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In recent times, there has been a notable increase in the quantity of high-rise buildings, attributed to the swift advancements in
both economic growth and construction technology. Assessing the structural integrity of high-rise buildings is important to
ensure their safe operation. However, existing structural health monitoring methods typically require a baseline, involving either
the measured dynamic and static responses from an intact structure or the fnite element (FE) model corresponding to an
undamaged state. Tese prerequisites are often challenging to acquire in practical scenarios. Tis study introduces a novel
baseline-free method for detecting reduction in the lateral stifness of high-rise buildings. Te method is based on the statistical
moment curvature (SMC) concept, determined through applying central diference to the second-order statistical moment of
displacement. Initially, theoretical formulas were derived to demonstrate the viability of utilizing SMC for identifying reduction in
the lateral stifness of high-rise buildings. Subsequently, a FE model of a representative high-rise building was constructed to
validate the proposed approach and assess its sensitivity, where diferent structural types and noise levels were considered. Lastly,
a feld test was conducted on a 33-story shear wall structure to provide additional validation for the proposed method. Te results
confrmed its efectiveness in accurately detecting reduction in the lateral stifness of high-rise building. It ofers two primary
benefts: frstly, it obviates the need for a baseline, rendering it more convenient and applicable in real-world scenarios; secondly,
its heightened sensitivity to sudden drops in lateral stifness allows for early-stage detection of structural damage.

1. Introduction

Structural damage has far-reaching consequences, leading to
substantial economic losses as well as posing a signifcant threat
to human life and safety. Structural damage frequently manifests
as a reduction in lateral stifness. Hence, regular inspections and
long-term monitoring [1–3] of the high-rise buildings are of
paramount importance. Identifying and promptly repairing
damages can efectively prevent engineering accidents.

Changes in the structure’s modal parameters, such as
frequency and mode shape, become inevitable when its
lateral stifness is reduced [4, 5]. Consequently, changes in

dynamic response enable the identifcation of structural
lateral stifness reduction. In the context of the frequency-
based approach, Cawley and Adams [6] were the pioneers in
proposing the utilization of a structure’s natural frequency
for the purpose of damage identifcation. Subsequent in-
vestigations [7–10] revealed that frequency holds the benefts
of straightforward measurement and minimal measurement
error. However, the natural frequency proves to be in-
sufciently sensitive to early-stage structural damage, and
change in frequency due to damage at distinct locations can
be indistinguishable. In comparison to frequency, change in
mode shape exhibits higher sensitivity to damage and enable
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straightforward localization of the damage. Currently, the
popular approaches for damage identifcation based on
mode shapes involve modal assurance criterion (MAC) and
cross orthogonality modal assurance criterion (COMAC)
[11, 12]. Shahsavari et al. [13] conducted wavelet analysis to
detect change in structural vibration modes and used the
likelihood ratio test to pinpoint damage in beams. Zhu et al.
[14] identifed damage in shear buildings using the frst-
order mode slope and validated the approach through
a three-layer test model. Mode shape serves as a good in-
dicator for damage identifcation. Nonetheless, a consider-
able discrepancy exists between the actual and theoretical
mode shapes of the structure, and acquiring high-order
mode shapes poses challenges.

