step. Tis adaptation leads to the development of the adaptive SRUKF with forgetting factor (ASRUKF-FF) method,
which signifcantly improves the tracking capability for time-variant parameters. To validate the efectiveness of the proposed
method, this paper demonstrates its application in identifying the time-variant stifness and damping parameters of a three-story
frame structure. In addition, the method is employed to estimate the time-variant stifness of the bridge excited by vehicles. Te
simulation results show that the proposed method has the superiority of high accuracy, strong robustness, and widespread
applicability, even with incomplete measurements and inappropriate parameter settings.

1. Introduction

During the service life of civil engineering structures, when
subjected to extreme loads, the structural parameters may
experience sudden or gradual changes, including stifness
degradation and an increase in damping. Te challenge of
accurately tracking parameter changes has been a topic of

ongoing interest in the feld of civil engineering [1, 2]. Timely
and accurate understanding of the changing characteristics
of structural parameters holds great signifcance for tasks
such as structural optimization design, maintenance, and
reinforcement, as well as the selection of postdisaster rescue
routes. When civil engineering structures are subjected to
extremely large external excitations, such as earthquakes on
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buildings or overweight vehicles on bridges, they often
exhibit nonlinear behavior. Furthermore, the identifcation
of time-variant parameters in structures remains challenging
due to factors such as incomplete test information, model
errors, measurement noise, and other interferences.

Over the past few decades, several parameter identif-
cation technologies have been developed to address the
challenge of identifying time-variant parameters in non-
linear structures. Representative researches mainly include
time, frequency, and time-frequency domain signal pro-
cessing methods [3–9]. In the time-frequency domain
methods, the wavelet multiresolution analysis (WMA),
Hilbert transform (HT), Hilbert–Huang transform (HHT),
and variational mode decomposition (VMD) are fully de-
veloped for diferent applications. However, the WMA re-
quires complete knowledge of displacement, velocity, and
acceleration responses at all degrees of freedom, as well as
external load information [10], which limits its practical
application. In addition, the HT, HHT, and VMD methods
can only provide empirical information [11] and lack strict
mathematical derivation. Considering that only time-
domain methods can be applied for online identifcation
due to their recursive characteristics, while basic frequency
domain methods are generally nonrecursive [12], time-
domain methods such as least squares estimation (LSE),
extended Kalman flter (EKF), unscented Kalman flter
(UKF), Monte Carlo flter (MCF), and others [13–21] have
received signifcant attention.

Te LSE method optimizes parameters by minimizing
the errors between measured and simulated responses [22].
However, the LSE requires measurements of all displace-
ment and velocity values. Te identifcation process of the
MCF method often necessitates a signifcant number of
sampling points, leading to high computational demands
[2]. Compared to the LSE and MCF methods, the EKF and
UKF ofer a signifcant advantage as fast online identifcation
methods with recursive characteristics. When new data are
measured, the EKF and UKF can efciently update the
parameters through Bayesian data fusion technology
[23, 24], which is known for its space-saving and high-
efciency capabilities. However, the EKF is typically
employed for handling weakly nonlinear problems and
requires the computation of complex Jacobian matrices
when linearizing nonlinear functions using the frst-order
Taylor series expansion technique. In addition, the EKF
algorithm can diverge if the sampling interval is not small
enough. To address the limitations of the EKF, the UKF was
introduced by Julier and Uhlmann in 1995, specifcally
designed to handle strongly nonlinear problems [25, 26]. In
the UKF, it is assumed that the system state vector and noise
follow Gaussian probability distributions. Te systematic
mean and covariance are deterministically sampled using the
unscented transformation (UT) to generate sigma points. By
approximating the probability density distribution of the
nonlinear function, the UKF avoids errors caused by directly
linearizing the nonlinear function and achieves accuracy
beyond second-order. Currently, the UKF has gained
widespread adoption in the feld of constant parameter
identifcation and load identifcation [27, 28]. However, in

practical applications, the UT process of the UKF requires
the covariance matrix to be positive defnite. Due to the
adverse infuence of rounding error and noise, the co-
variance matrix can become nonpositive defnite during the
actual recursive process, leading to the divergence of the
recursive algorithm. To address this issue, Van der Merwe
et al. [29] proposed the SRUKF method, building upon the
UKF framework. Te SRUKF directly recurses the square
root of the covariance matrix, eliminating the need for
square root operations and enhancing the numerical sta-
bility of the UKF algorithm to a certain extent.

Some research studies further show that both the UKF
and SRUKFmethods are inefective in accurately identifying
time-variant parameters [1, 2, 30]. Te values of the state
covariance, modeling error covariance (Q in Section 2.1),
and measurement error covariance (R in Section 2.1) ma-
trices signifcantly impact the stability and accuracy of the
identifcation process as they represent model uncertainty
and measurement noise levels. It is crucial to determine
appropriate and reasonable values for these matrices. As
a result, most existing adaptive methods related to the UKF
are modifcations that focus on adjusting one or more of
these three variables. Representative research in this area
includes the state covariance adaptive flter [1, 12, 30–33],
the Sage–Husa adaptive flter [2, 30, 34–37], the dual
adaptive flter [38], the forgetting factor flter [39, 40], and
the moving window adaptive flter [40, 41]. In the state
covariance adaptive flter, as described in [30], the prior state
covariance in the time update step was uniformly enlarged
using an adaptive weighting coefcient λk. Tis coefcient
was calculated based on a fading factor formula, where the
choice of the forgetful factor was determined through
empirical experience. However, in [1, 12, 31], only specifc
major diagonal elements corresponding to time-variant
parameters of the state covariance matrix were expanded,
while the other elements remained unchanged. Further
analysis reveals that in [1, 12] and [31], the decision re-
garding which major diagonal element needs to be expanded
is made by comparing the sensitive parameter with
a threshold. Tis threshold is calculated based on tran-
scendental probability. In the context of the strong tracking
flter, the authors in [32, 33] introduced a correction to the
prior state covariance using a fading factor that can be
approximated through a suboptimal algorithm. Te deri-
vation process of this fading factor is known to be highly
complex. After verifcation, the abovementioned state co-
variance correction technologies are all applicable to time-
variant parameter identifcation. In the case of the Sage-
–Husa adaptive flter, the authors in [2] focused on modi-
fying the measurement error covariance, while the authors
in [30, 34–37] simultaneously addressed the revision of both
the modeling error covariance and the measurement error
covariance. Furthermore, the authors in [34, 37] introduced
further simplifcations to the correction formula. Re-
grettably, among the mentioned Sage–Husa adaptive flter
studies, only the authors in [30] took into account the time-
variant characteristics of structural parameters. Further-
more, according to the research conducted by Yang and Gao
[42], when the statistical characteristics of modeling error
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and measurement error are unknown, simultaneous es-
timation of them based on the Sage–Husa noise estimator
is susceptible to algorithm divergence. Regarding the
other adaptive flters, the studies [38, 40] primarily fo-
cused on addressing the impact of model uncertainty.
Tey tackled the issue of updating the nonlinear fnite
element model when uncertainties existed in parameters
such as geometry, node mass, dead load, damping co-
efcient, and the number of integration points. However,
it should be noted that the studies [38, 40] did not
specifcally address the time-variant problem of param-
eters. Similarly, the methods proposed in [39, 41] are
primarily utilized for fault diagnosis purposes. Although
these methods are efective in handling time-varying
noise systems, they do not specifcally address the
time-variant parameter identifcation problem. By the
way, the measurement error covariance was modifed in
[38–40], while the modeling error covariance and mea-
surement error covariance were improved simulta-
neously in [41].

Based on the analysis provided, it can be concluded that
methods based on state covariance correction technology, as
well as a limited number of Sage–Husa adaptive flters, have
shown efectiveness in identifying time-variant parameters.
Nevertheless, it should be noted that the proposed Sage-
–Husa adaptive methods may encounter numerical stability
issues in certain scenarios. Furthermore, it is worth men-
tioning that the adaptive flters proposed in [30, 32, 33] are
based on the SRUKF method [29], which still relies on the
rank 1 update to Cholesky factorization process. Tis re-
quirement for positive-defniteness in the matrix indicates
that the SRUKF does not fundamentally resolve the issue of
numerical instability in calculations. Indeed, the authors in
[34] proposed a modifed SRUKF method; however, it is
acknowledged that the derivation of the adaptive algorithm
in this approach can be relatively complex. Terefore, taking
inspiration from the concept presented in literature [34], this
paper modifes the standard SRUKF by incorporating QR
decomposition. Tis modifcation aims to ensure the un-
conditional stability of the algorithm. Subsequently, the state
covariance correction technology is applied to the MSRUKF
algorithm, leading to the proposal of the ASRUKF-FF
method. In contrast to the aforementioned methods, where
the covariance correction coefcient is typically an empirical
constant or determined through experience, this paper in-
troduces a novel approach. Te correction coefcient of the
state covariance can be adaptively adjusted based on the
forgetting factor, which follows a clear mathematical deri-
vation process. Furthermore, the proposed adaptive algo-
rithm is characterized by its simplicity in implementation,
ease of programming, and robustness. Te specifc ar-
rangement of this paper is as follows: the algorithms used are
described in Section 2. Te identifcation of time-variant
stifness and damping of a three-degree-of-freedom frame
structure is presented in Section 3. Te identifcation of
time-variant stifness of a simply supported bridge in the
vehicle bridge system is considered in Section 4. Finally, the
conclusion is obtained in Section 5.

2. Algorithms Description

2.1. Te Standard Square Root UKF. Te SRUKF method is
a model-driven algorithm that enables the direct utilization
of optimization algorithms for the identifcation of struc-
tural parameters.Tis can be accomplished by leveraging the
equations in state space. Te state and measurement
equations of the nonlinear discrete-time system can be
expressed in the following equations, respectively:

Xk � f Xk−1, uk−1( 􏼁 + wk−1, (1)

Yk � h Xk( 􏼁 + vk, (2)

where k is the discrete time, X is the system state vector, u is
the system input matrix, Y is the system measurement
vector, w and v are the modeling error and measurement
error, respectively, and f(∙) and h(∙) represent the nonlinear
function; both w and v are assumed to follow a Gaussian
distribution and satisfy the following relationship: w∼N(0,
Q) and v∼N(0, R).

Te algorithm procedure of the standard SRUKF
method can be described as follows:

(1) Initialization of the state vector and square root of
the state covariance matrix:

􏽢X+

0 � E X0􏼂 􏼃, (3)

S+
0 � chol P+

0􏼂 􏼃 � chol E X0 − 􏽢X+

0􏼐 􏼑 X0 − 􏽢X+

0􏼐 􏼑
T

􏼔 􏼕􏼚 􏼛,

(4)

where 􏽢X+

0 is the initial state vector and X0 denotes the
initial values determined by experience, fnite element
analysis, or design drawings. 􏽢P+

0 is the initial state
covariance matrix that is composed of uncorrelated
diagonal elements [43]. 􏽢P+

0 represents the confdence in
the initial state estimates and must be specifed a prior.
In the absence of any prior knowledge of X0, it is
common to assume high values for 􏽢P+

0 [44, 45]. chol{∙}
denotes Cholesky factorization.

