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Pipelines are crucial for transporting liquid and gaseous resources at various industrial sites. As unexpected pipeline failures and
improper spill responses often cause detrimental efects on the environment and public safety, real-time leakage monitoring and
detection are important. Tis study proposes a nonintrusive sensor system to measure the pressure and integrity of a pipeline in
real time by easily installing nonintrusive sensors on the exterior of the pipelines. Initially, a prototype of the nonintrusive
pressure-monitoring sensor was designed and fabricated.Tis sensor correlated the changes in pressure inside a pipe with those in
the contact force exerted between the pipe and the surrounding high-stifness band; a force-sensing resistor was used to measure
the contact force. Furthermore, parametric studies were performed on a six-inch pipe, which indicated that the developed sensor
can accurately monitor the inner pressure of the pipe. We also developed a methodology to determine the optimal sensor
placement in a pipeline network for detecting damages using the Euclidean distance method. Tis was combined with the
methodology of determining the decision boundary for classifying the damage location using a support vector machine to rapidly
detect the damage using a minimum number of sensors. Finally, a nonintrusive sensor system was installed on the fre main
pipeline system, and the damage detection performance was experimentally validated. Te developed nonintrusive sensor system
can be easily installed on operating pipes to monitor the inner pressure of a pipe in real-time and accurately detect damages in
a pipeline network.

1. Introduction

Pipelines, including peripherals such as pumps and valves,
are instrumental in transporting liquid and gaseous re-
sources at various industrial sites. Unexpected pipeline
failures and improper spill responses often adversely afect
the environment and public safety. Terefore, real-time
leakage and rupture monitoring and detection are essen-
tial [1]. Te methods for monitoring and analyzing pipeline
integrity can be classifed into two categories. Te frst
method uses intrusive-type sensor systems that are based on
the predesign and installation of a piping system; the second
method uses nonintrusive sensor systems that can be easily

applied to an existing pipeline system without modifying the
target system [2].

Monitoring techniques for pipeline integrity using in-
trusive sensor systems include approaches based on mass/
volume balance [3], pressure point analysis [4], and negative
pressure wave analysis [5, 6]. Various physical measures,
such as pressure, mass fow, and temperature of a piping
system, have been introduced to realize these approaches.
Although the integrity of piping systems can be accurately
predicted by these approaches, their application involves
certain challenges because the pressure or mass fow sensors
should be pre-installed during the design and construction
of the piping systems. Techniques using nonintrusive sensor
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systems include external pressure monitoring, laser scan-
ning, vision-based measurements, sound and vibration
signal analysis [7–9], optical fber measurements [4, 10, 11],
and other related methods [12, 13]. Approaches based on
vision, such as laser scanning and closed-circuit television,
incur high initial installation expenses and exhibit restrictive
environmental conditions based on the location of their
installation on the pipeline systems. Te system using sound
and vibration signals is relatively convenient to install and
can efectively identify damage and leakage of pipes; how-
ever, it is infuenced by the surrounding noise. Terefore, it
requires high-frequency sampling and high-specifcation
data acquisition systems (DAQs). Conversely, optical fber
sensors can detect accurate leakage locations relatively well;
nevertheless, a disadvantage is that all optical fbers require
replacement when only a few of the fbers attached to the
pipes are damaged. Although an approach using the fber
Bragg grating temperature-sensing method has been pro-
posed to improve the cost and accuracy of optical fber
sensors, it cannot overcome the aforementioned limitations
[14]. Recently, approaches using acoustic emissions and
neural networks combined with artifcial intelligence theory
have been proposed. Tese methods require further in-
vestigations in terms of practical use and design
generalization [15].

Among diferent pipeline systems applied in various
industrial felds, naval ship pipeline systems, such as fre-
extinguishing and cooling systems, are exposed to lethal
damage conditions as they are subjected to projectile
launches and collisions. Te damage caused to fre-
extinguishing and cooling systems can drastically reduce
the mission capability. Terefore, to improve the sustain-
ability of naval ships and crews, certain techniques must be
employed for rapid damage detection and efective initial
responses. In terms of detecting the damage caused to
a mechanical system, several studies have performed con-
ditional analysis and lifecycle prediction, including pipeline
system leakage detection using machine learning and deep
learning [16–18]. Te support vector machine (SVM),
a representative machine learning algorithm, was proposed
in the early 1990s [19] and was applied to pattern classif-
cation and modeling felds, such as face recognition and
failure analysis; the technique exhibited excellent perfor-
mance [20, 21]. In subsequent studies, an appropriate
property feature was selected to achieve the best perfor-
mance of SVM, suitable for a specifc environment and
purpose based on the principal component analysis [22, 23].