Given that frequency and low-order vibration mode
shapes lack sensitivity to damage, while curvature am-
plifes the infuence of damage, the curvature index has
emerged as a prominent subject of investigation. Cur-
rently, an abundance of literature delves into mode
curvature as a damage indicator, and the research in this
domain has reached a relatively advanced stage. In detail,
Dessi and Camerlengo [15] extensively examined struc-
tural damage identifcation through mode curvature and
conducted a comparative analysis of outcomes with
damage indices such as frequency and mode shape. Pooya
and Massumi [16] introduced a damage identifcation
method that uses the disparity between the genuine
damaged structure and the estimated mode curvature as
an index. Interestingly, this approach did not necessitate
the acquisition of modal parameters from the undamaged
structure; nevertheless, the mode curvature accentuated
both damage and noise. Cao et al. [17, 18] enhanced the
utility of mode curvature in identifying multiple damages
while addressing noise interference, achieved by in-
vestigating the synergistic potential of wavelet transform
and the Teager energy operator. He et al. [19] suggested
the averaging of curvature diferences across the initial
three modes to mitigate the issue of noise-induced local
perturbations in the vibration modes. Test and simulation
outcomes demonstrated that damage in the composite
beam induces an abrupt change in curvature diferences,
allowing precise detection of the damage’s location and
severity. Nevertheless, the enhanced modal curvature
method continues to exhibit insufcient noise resistance.
Typically, the curvature value is approximated using the
central diference method. Numerous experts and
scholars have undertaken a series of investigations con-
cerning the process of curvature determination. Yang
et al. [20] introduced a straightforward Fourier spectrum-
based technique for computing beam modal curvature,
replacing the conventional central diference method and
enhancing the noise resistance in damage identifcation
via modal curvature. Beyond mode curvature, Shi et al.
[21] put forth an interpolation approach for computing
the lateral displacement envelope curvature of shear-type
building structures. Te outcomes indicated that the
curvature index derived from the interpolation method
attains superior accuracy in damage identifcation com-
pared to the fnite diference method. Using the FE

method, Cao et al. [22, 23] demonstrated that the cur-
vature diference of modal fexibility efectively pinpoints
damage locations in simply-supported beams, continuous
beams, and frame structures. However, they did not ac-
count for the impact of noise on the identifcation ac-
curacy. Consequently, despite the high sensitivity of the
curvature index to damage and its precision in identifying
structural damage, it remains hindered by the drawback of
insufcient noise resistance, posing challenges for its
practical application.

Noise has signifcant infuence on the structural re-
sponse signal, potentially leading to signal distortion in
severe instances. Recognizing the present defciency in
noise resistance within various structural damage iden-
tifcation methods, Dinh-Cong et al. [24, 25] introduced
a set of damage identifcation techniques tailored for
situations involving incomplete modal data. Zhang et al.
[26] introduced damage identifcation grounded in sta-
tistical moment indices. Tey derived the correlation
between the statistical moment index and structural
stifness through a single degree-of-freedom system,
confrming its robust noise resistance and signifcant
interest in the topic. Wang et al. [27] employed the fourth
strain statistical moment to ascertain the precise location
and area of structural damage. Yang et al. [28, 29] sug-
gested identifying structural damage through the fusion of
high-order statistical moment indices. Te method’s ef-
fcacy was substantiated by analyzing a range of opera-
tional scenarios from a 12-storey standard frame structure
shaking table test. Dinh-Cong et al. [30] introduced the
manta ray foraging optimization—sequential quadratic
programming algorithm—an amalgamation of global and
local search techniques designed to attain highly accurate
damage identifcation at minimal computational expense.
Te aforementioned damage detection techniques all
necessitate a precise benchmark model. However, ac-
quiring accurate initial model parameters proves chal-
lenging in practical implementations, leading to initial
errors within these methodologies.

In this study, the statistical moment theory under the
multidegree-of-freedom (MDoF) system was derived.
On this basis, the SMC value was approximated by the
center diference method, which can identify the re-
duction of lateral stifness at a single location and
multiple locations, and the reduction of lateral stifness
at diferent levels. In addition, the infuence of diferent
structural forms, external excitation, and environmental
noise level in the proposed method was also investigated.
Te proposed method has also been validated by both
numerical simulation of a centralized mass model of
cantilever structure and feld measurement of a 33-storey
shear wall structure.

2. Theory of Statistical Moments

2.1. Teoretical Analysis of Single Degree-of-Freedom (SDoF)
Statistical Moments. Te motion equation of a single de-
gree-of-freedom linear elastic structure can be expressed as
follows:
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m€x(t) + c _x(t) + kx(t) � −m €xg (t), (1)

where m, c, and k are the mass, damping, and stifness of the
structure, respectively; x(t), _x(t), and €x(t) are the dis-
placement, velocity, and acceleration responses, respectively;
and €xg(t) is acceleration of ground excitation. Once the
displacement is measured, the second-order statistical
moment can be obtained as follows:

M
2
d �

1
Ns

􏽘

Ns

i�1
xi − xi( 􏼁

2
, (2)

where xi is the ith data in the displacement time history, xi is
the corresponding mean, and Ns is the total number of data.
It can be derived that the second-order statistical moment of
displacement (equation (2)) is a dynamic characteristic
which is directly related to mass and stifness. In fact,
equation (1) can be simplifed as follows:

€x(t) + 2ω0ξ _x(t) + x(t) � − €xg (t), (3)

where ξ and ω0 are structure damping ratio and circular
natural frequency, respectively. For linear elastic structure,
the variance of structural response σ2 can be expressed as
follows:

σ2 � 􏽚
+∞

−∞
|H(ω)|

2
Sf(ω)dω, (4)

where Sf(ω) is the power spectral density function of
ground excitation.When the ground excitation is ideal white
noise, Sf(ω) can be regarded as a constant S0 in frequency
domain and H(ω) is the frequency response function of
a structure that can be expressed as follows:

H(ω) �
1

m

�������������������

ω0
2

− ω2
􏼐 􏼑

2
− 2ξω0ω( 􏼁

2
􏽱 . (5)

Based on the derivation and conclusion in [26, 27], the
second-order statistical response of displacement is just
equivalent to the variance of displacement; therefore, one
can easily obtain the following equation:

Md
2

� σ2 � 􏽚
+∞
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|H(ω)|

2
Sf(ω)dω �

πS0

2ξ
����
mk

3
􏽰 . (6)

It can be seen from equation (6) that the change of
structural stifness will inevitably lead to the change of
statistical moment of structural response, so the statistical
moment can be considered as the structural damage
identifcation index.

2.2. Teoretical Analysis of Statistical Moment with Multi-
degree-of-Freedom (MDoF). For linear multidegree-of-
freedom systems with viscous damping, as shown in Fig-
ure 1, Ki is the stifness of the ith element and Mi is the mass
at the ith node. Te dynamic equations of motion can be
written as follows:

M€x (t) + C _x(t) + Kx(t) � P(t), (7)

where M, C, and K are the mass, damping, and stifness
matrix, respectively; €x(t), _x(t), and x(t) are the acceleration,
velocity, and displacement vector, respectively; and P(t) is
the excitation vector. For the ith node, once the displace-
ment time history is measured, the second-order statistical
moment can be obtained as follows:

M
2
d,i �

1
Ns

􏽘

Ns

j�1
xj,i − xj,i􏼐 􏼑

2
, (8)

where, xj,i is the jth data in the displacement time history, xj,i

is the correspondingmean, andNs is the total number of data.
Similar to the MDoF system, it can also be derived that the
second-order statistical moment of displacement (equation
(8)) is a dynamic characteristic which is directly related to
mass and stifness matrix. In fact, by using the superposition
method, equation (7) can be simplifed as follows:

€Yn (t) + 2ξnωn
_Yn(t) + ω2

nYn(t) �
Pn(t)

Mn

, n � 1, 2, . . . , N,

(9)

where Mn, N, ξn, and ωn are the nth generalized mass, mode
number, modal damping ratio, and circular natural fre-
quency, respectively; Pn(t) is nth generalized force; and
Yn(t) is the nth mode corresponding generalized co-
ordinates that can be expressed as follows:

Yn(t) � 􏽚

t

0

Pn(t)hn(t − τ)dτ, (10)

hn(t) �
1

MnωDn

exp −ξnωn(t − τ)􏼂 􏼃sinωDnt,

ωDn � ωn 1 − ξ2n􏼐 􏼑
1/2

.

(11)

Te relative displacement response of the ith node can be
expressed as the linear superposition of several vibration
modes, namely,

di(t) � 􏽘
N

n�1
BnYn(t) � 􏽘

N

n�1
φi

n − φi−1
n􏼐 􏼑Yn(t). (12)
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Under the condition of stationary excitation, the re-
sponse process will also be a stationary distribution.
Combined with equations (10)–(12), the autocorrelation
function can be expressed as follows:

Rdi(τ) � E di(t)di(t + τ)􏼂 􏼃 � E 􏽘
N
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n�1
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􏽚
∞

0
􏽚
∞

0
BmBnRpmPn
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(13)

where θ1, θ2, and τ are imaginary time variables and
RPmPn

(τ) is the covariance function of Pm(t) and Pn(τ + t).
Trough variable substitution, the autocorrelation function

of relative displacement response can be expressed as
follows:

u1 � t − θ1, u2 � t + τ − θ2, du1 � −dθ1, du2 � −dθ2, (14)