(2) Time update:

χ(0)
k−1 � 􏽢X+

k−1,

χ(i)
k−1 � 􏽢X+

k−1 +
������
(n + λ)

􏽰
S+

k−1􏼐 􏼑
i
, i � 1, 2, . . . , n,

χ(i+n)
k−1 � 􏽢X+

k−1 −
������
(n + λ)

􏽰
S+

k−1􏼐 􏼑
i
, i � 1, 2, . . . , n,

(5)

􏽢X(j)

k � f χ(j)

k−1, uk−1􏼐 􏼑, j � 0, 1, 2, . . . , 2n,

(6)

􏽢X−

k � 􏽘
2n

i�0
W

(j)
m

􏽢X(j)

k , (7)

S−
k � qr

����

W(j)
c

􏽱
􏽢X(1: 2n)

k − 􏽢X−

k􏼒 􏼓,
���
Qk

􏽰
􏼔 􏼕

T

􏼨 􏼩, (8)
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Sk � cholupdate S−
k ,

����

W
(0)
c

􏽱
􏽢X(0)

k − 􏽢X−

k􏼒 􏼓, sgn W
(0)
c􏽮 􏽯􏼚 􏼛, (9)

where n is the dimension of the state vector, qr{∙}
denotes the QR decomposition that returns the upper
triangular part of the matrix, cholupdate{∙} denotes the
rank 1 update to Cholesky factorization which also
returns the upper triangular Cholesky factor, and
sgn(∙) is the sign function. As an illustration, chol-
update{A, B, ±c} gives the Cholesky factor of (D± c
BBT), whereA� chol{D}. Formore operation details of
(8) and (9), please refer to [29, 46].

(3) Measurement prediction:

χ̂
(0)

k � X̂
−

k ,

χ̂
(i)

k � X̂
−

k +
������
(n + λ)

􏽰
Sk􏼐 􏼑

i
, i � 1, 2, . . . , n,

χ̂
(i+n)

k � X̂
−

k −
������
(n + λ)

􏽰
Sk􏼐 􏼑

i
, i � 1, 2, . . . , n.

(10)

􏽢y(j)

k � h 􏽢χ(j)

k􏼐 􏼑, j � 0, 1, 2, . . . , 2n, (11)

􏽢yk � 􏽘
2n

i�0
W

(j)
m 􏽢y(j)

k , (12)

S−
y,k � qr

����

W(j)
c

􏽱

􏽢y(1: 2n)
k − 􏽢yk􏼐 􏼑,

���
Rk

􏽰
􏼔 􏼕

T

􏼨 􏼩, (13)

Sy,k � cholupdate S−
y,k,

����

W
(0)
c

􏽱

􏽢y(0)
k − 􏽢yk􏼐 􏼑,􏼚

sgn W
(0)
c􏽮 􏽯􏽯,

(14)

Pxy,k � 􏽘
2n

i�0
W

(j)
c

􏽢X(j)

k − 􏽢X−

k􏼒 􏼓 􏽢y(j)

k − 􏽢yk􏼐 􏼑
T
. (15)

(4) Measurement update:

Kk �
Pxy,k

STy,kSy,k􏼐 􏼑
, (16)

􏽢X+

k � 􏽢X−

k + Kk yk − 􏽢yk( 􏼁, (17)

Ω � KkS
T
y,k, (18)

S+
k � cholupdate Sk,Ω, −1􏼈 􏼉, (19)

where yk is the measurement at step k.

Weights can be expressed as

W
(j)
c �

λ
n + λ

+ 1 − a
2

+ b,

1
2(n + λ)

,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(20)

W
(j)
m �

λ
n + λ

,

1
2(n + λ)

,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(21)

where λ� α2(n+ κ)− n is a compound scaling parameter.
10−4≤ α≤1 is the primary scaling factor determining the
extent of the spread of the sigma points around the prior
mean. b is a secondary scaling factor used to emphasize the
weighting on the zeroth sigma point for the posterior co-
variance calculation. For Gaussian priors, b� 2 is optimal. κ
is a tertiary scaling factor and is usually set equal to 3− n.

2.2. Te Modifed Square Root UKF. Te standard SRUKF
method updates the square root of the covariance matrix by
utilizing the rank 1 update to Cholesky factorization. Taking
(9) as an illustration, the equivalent form of (9) can be
written as

P−
k � STkSk � S−

k( 􏼁
TS−

k + W
(0)
c

􏽢X(0)

k − 􏽢X−

k􏼒 􏼓 􏽢X(0)

k − 􏽢X−

k􏼒 􏼓
T

,

(22)

where P−
k is the prior state covariance calculated by the time

update step of the conventional UKF method, and the zero-
order weight W(0)

c contains positive or negative signs.
To calculate Sk using equation (9), the matrix on the

right-hand side of equation (22) must be positive defnite,
indicating that the standard SRUKF method does not
fundamentally eliminate the requirement for a positive-
defnite covariance matrix. Te presence of a negative
zero-order weight can indeed contribute to the matrix on the
right-hand side of equation (22) not being positive defnite.
From equation (20), when κ� 3−n and β� 2, W(0)

c � 4
−n/3α2 − α2. Because the value of α is usually small, when the
dimension of the state vector is large, the zero-order weight
may have a negative value, which will cause thematrix on the
right-hand side equation (22) to be nonpositive, afecting the
stability of the recursive algorithm.

According to Cholesky decomposition, the prior state
covariance of the time update step of UKF is P−

k � ST
kSk. Let

Sk � qr, where q is an orthogonal square matrix and r is an
upper triangular matrix, then P−

k � ST
kSk � (qr)T(qr) � rTr.

Terefore, the following relationship can be obtained:
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Sk � rT
. (23)

Te UTprocess typically generates (2n+ 1) sigma points
using symmetrical sampling. Te sigma points are sym-
metrically distributed around the origin (zero point) to
maintain the consistency of the sample’s mean and co-
variance with the original state’s distribution. Because re-
moving the sigma point at the origin position does not
impact the mean and covariance of the remaining sample
points, based on this idea and according to equation (23),
equations (8) and (9) can be replaced as follows:

r1 � qr
����

W(j)
c

􏽱
􏽢X(1:2n)

k − 􏽢X−

k􏼒 􏼓,
���
Qk

􏽰
􏼔 􏼕

T

􏼨 􏼩, (24)

Sk � rT
1 . (25)

Similarly, equations (13) and (14) can be replaced as
follows:

r2 � qr
����

W(j)
c

􏽱

􏽢y(1:2n)
k − 􏽢y−

k􏼐 􏼑,
���
Rk

􏽰
􏼔 􏼕

T

􏼨 􏼩, (26)

Sy,k � rT
2 . (27)

To update equations (18) and (19), it is necessary to
derive them using the conventional UKF algorithm and the
defnition of covariance. First, the equivalent form of

equations (18) and (19) is expressed as equation (28). Te
matrix on the right-hand side of equation (28) still needs to
be positive defnite, which is not conducive to the stability of
the recursive algorithm.

P+
k � S+

k( 􏼁
TS+

k

� ST
kSk − KkS

T
y,kSy,kK

T
k ,

(28)

where P+
k is the posterior state covariance of the measure-

ment update step of the conventional UKF method.
Second, the following relationship is obtained based on

the posterior state covariance defnition and equation (17):

P+
k � S+

k( 􏼁
TS+

k � E Xk − 􏽢X+

k􏼐 􏼑 Xk − 􏽢X+

k􏼐 􏼑
T

􏼔 􏼕

� E Xk − 􏽢X−

k − Kk yk − 􏽢yk( 􏼁􏼐 􏼑 Xk − 􏽢X−

k − Kk yk − 􏽢yk( 􏼁􏼐 􏼑
T

􏼔 􏼕.

(29)

By considering the measurement equation of (1), we can
establish the following relationship:

yk � HkXk + vk, (30)

􏽢yk � Hk
􏽢X−

k . (31)

Substituting equations (30) and (31) into equation (29),
we obtain the following equation:

P+
k � E Xk − 􏽢X−

k − Kk HkXk − Hk
􏽢X−

k + vk􏼐 􏼑􏼐 􏼑 Xk − 􏽢X−

k − Kk HkXk − Hk
􏽢X−

k + vk􏼐 􏼑􏼐 􏼑
T

􏼔 􏼕

� I − KkHk( 􏼁E Xk − 􏽢X−

k􏼐 􏼑 Xk − 􏽢X−

k􏼐 􏼑
T

􏼔 􏼕 I − KkHk( 􏼁
T

+ KkE vkv
T
k􏽨 􏽩KT

k

� I − KkHk( 􏼁P−
k I − KkHk( 􏼁

T
+ KkRkK

T
k

� I − KkHk( 􏼁ST
kSk I − KkHk( 􏼁

T
+ Kk

���
Rk

􏽰 ���
Rk

􏽰 TKT
k ,

(32)

where Hk is the Jacobian matrix of the nonlinear function at
the kth recursive step, and it is assumed that the mea-
surement noise vk is unrelated to other quantities.

Tird, utilizing the defnition of cross-covariance and
referring to equations (30) and (31), we deduce the following
relationship:

Pxy,k � E Xk − 􏽢X−

k􏼐 􏼑 yk − 􏽢yk( 􏼁
T

􏽨 􏽩

� E Xk − 􏽢X−

k􏼐 􏼑 HkXk − Hk
􏽢X−

k + vk􏼐 􏼑
T

􏼔 􏼕

� E Xk − 􏽢X−

k􏼐 􏼑 Xk − 􏽢X−

k􏼐 􏼑
T

􏼔 􏼕HT
k

� P
−
kH

T
k � ST

kSkH
T
k .

(33)

Te calculation method for obtaining Hk from equation
(33) is as follows:

Hk � PT
xy,k STkSk􏼐 􏼑

− 1
􏼒 􏼓

T

� PT
xy,k ST

kSk􏼐 􏼑
− 1

, (34)

where equation (34) uses the property that the transposition
of a symmetric matrix is equal to itself.

Finally, equations (18) and (19) can be replaced by the
following expressions:

r3 � qr I − KkHk( 􏼁Sk,Kk

���
Rk

􏽰
􏼈 􏼉, (35)

S+
k � rT

3 . (36)

Te calculation procedure of the MSRUKF algorithm is
as follows:

(1) Initialization with equations (3) and (4)
(2) Time update with equations (5)–(7) and (24)

and (25)
(3) Measurement prediction with equations (10)–(12),

(26), (27), and (15)
(4) Measurement update with equations (16), (17), (35),

and (36)
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2.3. Te Adaptive Square Root UKF with Forgetting Factor.
Although the MSRUKF algorithm alleviates the condition of
requiring a positive-defnite covariance matrix, ensuring
numerical stability throughout the calculation process, its
recursive nature still involves performing the UT to ap-
proximate the probability density distribution of the non-
linear function. In each recursive step, the weight values of
UT remain consistent, resulting in the data at each step
exerting an identical impact on fltering. As the fltering
progresses, the amount of acquired data steadily increases.
However, the accumulation of older data diminishes the
updating efect of new data on the estimates. Consequently,
the state covariance matrix loses its corrective infuence on
the state vector, leading the fltering process to approach
stability. Once the fltering reaches a state of stability, the
state vector cannot be updated by new measurements. As
a result, the MSRUKF becomes incapable of tracking
changes in the time-variant parameters.

To enhance the capability of the MSRUKF algorithm in
identifying time-variant parameters, this article proposes the
following three steps for algorithm modifcation. First,
drawing inspiration from the concept of utilizing a scalar in
literature [1] to detect the occurrence of parameter changes,
this paper also incorporates a scalar value, referred to as η (a
sensitivity parameter), to pinpoint the moment of parameter
change. Te discrete form of η is depicted in the following:

ηk � εT
k STy,kSy,k􏼐 􏼑

− 1
εk, (37)

where εk � yk − 􏽢yk, in which yk is the measurement at step k.