Tis study proposes a novel system for pipeline integrity
monitoring using a nonintrusive pressure-monitoring sen-
sor with the advantages of a conventional nonintrusive
method. Te developed sensor detected the pressure inside
a pipe using the contact force exerted between the pipe and
the surrounding high-stifness band. A force-sensing resistor
(FSR) was used as the sensing material for measuring the
contact force. Additionally, the optimal sensor placement in
a pipeline network for detecting the damage was analyzed
using the Euclidean distance method. Furthermore, we
developed a methodology to determine the decision
boundary for classifying the damage location using SVM and

to rapidly detect the damage using a minimum number of
sensors. Finally, the nonintrusive sensor systemwas installed
on a land-based test facility, which simulated the rupture
status of a pipeline system, namely, the fre main in a naval
ship. Te results indicated that the proposed system can
perform excellently in practical applications.

Te remainder of this paper is organized as follows:
Section 2 describes the concept, specifcation, and prototype
of the nonintrusive pressure-monitoring sensor. In Section
3, the methodology for designing the sensor placement in
a pipeline network is presented, and the efectiveness of the
developed nonintrusive sensor system is examined by ap-
plying it to the land-based test facility involving a fre main
system. Finally, Section 4 summarizes the study fndings.

2. Development of the Nonintrusive Pressure-
Monitoring Sensor

2.1. Concept and Prototype. We designed and implemented
a prototype of a nonintrusive pressure-monitoring sensor
for a six-inch testbed pipe. Figure 1 depicts the nonintrusive
pressure-monitoring sensor composed of a clamping band,
force sensor, jig for locating the force sensor, and an op-
erating circuit. Te nonintrusive sensor was designed for
a full-scale piping system considering the commercialization
of the developed sensor system, and its details, including
a clamping band, are summarized in Table 1. Te considered
target piping system is the one applied to frigates with the
highest number of acquisitions among new class naval ships.
Te pipe diameter of the fre main used in this 3000-ton ship
was 150mm, and the thickness was 3mm, so the sensor was
designed and developed based on them. Te clamping band
comprised four links that were easily installed on the pipes;
one of them had a groove for installing the force sensor and
jig.Te FSR was employed as a force sensor owing to its wide
dynamic range, low cost ($10 per resistor), high energy
efciency because of a simple operating circuit, thinness, and
fexibility in terms of installation on circular pipes. Te
sensing part of the FSR comprised a nonconductive polymer
with conductive particles and two flm-type electrodes
(Figure 2). Typically, FSR relates force to resistance based on
the quantum tunneling efect [2]. When a mechanical force
is applied across the FSR, as indicated at the bottom of
Figure 2, the tunneling paths (particle paths for electron
transmission) are compressed. Te compressed paths of
conductive particles enable the fow of electrons between
nonconductive polymers, thereby decreasing the resistance
with an increase in the compression force [24]. FlexiForce
A301 (Tekscan) was selected as the commercialized FSR for
the prototype sensor owing to its excellent linearity, dura-
bility, precision, and pressure range in the testbed pipeline
system [25]. Table 2 summarizes its specifcations [25].

Figure 3 depicts the sensing part of the nonintrusive
pressure-monitoring sensor, which comprises the FSR and the
jig for locating the FSR. Te jig included a rigid block and
a button. Te bottom of the rigid block was identical to the
curvature of a pipe, and the top of the block was engraved
similar to the external shape of FSR; this ensured that FSR was
frmly attached during its installation on the pipe. Te rigid
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button defned the optimal sensing area (Asensor) of the FSR and
generated a stable output by uniformly guiding the distributed
normal force during its installation on the curved pipe. Figure 3
indicates that the optimal diameter of the rigid button was
7mm, which was determined by a parametric study.

Figure 4 depicts the operating circuit designed to
measure the output voltage by changing the resistance of the
FSR. To improve the measurement accuracy and re-
peatability, the operating circuit was designed using three
components, as indicated in the fgure: (1) a voltage divider

Non-Intrusive pressure sensor

Pipe Line
(6 inch)

Power circuit and
wireless data transmitter

Link for FSR sensor installation

Bolt fixing location

Pipe line (6 inch)

Power circuit and
wireless data transmitter

Figure 1: Design of the proposed nonintrusive pipeline pressure-monitoring sensor.

Table 1: Specifcations of the pipe and band sensor.