Rdi(τ) � 􏽘
N
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􏽘
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􏽚
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0
􏽚
∞

0
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τ − u2 + u1( 􏼁hm u1( 􏼁hn u2( 􏼁du1du2. (15)

Te power spectral density function can be obtained by
Fourier transform of the autocorrelation function of the
relative displacement response as follows:

Sdi(ω) �
1
2π

􏽚
+∞

−∞
Rdi(τ) exp (−iωτ)dτ. (16)

Substituting equation (15) into equation (16), the au-
tocorrelation function of the relative displacement response
can be expressed as follows:

Sdi(ω) � 􏽘
N

m�1
􏽘

N

n�1
BmBnHm(−iω)Hn(iω)SpmPn

(ω), (17)

where SPmPn
(ω) is the cross-power spectral density function

of Pm(t) and Pn(t), and
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1
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,

(18)
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Figure 1: A typical MDoF structure.
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where Km and Kn are the mth and nth generalized stifness,
respectively. For the small damping system, the cross term in
equation (17) has limited contribution to the structural
response, so equation (17) can be simplifed as follows:

Sdi(ω) � 􏽘

N

n�1
Bn

2
Hn(iω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
SpnPn

(ω). (19)

When the base excitation follows a Gaussian distribution
of zero mean value, the power spectral density function is
a constant S0, and the cross-power spectral density function
SPnPn

(ω) of external load Pn(t) can be expressed as follows:

SpnPn
(ω) � ϕT

nMIITMTϕnS0, (20)

where I is a column vector with all elements of 1 and ϕn is the
nth mode shape vector. From the relationship between the
power spectral density function and variance, it can be
obtained that the second-order central moment of the rel-
ative displacement response of the ith node is as follows:
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2
,

(21)

where ϕi
n and ϕ

i−1
n are the values of nth mode shape at the ith

node and the (i − 1)th node.
On the one hand, the second-order statistical response of

displacement is just equivalent to the variance of displace-
ment; similarly [26, 27], on the other hand, higher-order
modes only contain a very small portion of energy so that the
fundamental mode itself is enough for vibration analysis.
Terefore, equation (21) can be rewritten as follows:

M
2
d,i � σ

2
d,i

�
π
2
ϕT
1MIITMTϕ1S0

M
2
1ω

3
1ξ1

ϕi
1 − ϕi−1

1􏼐 􏼑
2
. (22)

Within the realm of damage identifcation research, the
common assumption involves the preservation of mass
while investigating alterations in stifness to determine
structural damage. Equation (22) readily illustrates that, with
mass held constant, any alteration in stifness due to damage
will manifest as shifts in the measured frequency and vi-
bration mode values. Tis observation underscores the
continued utility of the statistical moment in identifying
structural damage within an MDoF system. Under the as-
sumption of equidistant measuring points, the SMC index,
as introduced in this study, is derived via central diference
approximation using the second-order statistical moment of
relative displacement as follows:

SMCi �
M

2
d,i+1 − 2M

2
d,i + M

2
d,i−1

h
2 , (23)

where h is the distance between neighboring nodes. When
the spacing of neighboring nodes is nonuniform, for ex-
ample, the spacing between the ith and the (i − 1)th nodes is
hi and the spacing between the ith and the (i + 1)th nodes is
hi+1, the SMC can be obtained as follows:

SMCi �
2 hiM

2
di+1 − hi + hi+1( 􏼁M

2
di + hi+1M

2
di−1􏼐 􏼑

hih
2
i+1 + h

2
i hi+1

. (24)

Trough the derivation of the above formula, the
second-order SMC of displacement is used as the damage
index to identify the damage of the high-rise building
structure. It should be noted that the time history of dis-
placement at the (i − 1)th, ith, and (i + 1)th node is required
to obtain the corresponding SMC at the ith node of a high-
rise building. Hence, to evaluate the damage which may
occur at any node, it is recommended that the responses at
all nodes are measured. Te specifc steps are shown in
Figure 2.