Second, a threshold value η0 is introduced to intelligently
trigger the adaptive algorithm when the sensitive parameter
value ηt exceeds η0, where ηt denotes the value of the
sensitive parameter at time instant t. Te authors in the
literature [1, 31, 47] suggest that η0 follows a chi-square
distribution with degrees of freedom equal to the number of
measurements for zero-mean Gaussian innovation. How-
ever, in practice, η0 remains interconnected with various
factors, including measurement noise, modeling error co-
variance, measurement error covariance, initial state co-
variance, initial state vector, and sampling frequency. At
times, relying solely on the number of measurements makes
it challenging to calculate a reasonable η0. Considering the
complexity and the involvement of multiple factors, it be-
comes difcult to calculate η0 using a precise mathematical
formula.Terefore, this paper proposes a more practical and
reasonable approach to determine η0. It primarily involves
the following three steps: (1) calculate the time history curve
of η using MSRUKF; (2) identify the maximum value ηt
before the initial curve pulse emerges, for example, ηt= 6.966
at 10 s, as shown in Figure 1(b); and (3) set the threshold
slightly higher than ηt, such as η0 = 7 in Figure 1(b), and
further refne if necessary. Attention. If the time history
curve of η appears stable and it becomes challenging to
determine the exact moment of parameter change, it in-
dicates two possible situations: (1) the parameters may re-
main unchanged throughout the identifcation process and
(2) the measurement noise is sufciently high, making it
difcult to discern the changes accurately.
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Figure 1: Comparison of time history curves for sensitivity parameters. (a) Time history curve of the sensitive parameter η and (b) local
zoom of Figure 1(a).
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Tird, a forgetting factor α is defned, as shown in (38),
where α belongs to the interval (0, 1) and “tr” represents the
trace of the matrix. In contrast to the constant coefcient
correction method suggested in [1, 12, 31, 47], the de-
termination of the forgetting factor in this approach relies on
the residual information at each recursive step.Tis adaptive
approach enables the correction factor to be dynamically
determined based on the uncertainty associated with each
step.

αk �

1, tr εkε
T
k􏼐 􏼑≤ tr ST

y,kSy,k􏼐 􏼑,

tr ST
y,kSy,k􏼐 􏼑

tr εkε
T
k􏼐 􏼑

, tr εkε
T
k􏼐 􏼑> tr ST

y,kSy,k􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(38)

Finally, leveraging the forgetting factor α, the update of
the square root of the posterior state covariance matrix, as
depicted in (36), is performed according to the following
equation:

S+
k �

rT
3
��αk

√ . (39)

Te specifc algorithm fow of the ASRUKF-FFmethod is
illustrated in Figure 2.

2.4. Te Mathematical Explanation of the Forgetting Factor.
During the recursive process, the state covariance plays
a crucial role in quantifying the level of uncertainty associated
with the estimated state. A well-selected state covariance is
a prerequisite for accurately identifying the time-variant pa-
rameters of the system. As discussed in Section 2.1, the initial
state covariance can be set to a small value if the initial state
values are highly reliable. However, if there is uncertainty in the
initial state values, it should be chosen to be sufciently large to
encompass the actual state uncertainty. Furthermore, in the
intermediate steps of the recursive process, a more precise
estimation of the state covariance is required. Adjusting the
state covariance appropriately can expedite the convergence to
the correct value, as discussed in [1]. Terefore, the core
principle of adaptive identifcation is to automatically adjust the
state covariance by taking into account the forgetting factor and
parameter sensitivity throughout the identifcation process.

To elucidate the origin of the forgetting factor, a mathe-
matical explanation is provided based on the SRUKF method.
When the structural parameters undergo changes during the
identifcation process, it becomes necessary to expand the state
covariance to encompass the uncertainty of the state [1].
Building upon this concept, a coefcient α is introduced, where
0<α< 1. According to (18) and (19), the a posteriori estimate
of the state covariance can be defned as follows:

􏽥P+

k �
S+

k( 􏼁
TS+

k

αk

�
S+

k( 􏼁
TS+

k
��αk

√ ��αk

√

�
ST

kSk − KkS
T
y,kSy,kK

T
k

��αk

√ ��αk

√

�
ST

kSk
��αk

√ ��αk

√ −
KkS

T
y,kSy,kK

T
k

��αk

√ ��αk

√ ,

(40)

where 􏽥P+

k is the posterior state covariance corrected by
the forgetting factor, and the wave sign above the
character represents the quantity corrected by the for-
getting factor.

Substituting (16) into (40), we get the following equation:

􏽥P+

k �
ST

kSk
��αk

√ ��αk

√ − Pxy,k ST
y,kSy,k􏼐 􏼑

− 1

·
ST

y,kSy,k
��αk

√ ��αk

√ Pxy,k ST
y,kSy,k􏼐 􏼑

− 1
􏼒 􏼓

T

.

(41)

Based on the identical equation principle, equation (41)
can be modifed as

k=0

Initialization
Eqs. (3) and (4)

Time update
Eqs. (5)~(7) and (24)~(25)

Measurement prediction
Eqs. (10)~(12), (26)~(27) and (15)

Calculate the sensitive parameter ηk
Eq. (37)

ηk>η0

Measurement update
Eqs. (16)~(17) and (35)~(36)

Measurement update
Eqs. (16)~(17), (35) and (39)

k=N

End
Yes

No

No Yes

Figure 2: Te algorithm fow of ASRUKF-FF.
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􏽥P+

k �
ST

kSk
��αk

√ ��αk

√ −
Pxy,k

αk

ST
y,kSy,k
��αk

√ ��αk

√⎛⎝ ⎞⎠

− 1

·
ST

y,kSy,k
��αk

√ ��αk

√
Pxy,k

αk

ST
y,kSy,k
��αk

√ ��αk

√⎛⎝ ⎞⎠

− 1

⎛⎝ ⎞⎠

T

.

(42)

Since the measurement noise is infuenced by sensor
accuracy and the testing environment, excessive noise can
cause the identifcation process to diverge. Terefore, the
measurement noise is not expanded. By utilizing equations
(13) and (41)∼(15), the following equation can be formed:

􏽥Pyy,k �
ST

y,kSy,k
��αk

√ ��αk

√

�
Pyy,k

αk

�
1
αk

􏽘

2n

j�0
W

(j)
c 􏽢y(j)

k − 􏽢yk􏼐 􏼑 􏽢y(j)

k − 􏽢yk􏼐 􏼑
T

+ Rk,

(43)

􏽥Pxy,k �
Pxy,k

αk

�
1
αk

􏽘

2n

j�0
W

(j)
c

􏽢X(j)

k − 􏽢X−

k􏼒 􏼓 􏽢y(j)

k − 􏽢yk􏼐 􏼑
T
,

(44)

where Pyy,k is the innovation covariance matrix in the
measurement update step of the conventional UKF method.

If the forgetting factor correction is not considered,
equation (43) is mathematically equivalent to equations (13)
and (14). Te form of equation (43) is expressed to facilitate
subsequent derivations.

Substituting equations (43) and (44) into equation (41),
we get the following equation:

􏽥P+

k �
ST

kSk
��αk

√ ��αk

√ −
􏽥KkS

T
y,kSy,k

􏽥KT

k
��αk

√ ��αk

√ , (45)

where 􏽥Kk � 􏽥Pxy,k(􏽥Pyy,k)− 1.
Te theoretical presentation above demonstrates that the

ASRUKF-FF algorithm can be derived by combining the
standard SRUKF with Equations (43)–(45). However,
equation (45) poses challenges when applying it to the
MSRUKF due to the altered calculation method for the
posterior state covariance. Te application of the forgetting
factor to equation (35) requires additional mathematical
derivation and verifcation, which will not be discussed in
detail here. To elaborate on the origin of the forgetting
factor, only equation (43) will be further discussed.

For further analysis, modify equation (43) as

αk
􏽥Pyy,k − Rk􏼐 􏼑 � 􏽘

2n

j�0
W

(j)
c 􏽢y(j)

k − 􏽢yk􏼐 􏼑 􏽢y(j)

k − 􏽢yk􏼐 􏼑
T
. (46)

Add Rk to both sides of equation (46) and form as

αk
􏽥Pyy,k − Rk􏼐 􏼑 + Rk � Pyy,k

� ST
y,kSy,k,

(47)

αk
􏽥Pyy,k − Rk􏼐 􏼑 � ST

y,kSy,k − Rk. (48)

Take the trace of equation (48) as

αk �
tr ST

y,kSy,k − Rk􏼐 􏼑

tr 􏽥Pyy,k − Rk􏼐 􏼑
≈
tr ST

y,kSy,k􏼐 􏼑

tr 􏽥Pyy,k􏼐 􏼑
. (49)

Note that equation (49) is an approximate forgetting
factor due to the omission of Rk. Tis operation makes sense
as both the numerator and denominator contain the same
covariance Rk. Moreover, as the denominator of equation
(49) emphasizes the impact of the new measurements, the
corrected innovation covariance in the denominator is
computed using the predicted measurement mean (􏽢yk) and
the actual measurements (yk). Terefore, equation (49) can
be written as

αk �
tr ST

y,kSy,k􏼐 􏼑

tr εkε
T
k􏼐 􏼑

. (50)

Temathematical derivation provided above allows us to
obtain the rationale behind the forgetting factor and its
application in the standard SRUKF form. While the
MSRUKF has introduced changes in the calculation method
for obtaining the square root of the posterior state co-
variance, as shown in equations (35) and (36), making it
difcult to determine the exact location of the forgetting
factor, we can still draw inspiration from equation (40). By
correcting the square root of the posterior state covariance
matrix, we can achieve the adaptive adjustment of the state
covariance. In addition, due to the recursive calculation of
the covariance in the MSRUKF method, the correction
coefcient also necessitates the square root form of the
forgetting factor, as demonstrated in equation (39).

3. Identification of Time-Variant Parameters of
the Building Structure

3.1. Te Tree-Degree-of-Freedom Frame Model. Te frame
structure is a widely utilized construction system in civil
engineering. In this section, a three-story frame structure is
chosen as the subject of investigation to assess the perfor-
mance and efectiveness of the proposed method. To facil-
itate the study, the actual frame structure is simplifed into
a shear model, as shown in Figure 3(a), where mi, ci, and ki
represent the mass, interlayer damping, and interlayer
stifness, respectively, for i� 1, 2, and 3, and €xg represents
the seismic excitation, and its time history curve is shown in
Figure 3(b).

Te equations of motion for this system can be derived
from the interlayer responses, as described in reference [33].
Furthermore, to simulate real-world conditions, random
noise is introduced into the measurements. Te noise type is
given as follows:

8 Structural Control and Health Monitoring



Xmeasurement � Xtrue + EPNnoiseσ Xtrue( 􏼁, (51)

where EP is the percentage of the RMS noise; Nnoise is
a stochastic process following a standard normal distribu-
tion with zero mean and unit standard deviation; and σ is the
standard deviation of the response without noise.

3.2. Time-Variant Stifness and Damping Identifcation

3.2.1. Te Efect Comparison of Diferent Algorithms. In this
case study, the structural parameter values used are
m1 �m2 �m3 �1000 kg, k1 � k2 �120 kN/m, k3 � 60 kN/m,
and c1 � c2 � c3 � 0.6 kNs/m. To depict the variations in pa-
rameters and evaluate the efcacy of identifying time-variant
parameters, it is assumed that the stifness parameters k1∼k3
undergo a sudden reduction to 80 kN/m, 80 kN/m, and
40 kN/m, respectively, at 10 s. Meanwhile, at 10 s, the
damping parameters c1, c2, and c3 are assumed to undergo
a sudden change to 0.7 kNs/m, 0.65 kNs/m, and 0.65 kNs/m,
respectively. Te percentage of the RMS noise is 5%. Te
initial values of the state vector and state covariance are
provided in Table 1. In addition, the covariance matrix Q,
representing the modeling error, is set to 1× 10−8 I, and the
measurement error covariance matrix R is set to 5×10−2 I.
Furthermore, in this section, the acceleration responses of
the frst, second, and third stories are considered as mea-
surements. Te sampling frequency is 100Hz.