(1) Obtain the displacement time-history response of
the nodes in the same vertical plane in the same
horizontal direction of the high-rise building
structure.

(2) Analyze the displacement signal, obtain the lowest
natural frequency of the structure, extract dis-
placement signal of each node under the lowest
natural frequency, calculate the second-order sta-
tistical moment of the relative displacement of each
node, and solve the SMC value of the
corresponding node.

(3) Draw the curve with the height of each node and the
SMC value of the corresponding node, observe the
sudden change of the curve, and identify the sudden
change position of lateral stifness.

(4) When structure displacement response signal is
contaminated by noise, a small sudden change will
result in judgment of SMC curve. In order to get the
damage position clearly and visually, the box plot
[31, 32] is used to determine the upper and lower
limit of the curve. Exceeding the limit is regarded as
sudden change, and the corresponding node can be
regarded as the location of damage.Te box plot gets
the upper (UL) and lower limits (LL) as follows:

UL � Q3 + 1.5 × Q3 − Q1( 􏼁,

LL � Q1 − 1.5 × Q3 − Q1( 􏼁,
(25)

where Q1 is the frst quartile and Q3 is the third quartile.

3. Numerical Simulation

3.1. Model Introduction. A FE model of a 33-story high-rise
building has been constructed according to [28, 29] as shown
in Figure 3. Te initial modulus of elasticity of the column is
E0 � 7.751 × 109 N/m2, the height of each layer is h � 0.3m,
the line density is mC � 7.35 kg/m, the beam is considered as
a rigid body, the span l � 0.6m, the mass mb � 26.35 kg, and
the damping ratio ξi � 0.05 (i � 1, 2). Te damping type
used in this model is Rayleigh damping. Te time history of
dynamic response of the structure subjected to prescribed
excitation can be obtained by the Newmark-βmethod. Eight
cases have been considered in this study, as shown in Table 1.
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Te reduction of the lateral stifness of the element indicates
that the foor and column of this foor may be damaged.

3.2. Numerical Validation. To ascertain the viability of the
proposed method, its efectiveness has been evaluated across
varying conditions of environmental noise, external exci-
tation, and diferent structural forms.Te ambient noise was
simulated by white noise, and the signal-to-noise ratio
(SNR) can be defned as follows:

SNR � 10 × log
1/N 􏽐

N
i�1y

2
i

1/N 􏽐
N
i�1σ

2
i

􏼠 􏼡, (26)

where N is the number of data, yi is the signal with noise at
the ith moment, and σi is the noise value at the ith moment.
Concurrently, due to the diversity of actual structures,
structural models with constant stifness, gradual stifness
change, and stage stifness change were simulated by
changing the elastic modulus of the column. Additionally,
given the prevalent nonstationary characteristics of sto-
chastic dynamic loads in practical engineering scenarios,
simulations incorporate Gaussian white noise, El-Centro
wave, and Kobe wave as external excitations. In summary,
the simulated operating conditions are shown in Table 2.

3.2.1. Constant Stifness Structure. With Gaussian white
noise applied as external excitation, the SMC curve was
utilized to determine the location of sudden lateral
stifness changes. Te outcomes of Case 1 to Case 5 are
presented in Figure 4. Generally, the proposed method
can identify the damages accurately for all the 5 cases,
regardless of the noise level. For Case 1, the SMC curve
demonstrates an ideally fat profle, indicating there is no
damaged story. For Case 2, where the 15th story was

damaged, the SMC curve changed abruptly beyond the
lower limits at the damaged story while the SMC curve
changed abruptly beyond the upper limits at the 14th and
16th stories. Tis is because the statistical moment value
increases at the 15th story due to the reduction of lateral
stifness, and the statistical moment values at the 13th,
14th, 16th, and 17th stories remains the same because
these stories are not damaged; hence, the SMC value at the
15th story decreases, and the SMC values at the 14th and
16th stories increase according to equation (23). For Case
3, where there are two separate damages at the 4th and
23rd stories, it also exhibits abrupt deviations that surpass
the upper and lower limits. For Case 4 and Case 5, where
there are two and three adjoining stories damaged at the
same time, similar observations can be obtained. It is
noteworthy that for Case 5, the SMC value at the 15th
story returns near to zero because the statistical moment
values at the 14th, 15th, and 16th story increase simul-
taneously. Figure 5 shows the identifcation results when
the El-Centro wave was used as external excitation. It can
be observed that even if the external excitation changes,
the proposed method can still identify all the damages
successfully.

Obtaining time-history response signal of
structural displacement

Extracting displacement signal of each
measuring point at the lowest natural frequency

Use Eqs. (23), (24), (25) to Calculate SMC
and LL, UL values

Draw SMC Curve

Obtaining the location of lateral
stiffness reduction of the structure

Determine if there is
a sudden change

Structural Health

No Yes 

Figure 2: Te fowchart for structural damage identifcation.
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Figure 3: Plane model of high-rise structure.

Table 1: Details of damage cases.

Case Damage location Node number Stifness reduction
1 — — —
2 Element 15 14-15 5%
3 Element 4, 23 14-15 10%
4 Element 18, 19 17–19 15%
5 Element 14, 15, 16 13–16 20%
6 Element 5 4-5 20%
7 Element 6 5-6 10%
8 Element 5, 6 4–6 20%
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Table 2: List of numerical simulation cases.

Structural form External excitation Cases Noise conditions

Constant stifness structure

Gaussian white noise Cases 1–5
Noise-free
SNR� 40 dB
SNR� 30 dB

El-Centro wave Cases 1–5
Noise-free
SNR� 40 dB
SNR� 30 dB

Gradual stifness structure

Gaussian white noise Cases 1–5
Noise-free
SNR� 40 dB
SNR� 30 dB

Kobe wave Cases 1–5
Noise-free
SNR� 40 dB
SNR� 30 dB

Structures with stage-change stifness

Gaussian white noise Cases 1, 2, and 6–8
Noise-free
SNR� 40 dB
SNR� 30 dB

Kobe wave Cases 1, 2, and 6–8
Noise-free
SNR� 40 dB
SNR� 30 dB
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Figure 4: Identifcation results of constant stifness structures under Gaussian white noise excitation: (a) noise-free; (b) SNR� 40 dB;
(c) SNR� 30 dB.
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3.2.2. Gradual Stifness Structure. Te elastic modulus of the
column in the numerical model of gradual stifness structure
was changed to E0 � (1 − 0.01 × n) × 7.751 × 109 N/m2 (n �

1, 2, . . . , 33) to simulate the gradual stifness structure.
Similarly, Gaussian white noise and Kobe wave were used as
external excitations for the simulation calculation. Te re-
sults are shown in Figures 6 and 7.

For stifness gradient structures (shown in Figures 6 and
7), whether Gaussian white noise or Kobe wave was used as
base excitation, SMC can efectively identify the location
under the preset working conditions (Cases 1–5). At the
same time, considering the infuence of diferent noise levels,
the identifcation results are still accurate when SNR� 40 dB
and 30 dB, without misjudgment. Terefore, the proposed
method in this study is still applicable to gradual stifness
structures.

3.2.3. Stifness Stage Changing Structure. Te bottom layer
of the actual high-rise building structure often has special
purposes, resulting in a large diference between the lateral
stifness of the bottom layer and the upper layers. Terefore,
there should be a sudden change in stifness for this type of

structure. Te elastic modulus of the numerical model
column was changed to Ei � 1.3 × 7.751 × 109 N/m2, hi �

0.5m (i � 1, 2, . . . , 5) and Ei � 7.751 × 109 N/m2,

hi � 0.3m (i � 6, 7, . . . , 33). Case 1, Case 2, and Cases 6–8
are considered herein, and Gaussian white noise and Kobe
wave were used as external excitations. Te identifcation
results are shown in Figures 8 and 9. It can be seen that the
proposed method can identify the sudden change in stifness
at the 6th story for all the cases regardless of the type of
external excitation. Comparing Case 1 and Case 6, the SMC
indicator at the 6th story is less obvious because the stifness
reduction at element 5 makes the stifness stage-change
smoother. However, comparing Case 1 and Case 7, the
SMC indicator at the 6th story is more obvious because the
stifness reduction at element 6 makes the stifness stage
change sharper. Similar trend can be seen in Case 8.