Before applying the ASRUKF-FF approach, it is essential
to establish a threshold for the sensitive parameter. Te time
history curve of this parameter, computed using both the

MSRUKF and ASRUKF-FF algorithms, is presented in
Figure 1. As depicted in Figure 1(a), when structural pa-
rameters change, the time history curve of the sensitive
parameter would exhibit a pulse response at the moment of
change occurrence. Based on the calculation method pro-
posed in Section 2.3 and the results shown in Figure 1(b), the
threshold for the sensitive parameter can be determined as
η0 � 7. Furthermore, the ASRUKF-FF algorithm demon-
strates its efectiveness in diminishing the impulse response
of the sensitive parameter after 10 seconds. A lower value of
the sensitive parameter indicates decreased uncertainty in
the identifcation process, thus highlighting the enhanced
accuracy of the ASRUKF-FF method.

To comprehensively demonstrate the efectiveness of the
method proposed in this paper, a comparison is conducted
between the ASRUKF-FF method and other existing
methods, namely, the MSRUKF, adaptive UKF (AUKF) as
described in literature [1], and modifed strong tracking
SRUKF (MSTSRUKF) as described in literature [33]. It is
worth noting that the MSTSRUKF method requires the
determination of a gradual forgetting factor ρ, typically
satisfying 0< ρ≤ 1. Te identifcation results of various al-
gorithms are illustrated in Figure 4. Within the fgure, the
threshold β0 for AUKF is determined as 16.3 using tran-
scendental probability [1] and a gradual forgetting factor of
0.95 is applied to MSTSRUKF. For a detailed analysis of the
errors in the fnal identifcation results, refer to Table 2.

Based on the analysis of Figure 4 and Table 2, the following
conclusions can be drawn: (1) Te MSRUKF method exhibits
limited efectiveness in identifying time-variant parameters of
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Figure 3: Information about the model and applied loads for structural analysis. (a) Te three-story frame structure and (b) time history
curve of seismic excitation.

Table 1: Te initial state vector and state covariance.

Item x1 x2 x3 _x1 _x2 _x3 k1 k2 k3 c1 c2 c3
X0 0 0 0 0 0 0 110 110 50 0.3 0.3 0.3
P0 1e− 8 1e− 8 1e− 8 1e− 8 1e− 8 1e− 8 2e3 2e3 2e3 0.1 0.1 0.1
Note. for convenience, dimensional units are omitted in Table 1 and xi is the ith relative displacement, i� 1, 2, and 3.
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Figure 4: Results of parameter estimation using diferent algorithms: (a) the 1st-story stifness, (b) the 2nd-story stifness, (c) the 3rd-story
stifness, (d) the 1st-story damping, (e) the 2nd-story damping, and (f) the 3rd-story damping.
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structures. It demonstrates issues of overconvergence
(Figures 4(a) and 4(c)–4(f)) as well as underconvergence
(Figure 4(b)). (2) Te ASRUKF-FF method demonstrates
a signifcant improvement in identifcation accuracy when the
sensitive parameter threshold is set at η0� 7. It achieves
a satisfactory identifcation efect with a maximum identif-
cation error of less than 3%. Furthermore, based on the
damping identifcation results (Figures 4(d)–4(f)), the
ASRUKF-FF method exhibits a tendency to generate pulse
fuctuations precisely at the moment of structural parameter
mutation. Tis characteristic can be utilized to estimate the
exact timing of parameter changes. In comparison to other
methods, the ASRUKF-FF algorithm exhibits the fastest
convergence speed prior to parameter changes. (3) In the
scenario, where the number of measurement values is 3 and the
transcendental probability is set at 0.001, the threshold value of
AUKF is calculated as β0�16.3 using the chi-square inverse
cumulative distribution function. However, it is observed that
when β0 is set to 16.3, the identifcation performance of AUKF
is poor, resulting in a maximum error of 16.59% in the
damping identifcation. By utilizing the threshold value β0� 7
calculated using the proposed method in Section 2.3, the
identifcation efect of AUKF has signifcantly improved.
Nevertheless, there is still a maximum error of 9.10%, and the
convergence to the true values prior to parameter changes has
not been achieved. In addition, when compared with the
ASRUKF-FF and MSTSRUKF methods, the AUKF method
exhibits slower convergence speed. (4) Te MSTSRUKF
method achieves a maximum identifcation error of 0.17% for
stifness and 1.94% for damping, aligning with the conclusion
drawn in literature [33] that the identifcation error for stifness
and damping should not exceed 0.2% and 4%, respectively.
Furthermore, as the literature [33] does not discuss the
identifcation efect of diferent gradual forgetting factors,
a brief discussion on the corresponding parameter ρ is pre-
sented here. Based on the fndings in Table 2, it can be observed
that the MSTSRUKF method is not signifcantly afected by
variations in the gradual forgetting factor. Te identifcation
results remain relatively stable across diferent values of the
parameter. (5) In terms of identifcation accuracy, both the

ASRUKF and MSTSRUKF methods have demonstrated ex-
cellent performance in this particular case.

To ofer a more comprehensive explanation for the
ASRUKF-FF algorithm’s ability to identify time-variant pa-
rameters, an investigation was conducted on the time history
curves of stifness and damping parameters in the square root
of the state covariance matrix (SRSCM). Te comparative
results of this study are presented in Figure 5, where the solid
line denotes the outcomes computed by the MSRUKF algo-
rithm and the dashed line represents the outcomes computed
by the ASRUKF-FF algorithm. Figure 5 clearly indicates that
the MSRUKF algorithm, lacking an adaptive function, mis-
takenly assumed that the identifcation result had converged to
the true value at the time of parameter mutation (10 s).
However, due to the failure to properly adjust the algorithm,
the identifcation result was ultimately unsuccessful, as depicted
in Figure 4. In contrast, the ASRUKF-FF algorithm efectively
expands the SRSCM using the adaptive forgetting factor at the
time of parameter change. Tis expansion increases the search
threshold for the parameters to be identifed, enabling the
successful identifcation of time-variant parameters. Please note
that due to the dynamic adjustment of the adaptive forgetting
factor based on the residual information at each recursion step,
the time history curves of stifness or damping parameters in
the SRSCM calculated using the ASRUKF-FF algorithm exhibit
distinct peak pulses after the occurrence of parameter muta-
tions. Tese peak pulses represent the results of diferent
forgetting factor corrections.

3.2.2. Discussion on the Identifcation Efect of Diferent
Sensitive Parameter Tresholds. Tis section discusses the
identifcation efect of diferent sensitive parameter thresholds
to demonstrate the stability and reliability of the proposed
adaptive method. Te comparative analysis adopts the control
variable method, wherein all parameter settings remain the
same as those in Section 3.2.1, except for the variation in
sensitive parameter thresholds. Tis ensures a fair and con-
trolled comparison of the results. Te specifc identifcation
results are depicted in Figure 6, while the error analysis of the
fnal identifcation values is presented in Table 2.

Table 2: Estimation errors of the fnal identifcation results based on diferent algorithms.

Algorithms Error
k1 (%) k2 (%) k3 (%) c1 (%) c2 (%) c3 (%)

MSRUKF −3.65 27.34 −14.71 387.88 489.68 169.98

ASRUKF-FF

η0 � 7 −0.07 0.07 −0.06 1.62 −2.58 −0.97
η0 �10 −0.05 0.29 −0.37 1.83 0.54 −3.91
η0 �15 −0.23 0.32 −0.29 −1.17 −6.56 2.83
η0 �16.3 −0.09 0.15 −0.15 −0.86 −3.25 −0.39
η0 � 20 −0.07 0.07 −0.20 0.80 −2.96 −2.13

AUKF β0 � 7 −0.20 0.41 −0.07 −1.71 9.10 −2.02
β0 �16.3 −0.29 0.20 −0.84 −2.19 16.59 −8.67

MSTSRUKF
ρ� 0.95 −0.01 0.15 0.17 1.94 −0.82 1.54
ρ� 0.96 −0.01 0.16 0.17 1.95 −0.83 1.54
ρ� 0.99 −0.01 0.16 0.16 1.96 −0.85 1.56

Note. Error� (identifcation value− true value)/true value× 100%.
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Figure 5: Time history curves of the principal diagonal elements in the SRSCM. (a) Time history curve of the stifness parameter and (b)
time history curve of the damping parameter.
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Figure 6: Identifcation performances of diferent sensitive parameter thresholds (5% noise level): (a) the 1st-story stifness, (b) the 2nd-story
stifness, (c) the 3rd-story stifness, (d) the 1st-story damping, (e) the 2nd-story damping, and (f) the 3rd-story damping.
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As described in Section 2.3, the calculation method for the
sensitivity parameter threshold involves selecting a value
slightly larger than the maximum value before the initial pulse
in the curve. Considering Figure 1, it can be observed that the
threshold value of 20 is signifcantly higher than the maximum
value of 6.966 (Figure 1(b)). Terefore, the range of sensitivity
parameter thresholds discussed in this context varies from 7 to
20, with the maximum threshold being nearly three times
higher than the minimum threshold. Analyzing Figure 6 and
Table 2, it can be observed that the stifness identifcation
results remain consistent across diferent sensitive parameter
thresholds. However, there are slight variations in the damping
identifcation results. For instance, when the threshold value is
set to 15, the maximum identifcation error for damping is
6.56%, whereas the identifcation errors for other thresholds do
not exceed 4%. Moreover, it can be observed that when the
threshold is set to 7, the proposed method exhibits a relatively
high identifcation accuracy. Tis confrms the efectiveness of
the proposed method as outlined in Section 2.3.Terefore, it is
possible to choose a smaller threshold while ensuring the
convergence of the algorithm.Tis can be done to improve the
identifcation accuracy of the method. Although there may be
slight variations in the identifcation results for diferent sen-
sitive parameter thresholds, the overall accuracy of the esti-
mation results remains high. Tis indicates the stability of the
proposed algorithm in consistently producing reliable identi-
fcation outcomes.

3.2.3. Discussion on the Identifcation Efect of the Values of
X0, P0,Q, andR. Te identifcation results are notably afected
by the initial values of the state vector (X0), state covariance
(P0), modeling error covariance (Q), and measurement error
covariance (R).Tus, in this section, we explore the infuence of
diferent X0, P0, Q, and R values on the identifcation per-
formance of time-variant structural parameters through the
utilization of the ASRUKF-FF method. Te comparative
analysis employs the control variable method, where param-
eters other than the ones under study are set according to
Section 3.2.1. Furthermore, the initial state variables,X0 and P0,
primarily consist of displacement, velocity, stifness, and
damping parameters. Typically, the initial displacement and
velocity can be assumed to be zero, indicating relatively low
uncertainty in these values. Conversely, the initial uncertainty
associated with the stifness and damping parameters is rela-
tively high. Terefore, this section primarily focuses on the
stifness and damping parameters within X0 and P0. Te
specifc identifcation results are illustrated in Figures 7–10,
while the fnal identifcation error is presented in Table 3.

Based on the analysis of the results in Figures 7–10 and
Table 3, for the shear model, in comparison to the original
intact state values of [k1, k2, k3, c1, c2, c3]� [120, 120, 60, 0.6, 0.6,
0.6], as mentioned in the frst paragraph of Section 3.2, when
the stifness and damping values in the state vector X0 are
smaller [50, 50, 10, 0.01, 0.015, 0.02] or larger [220, 220, 220, 1.5,
1.5, 1.5], they exert amore signifcant infuence on the accuracy
of damping parameter identifcation. Te corresponding
maximum identifcation errors for the damping parameters are
5.9% and 3.7%, respectively. Tere are two possible reasons for
this observation. First, stifness plays a more signifcant role in

the response of the frame structure, and acceleration mea-
surements are more sensitive to the identifcation of stifness.
Second, there is a disparity in numerical magnitudes between
stifness and damping. Hence, it is advisable to select more
appropriate values for the stifness and damping parameters in
X0, in order to mitigate the negative impact caused by ex-
cessively large or small initial values on the identifcation re-
sults.Te values of the stifness and damping parameters in the
initial state covariance P0 have a signifcant infuence on the
accuracy of damping identifcation. For example, in the
“[20000, 20000, 20000, 1, 1, 1]” operating condition, the
maximum identifcation error for damping reaches 8.37%.
Covariance represents the level of uncertainty in the data, and
overestimating the degree of uncertainty can potentially impact
the accuracy of identifcation. Furthermore, according to
Figure 8, it can be inferred that appropriately increasing the
values of the parameters to be identifed in P0 helps speed up
convergence and reduce the time required for the parameters
to converge to their true values.Te value of themodeling error
covariance Q has a signifcant impact on the identifcation of
damping. While smaller Q values may lead to higher accuracy
in the fnal identifcation results, they might also result in
slower convergence rates. In certain cases, the algorithmmight
not converge to the true parameter values before parameter
mutations occur, as indicated by the red line in Figure 9.
Furthermore, it is worth noting that the maximum identif-
cation error for damping is higher atQ� 1× 10−10 I compared
toQ� 1× 10−9 I. On the other side, as the value ofQ increases
(1× 10−9 I⟶1× 10−8 I⟶1×10−7 I⟶1× 10−6 I), the
identifcation error for damping also progressively increases.
Te main reason behind this observation is that Q serves as
a compensation term for modeling errors. Overestimating the
value ofQ can introduce largermodel errors, which in turn can
result in inaccurate parameter identifcation. Indeed, the
measurement error covariance R also plays a signifcant role in
the identifcation of damping.R value plays a crucial role in the
measurement equation, and any underestimation or over-
estimation of its value can result in inaccurate estimation
outcomes. Based on Table 3, it is evident that underestimating
R (2×10−2 I) has a more signifcant impact. Furthermore,
despite the minimal impact of a lower R value (2×10−2 I) on
the fnal identifcation errors of structural stifness parameters,
it leads to a highly oscillatory identifcation process, as depicted
by the red line in Figure 10. To summarize, variant X0, P0, Q,
and R values have a negligible efect on the identifcation of
stifness parameters for frame structures. However, they exert
a notable infuence on the identifcation of damping, with R
having the most substantial impact. Furthermore, in terms of
value rationality, smaller or larger values of X0 were not se-
lected as the focus of the research.

3.2.4. Discussion on the Identifcation Efect of Diferent
Measurements. Tis section primarily examines the impact of
various measurement combinations on the identifcation
outcomes. Te control variable method is employed for con-
ducting comparative analysis. Te specifc settings for algo-
rithm parameters X0, P0, Q, and R can be found in Section
3.2.1, and the noise level is 5%. Te sensitivity parameter
thresholds may vary due to diferent measurement values.
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Terefore, the calculation process for eachworking condition is
as follows: frst, calculate the sensitivity parameter threshold
using MSRUKF; then, utilize the sensitive parameter threshold
calculated in the previous step along with the ASRUKF-FF
algorithm to identify the structural parameters and record the
identifcation results; fnally, perform data processing, analysis,
and summary.Te specifc identifcation results are depicted in
Figure 11, while the comparison of identifcation errors in the
fnal outcomes is presented in Table 4. Te meanings of the
labels in Figure 11 and Table 4 are explained as follows: (1)
“ACC-1-2-3” indicates the utilization of all acceleration
measurements, with a total of 3measurements representing the
accelerations of the frst, second, and third stories, respectively.
(2) “ACC-2 and DIS-1” signifes the simultaneous adoption of

acceleration and displacement as measurements, with the
second-story acceleration and frst-story displacement being
specifcally selected.

Based on the information presented in Figure 11 and
Table 4, it can be concluded that when using a single
measurement value (ACC-1, ACC-2, or ACC-3), the
ASRUKF-FF algorithm exhibits a noticeable identifcation
error and fails to accurately identify all stifness and damping
parameters of the structure simultaneously. Nevertheless, it
is observed that the identifcation efect for stifness is su-
perior to that of damping. In addition, the identifcation
efect of “ACC-1” and “ACC-3” outperforms that of “ACC-
2,” suggesting that using the acceleration measurements
from the frst or third story alone yields better identifcation
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Figure 7: Identifcation results of diferentX0 values (the legend values correspond to the initial values of stifness and damping parameters,
respectively; for example, the red line legend “[50, 50, 10, 0.01, 0.015, 0.02]” means k1 � 50, k2 � 50, k3 �10, c1 � 0.01, c2 � 0.015, and c3 � 0.02):
(a) the 1st-story stifness, (b) the 2nd-story stifness, (c) the 3rd-story stifness, (d) the 1st-story damping, (e) the 2nd-story damping, and (f) the
3rd-story damping.
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results compared to using the acceleration measurement
from the second story alone. When two measurements are
utilized, the identifcation performance of the ASRUKF-FF
algorithm demonstrates a notable improvement compared
to the case of using a single measurement value. Specifcally,
the “ACC-1-2” combination achieves better identifcation
performance than the other two measurement combina-
tions. Furthermore, upon comparing “ACC-2” and “ACC-2
and DIS-1,” it is observed that incorporating the frst-story

displacement as an additional measurement can enhance the
identifcation accuracy of the algorithm. In practical ap-
plications, direct measurement of displacement is feasible,
such as utilizing ground-based radar with an accuracy of
0.1mm [48]. Terefore, it is reasonable to include dis-
placement as a measurement value. Te details regarding
displacement measurements will be thoroughly discussed in
Section 4, while no in-depth research will be conducted in
this section. In addition, considering the maximum
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Figure 8: Identifcation results of diferent P0 values (the legend values correspond to the initial covariance values of stifness and damping
parameters, respectively; for example, the blue line legend “[10, 10, 10, 1× 10−8, 1× 10−8, 1× 10−8,]” means P0_k1 � 10, P0_k2 �10, P0_k3 �10,
P0_c1 � 1× 10−8, P0_c2 �1× 10−8, P0_c3 �1× 10−8): (a) the 1st-story stifness, (b) the 2nd-story stifness, (c) the 3rd-story stifness, (d) the 1st-
story damping, (e) the 2nd-story damping, and (f) the 3rd-story damping.
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Figure 9: Identifcation results of diferent Q values. (a) Te 1st-story stifness, (b) the 2nd-story stifness, (c) the 3rd-story stifness, (d) the
1st-story damping, (e) the 2nd-story damping, and (f) the 3rd-story damping.
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Figure 10: Continued.
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identifcation error, the ranking of identifcation efects for
the measurement combinations in Table 4 is as follows:
ACC-1-2-3>ACC-1-2>ACC-2-3>ACC-1-3>ACC-2 and
DIS-1>ACC-1>ACC-3>ACC-2. Tis implies that utiliz-
ing three accelerations as measurement values yields the
most favorable identifcation efect.

3.2.5. Discussion on the Identifcation Efect of Diferent
Modeling Errors. Tis section examines the infuence of
parameter modeling errors on the performance of identi-
fcation. Based on the model analysis presented in Section
3.1, the focus of this study is on the mass parameter, while
the parameter settings for other variables are referenced
from Section 3.2.1. Furthermore, diferent modeling errors

can also lead to variations in sensitivity parameter thresh-
olds. Terefore, the specifc implementation process is ref-
erenced from Section 3.2.4. It is worth noting that the
measurement noise is set at 5%. Te specifc identifcation
results are depicted in Figure 12, while the fnal identifcation
error is presented in Table 5.

Based on the simulation analysis, it is found that the
location of the maximum error for the stifness parameter
corresponds directly to the location of the mass change. Tis
correlation can be visually observed from the light green or
light blue cells in Table 5. However, there is no such re-
lationship between the location of the maximum error for
the damping parameter and the location of the mass change.
Trough the analysis of the simulation results for working
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Figure 10: Identifcation results of diferent R values. (a) Te 1st-story stifness, (b) the 2nd-story stifness, (c) the 3rd-story stifness, (d) the
1st-story damping, (e) the 2nd-story damping, and (f) the 3rd-story damping.

Table 3: Estimation errors of the fnal identifcation results with diferent parameters.

Variant parameter Parameter values
Identifcation error

k1 (%) k2 (%) k3 (%) c1 (%) c2 (%) c3 (%)

X0

[50, 50, 10, 0.01, 0.015, 0.02] 0.02 0.02 −0.11 2.53 −5.90 0.12
[90, 90, 30, 0.15, 0.2, 0.1] −0.07 0.06 −0.06 1.64 −2.63 −0.94
[110, 110, 50, 0.3, 0.3, 0.3] −0.07 0.07 −0.06 1.62 −2.58 −0.97
[150, 150, 120, 0.8, 0.8, 0.8] 0.00 −0.07 0.08 0.92 −1.22 −0.92
[220, 220, 220, 1.5, 1.5, 1.5] 0.04 −0.14 0.17 3.55 −3.10 −3.70

P0

[1× 10−8, 1× 10−8, 1× 10−8, 1× 10−8, 1× 10−8, 1× 10−8] −0.12 0.11 −0.05 −0.78 −0.57 −0.18
[10, 10, 10, 1× 10−8, 1× 10−8, 1× 10−8] −0.01 0.04 −0.10 1.28 −0.72 −1.72

[200, 200, 200, 1× 10−8, 1× 10−8, 1× 10−8] −0.05 0.11 −0.08 −0.17 −0.01 −0.76
[2000, 2000, 2000, 0.1, 0.1, 0.1] −0.07 0.07 −0.06 1.62 −2.58 −0.97
[20000, 20000, 20000, 1, 1, 1] −0.01 0.08 −0.13 3.58 −8.37 0.85

Q

1× 10−10I 0.01 0.03 −0.12 0.63 −1.94 0.66
1× 10−9I −0.11 0.29 −0.21 −1.07 −0.25 0.95
1× 10−8I −0.07 0.07 −0.06 1.62 −2.58 −0.97
1× 10−7I 0.00 0.22 −0.05 −5.52 −3.60 −2.59
1× 10−6I 0.00 0.30 −0.06 −9.62 −8.43 −2.62

R

2×10−2I −1.75 −1.09 −0.55 161.92 90.31 48.39
5×10−2I −0.07 0.07 −0.06 1.62 −2.58 −0.97
1× 10−1I −0.20 0.33 −0.27 0.27 −6.28 1.97
2×10−1I −0.10 0.11 −0.22 1.11 0.58 −8.86
5×10−1I −0.67 0.31 0.30 11.00 −22.01 −10.35
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conditions 1 to 3, it is observed that themodeling error of the
third-story mass parameter has the most signifcant impact
on the identifcation outcomes. It is followed by the second-
story mass parameter, while the modeling error of the frst-
story mass parameter has the least impact on the identif-
cation results. Furthermore, in working conditions 4 to 6, it

is observed that the simultaneous modeling error caused by
the mass parameters of the second and third stories leads to
the poorest identifcation efect. Trough the analysis of the
simulation results for working conditions 7 to 9, it is ob-
served that the higher the uncertainty of the mass parameter,
the larger the error in parameter identifcation. Tis
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Figure 11: Identifcation efect of diferent measurements: (a) the 1st-story stifness, (b) the 2nd-story stifness, (c) the 3rd-story stifness, (d)
the 1st-story damping, (e) the 2nd-story damping, and (f) the 3rd-story damping.

Table 4: Estimation errors of the fnal identifcation results with diferent measurements based on the three-story frame structure.