3.3. Comparative Analysis of Model-Free Detection Methods.
Tis study also compared the efectiveness of the proposed
method with the modal curvature diference method [16]
and the fexibility curvature diference method [19]. A
comparative analysis scenario involving a 20% reduction
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Figure 5: Identifcation results of constant stifness structures under El-Centro wave excitation: (a) noise-free; (b) SNR� 40 dB;
(c) SNR� 30 dB.
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Figure 6: Identifcation results of gradual stifness structures under Gaussian white noise excitation: (a) noise-free; (b) SNR� 40 dB;
(c) SNR� 30 dB.
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Figure 7: Identifcation results of gradual stifness structures under Kobe wave excitation: (a) noise-free; (b) SNR� 40 dB; (c) SNR� 30 dB.
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Figure 8: Identifcation results of stifness stage-changing structure under Gaussian white noise excitation: (a) noise-free; (b) SNR� 40 dB;
(c) SNR� 30 dB.

10 Structural Control and Health Monitoring



2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
-3
-2
-1
0
1
2
3

SM
C 

(×
10

-1
0 )

Node

7

6

1

2

8

ca
se

(a)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
-3
-2
-1
0
1
2
3

SM
C 

(×
10

-1
0 )

Node

7

6

1

2

8

ca
se

(b)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
-3
-2
-1
0
1
2
3

SM
C 

(×
10

-1
0 )

Node

7

6

1

2

8
ca

se

(c)

Figure 9: Identifcation results of stifness stage changing structure under Kobe wave excitation: (a) noise-free; (b) SNR� 40 dB;
(c) SNR� 30 dB.
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in lateral stifness at the 15th story under noise-free and
40 dB conditions was conducted. Te identifcation results
are shown in Figure 10.

Table 3 shows the comparative assessment of the ef-
fectiveness. Te proposed method can obtain the identif-
cation results by only considering the measurement data,
without comparing the data before and after the structure is
damaged. It uses the time history of displacement directly
and does not need to extract the modal parameters, so it has
stronger engineering applicability. Moreover, sensitivity
analysis of indicators [33] shows that the proposed method
exhibits higher sensitivity to changes in stifness.

4. Field Measurement

In order to verify the applicability of the proposed method,
a new high-rise building in Chongqing was tested, the upper
residential units and lower garage of which have obvious
stifness change. Te structure has a total of 33 foors, the
lower 1 to 5 foors are garages, and the upper 6 to 33 foors
are residential units.Te total height of the structure is about
102.1m: the foor height of garage is 4.5m and the height of
residential units is 2.8m. Table 4 shows the properties of the
high-rise building and Figure 11 shows its picture and front
and side elevations.
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Figure 10: Comparison and analysis diagram of recognition results of diferent detection methods: (a) modal curvature diference method;
(b) fexibility curvature diference method; (c) proposed method.

Table 3: Comparison and analysis of recognition results of diferent detection methods.

Method
Whether the stifness
reduction position can

be judged

Is it easy to
misjudge

Whether to refer
to the initial
state data of
the structure

Te sensitivity coefcients

Modal curvature diference method Yes Yes Yes 7.12
Flexibility curvature diference method Yes Yes Yes 7.75
Proposed method Yes No No 579.36

Table 4: Properties of the high-rise building.

Component Floor Elevation Strength grade
Beam, plate All foors — C30

Column, shear wall

1–9 Base top∼11.150 C50
10∼15 11.150∼27.950 C45
16∼19 27.950∼39.150 C40
20∼24 39.150∼53.150 C35
25∼33 53.150∼78.350 C30
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Based on the design drawing, the centroid of each foor
was inferred to be located around the stairwell. Ten hori-
zontal acceleration sensors (Model: 2D001H) were uni-
formly positioned adjacent to each stairwell. Te data
acquisition instrument (Model: DH5902) along with a sup-
porting laptop (depicted in Figure 11(c)) was placed on the
intermediate foor of each group. Limited by the number of
sensors, the feld test was divided into fve groups to measure
the entire building: 1–9 foors, 5–14 foors, 12–21 foors,
19–28 foors, and 24–32 foors, respectively.Tere were three
foors or more between every two groups for repeated
measurement. Each group measured the acceleration re-
sponse in X and Y directions. X and Y represent the length
and width of the structural plane, respectively. Te sampling
duration was 50 s, and the sampling frequency was 100Hz.