Working condition Type of
measurements

Identifcation error
k1 (%) k2 (%) k3 (%) c1 (%) c2 (%) c3 (%)

1 ACC-1-2-3 −0.07 0.07 −0.06 1.62 −2.58 −0.97
2 ACC-1-2 −0.23 −0.22 0.92 −7.97 −2.96 9.79
3 ACC-1-3 −2.91 7.02 −3.00 −14.40 24.21 −9.68
4 ACC-2-3 0.70 −0.57 −0.71 6.19 −10.70 −5.29
5 ACC-1 −2.84 −3.47 11.95 −33.71 3.29 25.07
6 ACC-2 46.87 −11.59 −29.19 168.82 −110.74 3.66
7 ACC-3 −4.25 10.68 −3.80 −26.17 39.12 −6.76
8 ACC-2 and DIS-1 6.56 3.18 −14.93 −54.59 −9.16 15.92
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indicates a positive correlation between the mass parameter
and the identifcation of the stifness and damping pa-
rameters in the shear model. In summary, for this case study,
when the mass parameter has a modeling error of 10%, the
maximum identifcation errors for the structural stifness
and damping parameters are 10.07% and 11.71%,
respectively.

4. Identification of Time-Variant Stiffness of
the Bridge

4.1. Vehicle Bridge System. To the best of the author’s
knowledge, there are few cases of directly identifying the
time-variant stifness of bridges using methods related to the
UKF. Hence, to thoroughly demonstrate the efectiveness of
the proposed method, this section selects a simply supported
bridge as the object of verifcation. To simplify the

calculation process and improve the computation efciency,
the bridge structure is simulated using a beam model. Te
purpose is to determine the stifness parameters of the bridge
by the vehicle bridge interaction force when the vehicle
crosses the bridge.

Te bridge section is assumed to be constant, as illus-
trated in Figure 13. Te specifc parameters are bridge span
L� 21m, cross-sectional area A� 1.2m2, section moment of
inertia I� 0.12m4, elastic modulus E� 2.4×104MPa, and
density ρ� 2000 kg/m3. Furthermore, pavement roughness
is taken into consideration and is characterized by random
numbers following a normal distribution.

Te fnite element model of the bridge is constructed
using Euler–Bernoulli beam elements, which are divided
into six elements, represented as beams① to⑥ in Figure 13.
Te stifness and mass matrices of the beam element are
given in the following equations, respectively:
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Figure 12: Identifcation efect with diferent mass modeling errors (explanation of legend characters, “mass 1: 10%” indicates a modeling
error of 10% existing in the mass of the frst story; “mass 1-2: 10%” indicates a modeling error of 10% existing in the mass of the frst and
second stories, respectively): (a) the 1st-story stifness, (b) the 2nd-story stifness, (c) the 3rd-story stifness, (d) the 1st-story damping, (e) the
2nd-story damping, and (f) the 3rd-story damping.
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Ke
� 􏽚

xj

xi

BTEIBdx, (52)

Me
� 􏽚

xj

xi

NTρANdx, (53)

whereMe andKe are the element mass and stifness matrices,
respectively; xi and xj represent the starting and ending
coordinate of one element; N is the shape function of ele-
ment i; and B is the strain matrix of element i. Te specifc
expression of N and B is given in the following equations:

N � 1 − 3ξ2 + 2ξ3, liξ(1 − ξ)
2
, ξ2(3 − 2ξ), −liξ

2
(1 − ξ)􏽨 􏽩, (54)

B �
d
2N
dx

2

�
1
l
2
i

−6 + 12ξ, li(−4 + 6ξ), 6 − 12ξ, li(−2 + 6ξ)􏼂 􏼃,

(55)

where ξ is a scalar and ξ � x/li, x is the distance the vehicle
moves on a beam element, and li is the length of element i.

Table 5: Final identifcation errors with diferent mass modeling errors.

Working 
condition

Uncertain 
parameter

Modeling 
error (%)

Identifcation error

k1 (%) k2 (%) k3 (%) c1 (%) c2 (%) c3 (%)

1 Mass-1

10

1.75 0.07 –0.16 –2.35 3.58 0.04

2 Mass-2 3.18 3.92 –0.01 1.86 5.76 0.07

3 Mass-3 4.88 6.22 9.96 5.44 2.99 8.96

4 Mass-1-2 4.99 4.00 –0.15 4.43 6.65 –1.53

5 Mass-1-3 6.73 6.17 9.88 5.31 5.84 9.59

6 Mass-2-3 8.09 10.18 9.92 10.57 5.22 9.23

7 Mass-1-2-3 3 2.93 3.07 2.94 4.67 0.31 2.03

8 Mass-1-2-3 5 4.93 5.07 4.94 6.69 2.28 4.02

9 Mass-1-2-3 10 9.92 10.07 9.93 11.71 7.22 9.01
Note. (1) Cell data with light green and light blue backgrounds represent the maximum error and the frst two maximum errors of stifness parameters in each
row, respectively. (2) Cell data with orange and yellow backgrounds represent the maximum error and the frst two maximum errors of damping parameters
in each row, respectively. (3) A modeling error represents an increase in the parameter. If the true parameter value is 10, considering a modeling error of 5%,
the parameter value becomes 10× (1 + 5%).
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y2
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DOF
No.

v

1 2 3 4 5 6

7654321
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Figure 13: Te simplifed model of the vehicle bridge system (VBS).
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Te quarter-car model is generally used to demonstrate the
theoretical basis of the vehicle bridge interactionmodel [49, 50]
and has been successfully applied to numerous applications
[51–53]. Terefore, a moving quarter-car model is chosen as
the external excitation for the analysis. Te vehicle system has
two degrees of freedom (Figure 13), including the body mass
m1� 3.6×104 kg, bogie mass m2� 2.5×102 kg, secondary
suspension stifness k1� 6.0×105N/m, secondary suspension
damping c� 1.0×103Ns/m, and primary suspension stifness
k2� 8.5×105N/m. Te moving speed is v � 30.24 km/h.

Based on the coupling relationship between contact force
and displacement, the equations of motion for the VBS are
formulated as

M €U (t) + C _U(t) + KU(t) � F(t), (56)

where

M �

Mb LT
m1 LT

m2

0 m1 0
0 0 m2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

C �

Cb 0 0
0 c −c

0 −c c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

K �

Kb 0 0
0 k1 −k1

−k2L −k1 k1 + k2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

F �

LT
m1 + m2( 􏼁g􏼂 􏼃

0
k2r(x(t))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

U(t) �

ub(t)

y1(t)

y2(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(57)

Mb, Kb, and Cb are the mass, stifness, and damping
matrices of the bridge, respectively; ub is the displacement
vector of the bridge; L is the mapping matrix for the input
force, such as L� [0, 0, . . ., Ni(t),. . ., 0, 0]T; y1 is the vertical
displacement of the vehicle body; y2 is the vertical dis-
placement of the vehicle bogie; and r(x(t)) is the pavement
roughness at position x(t) which is the vehicle position at
time t.

In this case study, the Rayleigh damping is selected as

Cb � a1Mb + a2Kb, (58)

a1

a2
􏼢 􏼣 � 2

ωmωn

ω2
n − ω2

m

ωn −ωm

−1
ωn

1
ωm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

τm

τn

􏼢 􏼣, (59)

where a1 and a2 are the Rayleigh damping coefcients of the
structure, respectively; ωm and ωn represent themth and nth
modal circular frequencies of the structure, respectively; and
τm and τn are the mth and nth modal damping ratios, re-
spectively. In this simulation, take τm � τn � 0.015, ωm �ω1,
and ωn �ω2.

4.2. Time-Variant Stifness Parameters Identifcation

4.2.1. Te Efect Comparison of Diferent Algorithms. In this
case study, it is assumed that the stifness of the ② to ⑤
beam elements of the bridge is unknown. It is further
assumed that the② and③ beam elements exhibit gradual
and abrupt changes, respectively. In addition, the beam
stifness is assumed to be solely dependent on the elastic
modulus. Te specifc parameter changes are illustrated in
Table 6.

Because each element of the Euler–Bernoulli beam has 2
nodes and each node has 2 degrees of freedom, the total
number of degrees of freedom of the bridge is n� 14. As
there are four elastic modulus parameters to be identifed,
the state vector is chosen to be of order (2n+m). Te state
vector can be written as

_X(t) �

_ub(t)

€ub(t)

_E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

_ub(t)

M−1
b LFint(t) − Cb _ub(t) − Kbub(t)􏼂 􏼃

04×1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(60)

where subscript “p× q” represents a vector or matrix with p
row(s) and q column(s) and the quantities appearing in the
equation are defned as

X(t) �

ub(t)

_ub(t)

E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

E �

E2

E3

E4

E5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ub � ub1 ub2 ub3 ub4 ub5 ub6 ub7 ub8 ub9 ub10 ub11 ub12 ub13 ub14􏼂 􏼃
T
.

(61)
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In this case study, it is observed that using displacements
as measurements yields better results. Terefore, the vertical
displacements of nodes 2, 3, 4, 5, and 6, as shown in Fig-
ure 13, are selected as the measurements. Te measurement
equation can be expressed as follows:

Y � y1 y2 y3 y4 y5􏼂 􏼃
T

� ub3 ub5 ub7 ub9 u11􏼂 􏼃
T
.

(62)

Temodeling error covariance matrixQ is set as 1× 10−8

I, and the measurement error covariance matrix R is set as
1× 10−8 I. Furthermore, the initial state vector and co-
variance are given by

􏽢X+

0(t) �

ub(t)

_ub(t)

E2

E3

E4

E5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�

01×14

01×14

0.264

0.264

0.264

0.264

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

􏽢P+

0 �

1 × 10− 8diag(14) 014×1 014×1 014×1 014×1 014×1

014×14 1 × 10− 8diag(14) 014×1 014×1 014×1 014×1

01×14 01×14 1 × 10− 2 0 0 0

01×14 01×14 0 1 × 10− 2 0 0

01×14 01×14 0 0 1 × 10− 2 0

01×14 01×14 0 0 0 1 × 10− 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(63)

where the initial values of E2 to E5 are set to 0.264, re-
spectively, to reduce the diference in the order of magnitude
between state variables; however, the corresponding missing
order of magnitude should be considered when solving the
actual equation; 1× 10−8diag(14) represents a diagonal
matrix with the order of 14 and the diagonal elements are all
1× 10−8.

In this section, the RMS noise percentage is set to 2%, and
the sampling frequency is 100Hz. Te threshold β0 of the
AUKF is calculated as 21 using transcendental probability [1].
In addition, the gradual forgetting factor of theMSTSRUKF is
set to 0.95. Te identifcation results of diferent algorithms
are shown in Figure 14, and the error analysis of the fnal
identifcation results is described in Table 7.

Based on Figure 14 and Table 7, it can be observed that
the MSRUKF method is unable to accurately identify the
time-variant parameters of the beam structure, resulting in
a maximum identifcation error of 77.63%. Te MSTSRUKF
method demonstrates a better identifcation efect on time-
variant parameters compared to constant parameters. Te

maximum error in time-variant parameter identifcation is
6.2%, while the maximum error in constant parameter
identifcation is 16.67%. Furthermore, the identifcation
process of MSTSRUKF exhibits nonsmoothness and sig-
nifcant fuctuations. Te AUKF and ASRUKF-FF methods
exhibit satisfactory performance in identifying time-variant
parameters of beam structures, with a maximum identif-
cation error of no more than 3%. However, the ASRUKF-FF
method achieves higher accuracy in identifying time-variant
parameters.

4.2.2. Algorithm Robustness Analysis. To evaluate the ro-
bustness of the algorithm and its adaptability to larger un-
certainties, the noise level is increased to 5% in this section,
while keeping the other parameters the same as in Section 4.2.1.
Due to the difculty of achieving convergence with the
MSTSRUKF method in the presence of high levels of noise in
the vehicle bridge system, the remaining three algorithms are
compared in this scenario. In addition, it is important to note
that when the noise level is set to 5%, the AUKF algorithm
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Figure 14: Identifcation efect of diferent algorithms: (a) the stifness of beam②, (b) the stifness of beam③, (c) the stifness of beam④,
and (d) the stifness of beam ⑤.