Te selected accelerations and the corresponding
spectrum can be seen in Figures 12 and 13. Te spectral
analysis reveals the lowest natural frequency in the X
direction to be 0.891 Hz and in the Y direction to be
0.818 Hz. Integrating the measured acceleration yields
the displacement response of the structure, and the
approach presented in this study was applied to identify
the abrupt change in lateral stifness position. In Fig-
ure 14, the SMC curve shows an abrupt change at the 6th
foor. Tis observation confrms the presence of stifness
change. Tis aligns with the structural design specif-
cations: foors 1–5 have a plane area of 2540.86 m2, 86
columns, and around 160 shear walls, whereas foors
6–33 have a plane area of 627.72 m2, 4 columns, and
about 140 shear walls.
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Figure 11: Photograph of high-rise building and test equipment: (a) front elevation; (b) side elevation; (c) test equipment.

Structural Control and Health Monitoring 13



Ac
ce

le
ra

tio
n 

(m
/s

2 )
Ac

ce
le

ra
tio

n 
(m

/s
2 )

Ac
ce

le
ra

tio
n 

(m
/s

2 )
Ac

ce
le

ra
tio

n 
(m

/s
2 )

Ac
ce

le
ra

tio
n 

(m
/s

2 )
×10-3

×10-3

×10-3

×10-3

×10-3

-2
-1
0
1
2

10 20 30 40 500

Time (s)

-2
-1
0
1
2

10 20 30 40 500

Time (s)

-1.0
-0.5
0.0
0.5
1.0

10 20 30 40 500

Time (s)

-1.0
-0.5
0.0
0.5
1.0

10 20 30 40 500

Time (s)

-1.0
-0.5
0.0
0.5
1.0

10 20 30 40 500

Time (s)

30th floor

20th floor

10th floor

6th floor

1st floor

(a)

Ac
ce

le
ra

tio
n 

(m
/s

2 )
Ac

ce
le

ra
tio

n 
(m

/s
2 )

Ac
ce

le
ra

tio
n 

(m
/s

2 )
Ac

ce
le

ra
tio

n 
(m

/s
2 )

Ac
ce

le
ra

tio
n 

(m
/s

2 )

×10-3

×10-3

×10-3

×10-3

×10-3

-1.0
-0.5
0.0
0.5
1.0

10 20 30 40 500

Time (s)

10 20 30 40 500

Time (s)

-1.0
-0.5
0.0
0.5
1.0

-1.0
-0.5
0.0
0.5
1.0

10 20 30 40 500

Time (s)

-1.0
-0.5
0.0
0.5
1.0

10 20 30 40 500

Time (s)

-1.0
-0.5
0.0
0.5
1.0

10 20 30 40 500

Time (s)

30th floor

20th floor

10th floor

6th floor

1st floor

(b)

Figure 12: Te time history of acceleration: (a) the X direction and (b) the Y direction.
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Figure 13: Te spectra of acceleration: (a) the X direction and (b) the Y direction.
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5. Conclusions

Tis paper introduces a baseline-free method for detecting
abrupt changes in lateral stifness of high-rise buildings
using SMC. Te method eliminates the need for a baseline,
making it highly practical. Te approach’s validity is sub-
stantiated through a combination of numerical simulations
and feld test investigations. Te ensuing conclusions are
delineated as follows:

(1) Te measured displacement response is used to
compute the second-order SMC of relative dis-
placement. Utilizing the box plot technique, upper
and lower limits are established to discern abrupt
shifts in the curve. Tis information is subsequently
used to identify the location of the abrupt lateral
stifness change.

(2) Tis method is applicable to constant stifness,
gradual stifness, and stifness stage-changing
structures and has a good identifcation result with
various external excitations and diferent levels of
environmental noise.

(3) Tis method does not need the prior information of
the structure, and it can evaluate the state of the
structure only according to measurement. At the
same time, SMC is a time-domain index, which is
easy to obtain and simple to calculate. It is especially
suitable for the on-site rapid preliminary detection of
high-rise building structures after earthquakes and
other disasters.
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