Table 7: Estimation errors of the fnal identifcation results with 2% noise.

Algorithms
Stifness identifcation error

Beam ② (%) Beam ③ (%) Beam ④ (%) Beam ⑤ (%)
MSRUKF 77.63 −29.13 54.26 −12.74
ASRUKF-FF −1.53 1.73 −2.31 1.47
AUKF 2.10 −2.56 2.75 −1.04
MSTSRUKF −6.20 2.88 −16.67 2.60
Note. Stifness identifcation error� (identifcation value− true value)/true value× 100%.
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cannot use a threshold β0� 21 to complete the identifcation
task, and a low threshold value would cause identifcation
divergence. Hence, in this analysis section, the AUKF algo-
rithm utilizes the threshold calculated through the method
proposed in this article to accomplish the identifcation of
stifness parameters. Te specifc identifcation results are
presented in Figure 15, and a detailed error analysis of the fnal
identifcation results is provided in Table 8.

From Figure 15 and Table 8, it is evident that as the system
uncertainty increases, the maximum error of the MSRUKF
method in identifying time-variant parameters of the beam
structure also increases, with themaximum identifcation error
reaching 95.21%. Furthermore, as the noise level increases, both
the AUKF and ASRUKF-FF methods exhibit a reduced ca-
pability to identify time-variant parameters of the beam
structures. However, it is worth noting that the ASRUKF-FF
method outperforms the AUKF method in terms of identif-
cation efectiveness. As indicated in Table 8, the AUKFmethod
exhibits a maximum identifcation error of 7.61%, whereas the
ASRUKF-FFmethod achieves a maximum error of 4.14%.Tis
demonstrates that the proposed ASRUKF-FF method exhibits
greater robustness in the identifcation of time-variant
parameters.

4.2.3. Discussion on the Identifcation Efect of the Values of
X0, P0, Q, and R. Similar to Section 3.2.3, this section focuses
on examining the identifcation performance of time-variant
structural parameters using the ASRUKF-FF method under
diferent values of X0, P0, Q, and R. Te aim is to assess the
impact of these algorithm parameters on the accuracy and
efectiveness of parameter identifcation. Te comparative
analysis adopts the control variable method, and except for the
parameters to be studied, all other parameter settings are the
same as those in Section 4.2.1. Furthermore, this section pri-
marily considers the parameters to be identifed in X0 and P0.
Te specifc identifcation results are depicted in Figures 16–19,
while the fnal identifcation error is presented in Table 9.

Based on simulation analysis research conducted on the
beammodel, it has been observed that when solely considering
variations in the initial state vector, there exists a specifc range
requirement for the optimal elastic modulus value within X0.
Values outside this range can result in the matrix becoming ill-
conditioned, which in turn leads to divergent identifcation.
Te appropriate range for this case is about X0∈ [0.09×1011,
1× 1011], and within this range, the specifc value of X0 has
minimal impact on the identifcation results. Likewise, there is
an upper limit requirement for the initial values to be identifed
in P0. Values outside this range can also result in the matrix
becoming ill-conditioned, which in turn leads to computa-
tional divergence. Furthermore, an excessively small value for
P0, such asP0�1× 10−8 I, can decrease the convergence rate, as
illustrated by the red line in Figure 17. Tis observation aligns
with the conclusion stated in Section 3.2.3. Simultaneously,
excessive values for P0 can result in signifcant jitter during the
initial stages of identifcation (as depicted by the yellow line in
Figure 17), leading to algorithmic instability. However, within
a certain range, the value of P0 has minimal infuence on the
accuracy of stifness parameter identifcation. When solely

considering variations in the modeling error covariance Q,
both excessively large and excessively small Q values (such as
1× 10−7 I or 1× 10−10 I) would result in an increase in
identifcation error.Tis observation aligns with the conclusion
stated in Section 3.2.3. Te reasoning behind this observation
can also be found in Section 3.2.3. When solely considering
variations in the measurement error covariance R, an increase
in R would correspondingly lead to a further increase in the
identifcation error of stifness parameters. Tis observation
aligns with the conclusion stated in Section 3.2.3. However, in
this case, when the R value is excessively small, it can cause the
matrix to become ill-conditioned, leading to divergent iden-
tifcation. Based on the above analysis, it can be concluded that
within a certain range, the values of X0 and P0 have minimal
impact on the identifcation performance of the ASRUKF-FF
algorithm. Te initial values of Q and R have a substantial
impact on the identifcation results, with particular sensitivity
observed in theR value, which signifcantly afects the accuracy
of stifness parameter identifcation for the beam structure.

4.2.4. Discussion on the Identifcation Efect of Diferent
Measurements. Analogous to Section 3.2.4, this section
primarily focuses on the examination of the infuence of
diferent combinations of measurements on the identifca-
tion outcomes. Te comparative analysis employs the
control variable method, where all parameter settings re-
main the same as those in Section 4.2.1, except for the
variations in measurements. Furthermore, the calculation
process for each working condition can be referenced from
Section 3.2.4.Te specifc identifcation results are illustrated
in Figures 20–22, while the comparison of fnal identifcation
errors is provided in Table 10. Te meanings of the char-
acters in Figures 20–22 and Table 10 are explained as follows:
taking “DIS-3-5-7-9-11” as an example, “DIS-3-5-7-9-11”
indicates that all displacement measurements are utilized,
with a total of 5 measurement values included. Te mea-
surement values used are the vertical displacements of the
simply supported bridge, as depicted in Figure 13, with
degrees of freedom of 3, 5, 7, 9, and 11. Furthermore, for the
purpose of facilitating comparative observation, a structural
diagram of the simply supported bridge is depicted in
Figure 13 is provided in Figure 23. It is worth noting that
during the simulation analysis process, it has been observed
that the time history curve of the sensitive parameter based
on the “DIS-7-9” working condition does not exhibit
a distinct pulse response characteristic. In addition, the
working condition based on “DIS-2-4-8” fails to converge.
Terefore, the subsequent discussion and analysis will ex-
clude these two working conditions.

Based on the fndings from Figures 20–22 and Table 10, it
can be observed that, for the simply supported bridge
structure depicted in Figure 13, a minimum of 3 mea-
surements is sufcient to accurately identify the middle four
stifness parameters simultaneously. However, it should be
noted that not every combination of three measurements
can successfully accomplish the identifcation task in this
particular case. Trough data analysis, no evident pattern of
measurement combinations has been identifed. However,
among the combinations of working conditions with three
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measurements, those that include degrees of freedom 7 and
9, and where the third degree of freedom is located in the left
half of the bridge (such as DIS-3-7-9 and DIS-5-7-9), higher

identifcation accuracy is exhibited. In addition, it is worth
noting that in this case study, there is no positive correlation
between the number of measurements and identifcation
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Figure 15: Identifcation efect of diferent algorithms (5% noise level): (a) the stifness of beam ②, (b) the stifness of beam ③, (c) the
stifness of beam ④, and (d) the stifness of beam ⑤.

Table 8: Estimation errors of the fnal identifcation results with 5% noise.

Algorithms
Stifness identifcation error

Beam ② (%) Beam ③ (%) Beam ④ (%) Beam ⑤ (%)
MSRUKF −29.08 95.21 −36.63 40.38
ASRUKF-FF 1.36 −4.14 3.74 0.65
AUKF 3.66 −6.20 7.61 −1.75
Note. Stifness identifcation error� (identifcation value− true value)/true value× 100%.
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accuracy. Having a large number of measurement values
does not necessarily guarantee high identifcation accuracy.
For instance, in this case, the identifcation performance of
the “DIS-3-5-9-11” and “DIS-3-7-9-11” working conditions
is superior to that of the original fve measured values. Te
combination of measurements is an optimization problem,
which is related to the type of structure, environmental
noise, response sensitivity, and modal shape. In this case,
due to the relatively small number of measurement value
combinations, a comprehensive study is conducted to ex-
amine the identifcation efect of each combination. In the
future, further research is needed to explore the

determination method of the optimal measurement value
combination scheme, incorporating optimization algo-
rithms for enhanced accuracy.

4.2.5. Discussion on the Identifcation Efect of Modeling
Error. Tis section takes into account the infuence of
modeling errors on the estimation efect. Based on the model
analysis conducted in Section 4.1, the parameters of elastic
modulus (E1 and E6), unit length mass (ρA), sectionmoment
of inertia (I), and modal damping ratio (τ) are chosen as the
focus of investigation. Referring to Sections 4.1 and 4.2.1 for
the remaining parameter settings, it is worth noting that the
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Figure 16: Identifcation results of diferent X0 values (the legend values correspond to the initial elastic modulus parameters; for example,
the legend “[0.9×1011, 0.9×1011, 0.9×1011, 0.9×1011]” in red indicates that the initial values of E2, E3, E4, and E5 in the state vector are all
0.09, with 1011 representing a scale factor in practical computations): (a) the stifness of beam②, (b) the stifness of beam③, (c) the stifness
of beam ④, and (d) the stifness of beam ⑤.
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measurement noise is set at 2%. In addition, diferent
modeling errors can result in variations in sensitivity pa-
rameter thresholds. Terefore, the specifc implementation
process is referenced from Section 3.2.4. Te specifc
identifcation results can be observed in Figures 24–27, while
the fnal identifcation error is presented in Table 11.

Based on the simulation analysis, it has been de-
termined that the section moment of inertia (I) is the
modeling parameter with the most signifcant impact on
the identifcation results for the beam model. Furthermore,
it has been observed that the maximum identifcation error
of the stifness parameters can reach 9.05% when a negative
5% modeling error is present. Meanwhile, the modal
damping ratio τ is identifed as the modeling parameter
that has the least impact on the identifcation efect.

Moreover, the maximum identifcation errors of stifness
parameters are 2.16% and 2.50% under a ± 30% modeling
error. When considering only the modeling error of the
elastic modulus, it has been observed that the maximum
identifcation error of the stifness parameters gradually
increases with higher modeling errors. Notably, negative
modeling errors have a greater impact on the identifcation
efect. Furthermore, it is important to note that the
modeling errors of the mass and modal damping ratio
parameters do not exhibit a positive correlation with the
identifcation errors of the stifness parameters. In-
terestingly, there is a peculiar phenomenon, where a large
modeling error is present, yet the identifcation accuracy
remains high. It is speculated that the modeling parameters
may compensate for the uncertainties introduced by
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Figure 17: Identifcation results of diferent P0 values (the legend values correspond to the initial covariance values of elastic modulus
parameters; for example, the legend “[1× 10−8, 1× 10−8, 1× 10−8, 1× 10−8,]” in red indicates that P0_E2 �1× 10−8, P0_E3 �1× 10−8,
P0_E4 �1× 10−8, P0_E5 �1× 10−8): (a) the stifness of beam②, (b) the stifness of beam③, (c) the stifness of beam④, and (d) the stifness of
beam ⑤.
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Figure 18: Identifcation results of diferent Q values: (a) the stifness of beam②, (b) the stifness of beam③, (c) the stifness of beam④,
and (d) the stifness of beam ⑤.
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Figure 19: Continued.
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certain random noise components. In summary, even with
2% measurement noise, the proposed adaptive algorithm
exhibits a certain ability to mitigate modeling errors for

beam structures. However, it is crucial to emphasize the
strict control of the parameter value for the section mo-
ment of inertia.

Table 9: Estimation errors of the fnal identifcation results with diferent parameter settings.

Variant parameter Parameter values
Stifness identifcation error

Beam ② (%) Beam ③ (%) Beam ④ (%) Beam ⑤ (%)

X0

[0.09×1011, 0.09×1011, 0.09×1011, 0.09×1011] −1.65 1.90 −2.53 1.61
[0.1× 1011, 0.1× 1011, 0.1× 1011, 0.1× 1011] −1.65 1.90 −2.53 1.61

[0.264×1011, 0.264×1011, 0.264×1011, 0.264×1011] −1.53 1.73 −2.31 1.47
[0.4×1011, 0.4×1011, 0.4×1011, 0.4×1011] −1.53 1.73 −2.31 1.47
[1.0×1011, 1.0×1011, 1.0×1011, 1.0×1011] −1.53 1.73 −2.30 1.47

P0

[1× 10−8, 1× 10−8, 1× 10−8, 1× 10−8] −1.65 1.89 −2.52 1.62
[0.0001, 0.0001, 0.0001, 0.0001] −1.52 1.70 −2.27 1.45
[0.001, 0.001, 0.001, 0.001] −1.52 1.71 −2.28 1.46
[0.01, 0.01, 0.01, 0.01] −1.53 1.73 −2.31 1.47
[0.05, 0.05, 0.05, 0.05] −1.66 1.91 −2.54 1.62
[0.07, 0.07, 0.07, 0.07] −1.66 1.91 −2.54 1.62

Q

1× 10−10I −7.35 5.96 −4.19 1.68
1× 10−9I −3.31 2.34 −1.75 1.09
1× 10−8 I −1.53 1.73 −2.31 1.47
5×10−8I 0.83 −1.57 2.55 −1.26
1× 10−7I 5.74 −6.69 9.87 −4.09

R

5×10−9I −0.34 −0.17 −0.07 0.35
7×10−9I −1.43 1.54 −2.13 1.41
1× 10−8I −1.53 1.73 −2.31 1.47
5×10−8I 10.83 −10.10 15.30 −7.05
1× 10−7I 18.11 −15.55 28.66 −11.53
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Figure 19: Identifcation results of diferent R values: (a) the stifness of beam②, (b) the stifness of beam③, (c) the stifness of beam④,
and (d) the stifness of beam ⑤.
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Figure 20: Identifcation results with 4 measurement values by ASRUKF-FF: (a) the stifness of beam②, (b) the stifness of beam③, (c) the
stifness of beam ④, and (d) the stifness of beam ⑤.
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Figure 21: Continued.
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Figure 21: Identifcation results with 3 measurement values by ASRUKF-FF: (a) the stifness of beam②, (b) the stifness of beam③, (c) the
stifness of beam ④, and (d) the stifness of beam ⑤.
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Figure 22: Continued.
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Figure 22: Identifcation results with 2 measurement values by ASRUKF-FF: (a) the stifness of beam②, (b) the stifness of beam③, (c) the
stifness of beam ④, and (d) the stifness of beam ⑤.

Table 10: Estimation errors in the fnal identifcation results using various measurements for the simply-supported bridge.

Working condition Type of measurements
Stifness identifcation error

Beam ② (%) Beam ③ (%) Beam ④ (%) Beam ⑤ (%)
1 DIS-3-5-7-9-11 −1.53 1.73 −2.31 1.47
2 DIS-3-5-7-9 1.46 −1.80 3.20 −2.26
3 DIS-3-5-7-11 −1.32 2.43 −3.57 1.30
4 DIS-3-5-9-11 0.15 0.78 −1.52 0.69
5 DIS-3-7-9-11 1.18 −0.70 0.28 0.23
6 DIS-5-7-9-11 5.46 −5.08 5.32 −2.17
7 DIS-3-5-7 −0.55 −1.03 −6.89 15.06
8 DIS-3-5-11 0.16 −2.15 5.03 −3.31
9 DIS-3-7-9 1.33 −0.88 1.93 −2.56
10 DIS-3-7-11 4.16 −4.95 4.83 −0.12
11 DIS-3-9-11 94.20 −38.14 52.40 0.11
12 DIS-5-7-9 −3.68 4.40 −3.08 1.48
13 DIS-5-7-11 12.99 −10.14 10.08 −2.82
14 DIS-5-9-11 107.64 −26.68 18.82 −1.28
15 DIS-7-9-11 −41.95 55.43 0.24 −0.43
16 DIS-3-5 0.18 72.66 −42.20 22.93
17 DIS-3-7 49.14 −39.88 197.28 −4.88
18 DIS-3-9 103.28 −38.60 51.15 1.07
19 DIS-3-11 147.82 −45.81 171.77 −9.09
20 DIS-5-7 180.02 −43.58 109.19 6.80
21 DIS-5-9 203.52 −37.06 74.38 −14.93
22 DIS-5-11 154.05 −34.50 46.98 −4.63
23 DIS-7-11 −59.43 180.20 −3.16 0.75
24 DIS-9-11 93.08 84.58 −35.90 0.60
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Figure 23: Simplifed diagram of the simply supported bridge of Figure 13.
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Figure 24: Identifcation results based on diferent elastic modulus modeling errors: (a) the stifness of beam②, (b) the stifness of beam③,
(c) the stifness of beam ④, and (d) the stifness of beam ⑤.

34 Structural Control and Health Monitoring



1.5

2

2.5

3

3.5

4

4.5

Unit length mass: 5% Error
Unit length mass: 10% Error
Unit length mass: 15% Error
Unit length mass: 20% Error
Unit length mass: 30% Error
True Values

×109
St

iff
ne

ss
 (N

/m
)

0 1 2.50.5 1.5
Time (s)

2

(a)

Unit length mass: 5% Error
Unit length mass: 10% Error
Unit length mass: 15% Error
Unit length mass: 20% Error
Unit length mass: 30% Error
True Values

1.5

2

2.5

3

3.5

4 ×109

St
iff

ne
ss

 (N
/m

)

0 1 2.50.5 1.5
Time (s)

2

(b)

Unit length mass: 5% Error
Unit length mass: 10% Error
Unit length mass: 15% Error
Unit length mass: 20% Error
Unit length mass: 30% Error
True Values

2.5

3

3.5

4.5

4

×109

St
iff

ne
ss

 (N
/m

)

0 1 2.50.5 1.5
Time (s)

2

(c)

Unit length mass: 5% Error
Unit length mass: 10% Error
Unit length mass: 15% Error
Unit length mass: 20% Error
Unit length mass: 30% Error
True Values

2

2.5

3

3.5
×109

St
iff

ne
ss

 (N
/m

)

0 1 2.50.5 1.5
Time (s)

2

(d)

Figure 25: Identifcation results based on diferent unit lengthmassmodeling errors: (a) the stifness of beam②, (b) the stifness of beam③,
(c) the stifness of beam ④, and (d) the stifness of beam ⑤.
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Figure 26: Identifcation results based on diferent modeling errors of sectionmoment of inertia: (a) the stifness of beam②, (b) the stifness
of beam ③, (c) the stifness of beam ④, and (d) the stifness of beam ⑤.
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Figure 27: Continued.
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Figure 27: Identifcation results based on diferent modeling errors of modal damping ratio: (a) the stifness of beam②, (b) the stifness of
beam ③, (c) the stifness of beam ④, and (d) the stifness of beam ⑤.

Table 11: Final identifcation errors with diferent modeling errors.

Uncertain parameter Modeling error (%)

5 1.74
10 1.74
15 1.72
20 1.70
30 1.53

–30 2.64 24.24
5 1.51 1.31

10 1.60 1.20
15 0.61 0.59
20 2.72 1.12
30 6.18 2.35
2

–2 3.82 4.38
5

–5 7.10 9.05
5 1.74 1.48

10 1.75 1.49
15 1.76 1.49
20 1.78 1.50
30 1.81 1.52

–30 1.68 1.46

Elastic modulus: E1 and E6

Mass per length: ρA

Section moment of inertia: I

Modal damping ratio: τ

Beam 2 (%)
Stiffness identification error

Beam 3 (%) Beam 4 (%) Beam 5 (%)

–2.32
–3.01
–3.63
–4.18
–5.08
5.30

–1.13
–0.98
0.01

–1.65
–3.11
–3.78
0.82

–6.95
4.58

–1.50
–1.47
–1.43
–1.40
–1.34
–1.75

–0.28

–3.16 

–1.65
–1.02
–0.44
0.12
1.37

–9.31
–1.93
–1.76
–0.39
–1.73
–4.40
–3.93
–0.62
–6.27
2.04

–2.28
–2.25
–2.22
–2.20
–2.16
–2.50

–5.15

–1.28

–2.01
–0.37

–7.16
–4.78
–3.47

Note. (1) Cell data with background color represents the maximum error in each row. (2) A positive modeling error represents an increase in the parameter,
while a negative modeling error represents a decrease in the parameter. If the true parameter value is 10, considering a modeling error of ±5%, the parameter
value becomes 10× (1± 5%).
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5. Conclusion

In this paper, the standard SRUKF method is modifed by
incorporating QR decomposition technology. Tis modif-
cation aims to eliminate the requirements for a positive-
defnite covariance matrix in the unscented transform
process and ensure the numerical stability of the algorithm
unconditionally. Building upon this modifcation, the
ASRUKF-FF method is proposed in this study by in-
corporating an adaptive forgetting factor. Tis enhancement
aims to improve the algorithm’s capability to identify time-
variant parameters. Te main conclusions are summarized
as follows:

(1) Te proposed ASRUKF-FF method utilizes a sensi-
tive parameter threshold to intelligently determine
whether to invoke the adaptive algorithm. Numerical
simulation verifcation, as depicted in Figure 4 and
Table 2, demonstrates that the method of de-
termining the threshold based on the time history
curve of sensitive parameters calculated byMSRUKF
is reliable and accurate. Further simulation results
indicate that the proposed ASRUKF-FF method
exhibits insensitivity to the threshold within a certain
range. Tis characteristic ensures the stability of the
algorithm.

(2) In contrast to adaptive methods, where the co-
variance correction coefcient is typically an em-
pirical constant or determined through experience,
the forgetting factor correction coefcient used in
this paper is calculated based on the residual in-
formation obtained at each recursive step. Tis ap-
proach allows for automatic adjustment of the
coefcient based on the system’s uncertainty. In
addition, the forgetting factor can be mathematically
derived, providing high reliability.

(3) Te proposed ASRUKF-FF method ofers a broader
range of applications and can be efectively utilized in
research on inverse problems in the feld of building
and bridge structures. Moreover, the method is
characterized by its simplicity in implementation,
ease of programming, and robustness.

(4) For shear models, variations in X0, P0, Q, and R
values have a minimal impact on the identifcation of
stifness parameters. However, they do have a sig-
nifcant efect on the identifcation of damping pa-
rameters, with R having the most pronounced
impact. In the case of stifness parameter identif-
cation for beammodels, the values of X0 and P0 have
a minor infuence on the identifcation performance.
However, the initial values of Q and R play a crucial
role in determining the identifcation results, par-
ticularly with regard to the sensitivity of the R value
in achieving accurate identifcation of the stifness
parameters of the beam structure. In addition, for the
beam model, it is important to consider the pa-
rameter range requirements for X0, P0, and R. Ex-
ceeding the specifed value range can lead to ill-

conditioned matrices and ultimately result in iden-
tifcation failure.

(5) Te proposed algorithm demonstrates high identi-
fcation accuracy even when dealing with incomplete
measurement values. In the case of the shear model
examined in this paper, as the number of measured
values increases, the identifcation accuracy is further
improved. In the case of the more complex beam
model, the number of measurements is not positively
correlated with identifcation accuracy. Te de-
termination method of the optimal measurement
value combination scheme still requires further re-
search, particularly in combination with optimiza-
tion algorithms.

(6) In the case of the shear model, when there is a 10%
modeling error in the mass parameter, the maximum
identifcation errors of the structural stifness and
damping parameters are 10.07% and 11.71%, re-
spectively. In the case of the beam model, the section
moment of inertia is identifed as the most sensitive
modeling parameter, while the modal damping ratio
is identifed as the least sensitive modeling param-
eter. In summary, the proposed ASRUKF-FF algo-
rithm exhibits a certain level of resilience against the
infuence of modeling errors.
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