Parameter Value

Pipe

Diameter 150mm (6 in)
Tickness 3mm (SCH10)
Material SUS 304

Usage pressure Max. 10 bar

Clamping band
Diameter 166mm
Tickness 33mm
Material AL6061

Electrodes Sensor Sensitive Area (SSA) =
Conductive particles + Non-conductive polymer

Electrodes s
s-Δs

External Force

Tunneling bridge

Conductive particles Non-conductive polymer

Figure 2: Operating principle of the force-sensing resistor (FSR).
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circuit (dotted box #1) with standard resistance (Rref ) and
FSR resistance (RFSR); (2) an operating amplifer (dotted box
#2) to stabilize the output voltage in the voltage distribution
circuit; and (3) a maximum output voltage of 5V (dotted
box #3). Te transfer function of the operating circuit can be
calculated using equation (1), as follows:

Vout � 1.107 × 1 +
Rref

RFSR
􏼠 􏼡 × Vref􏼠 􏼡 − Vref . (1)

Te standard resistance (Rref ) is a crucial parameter for
determining the sensitivity of FSR. Te sensitivity of the
output voltage to the applied force changes according to the
value of Rref (Figure 5). Considering an initial clamping force
of 300N and the possible range of applied force as 0–200N
in the FSRmeasurement on a pipe, Rref was set to 100 kΩ, the
initial output voltage was 3.0V, and the measurement
voltage range was 3.0–5.0V.

2.2. Performance Test. Figure 6 depicts the testbed that was
built to experimentally verify whether the nonintrusive
pressure-monitoring sensor can accurately predict the inner
pressure of the pipe. An 80-cm-long pipe with a diameter of
6 inches was attached to the jig. Te air pump was connected
to increase the pressure in the pipe to 6 bar.Te nonintrusive
pressure-monitoring sensor was clamped onto the pipe and
connected to a DAQ (QuantumX MX1615B, HBM). For
comparison, an intrusive pressure sensor (WIKA S10,
WIKA) was also installed to measure the actual pressure in
the pipe. Te sampling frequency of DAQ was set to 50Hz.

Te verifcation test was performed as follows: initially,
the pressure in the pipe was set to 6 bar, which was reduced
to 1 bar at intervals of 0.5 bar. Furthermore, the pressure was
reduced from 1 to 0 bar at intervals of 0.1 bar. Figure 7 and
Table 3 present the values of pressure in a pipe measured
using intrusive and nonintrusive pressure sensors.

Table 2: Specifcations of FlexiForce A301.

Parameter Value
Force range 4.445N
Tickness 0.203mm
Length 25.4mm
Width 14mm
Sensing area 9.53mm diameter
Linearity (error) <±3% of full scale
Repeatability <±2%
Hysteresis <4.5% of full scale
Drift <5% per logarithmic time scale
Temperature sensitivity 0.36%/°C

Rigid block
Pipe curvature

Rigid button

FSR

Link for FSR sensor installation

FSR
sensor

Rigid button

Pipe curvature

Rigid block

(a)

Rigid block FSR sensor

Rigid button
Diameter : 7 mm

Diameter : 9.32 mm

(b)

Figure 3: Sensing part of the nonintrusive pressure-monitoring sensor. (a) Concept of the sensing part with the force-sensing resistor (FSR)
and jig for locating the FSR. (b) Photograph of the sensing part.
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Te results confrmed that both the developed sensor
and the commercial sensor accurately predicted the pressure
change in a pipe. Te correlation coefcient between two
sensors was very high at 0.994. Errors in predicting the
pressure were less than 5.9% (0.154 bar) and 10.6%
(0.038 bar) above and below 1 bar, respectively. As the
reference pressure decreased, the percentage errors in-
creased due to the digitizing noise.

3. Design Procedure of the Pipe Integrity
Monitoring System

3.1. Sensor Placement Based on the Euclidean Distance
Method. A design procedure was developed for sensor
placement in a pipeline system to maximize the detectability
of damages. Te steps involved in the procedure can be
summarized as follows:
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Figure 4: Operating circuit of the nonintrusive pressure-monitoring sensor.
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Figure 5: Sensitivity curves (output voltage to the applied force) based on the variation of the standard resistance (Rref ).
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(1) Te damaged sections and the number of damaged
sections (Ns) in the pipeline system were defned.

(2) Candidate sensor locations and the number of
candidate locations (Nc) for sensor placement on
the pipeline system were determined by consid-
ering the impediments of the pipeline system in
terms of installation, such as fanges, valves, and
supports.

(3) A fow analysis model was developed to predict the
pressure at candidate sensor locations when the
damage occurred in the pipeline system.

(4) Te number of sensors (Ns) and the combination of
candidate sensor locations to be installed on the
pipeline system were defned. Te number of com-
binations was calculated as C(Nc, Ns) �

Nc!/Ns!(Nc − Ns)!.

Air Inlet

Air Outlet

Intrusive Pressure sensor
(WIKA, model s10)

Non-Intrusive
pressure sensor

Water

Pipe line
(6 inch)

power circuit and
data transmitter

Wireless
receiver

data (Pressure)

DAQ
Hbm Quamtum X 1615B

PC (DAQ Sofware :Catman)

Pressure controller
(0 ~6 bar)

KIMM KIMM

(a)

Power
Supply

DAQ
Hbm Quamtum X 1615B

PC
( DAQ Sofware :Catman)

Pressure controller
(0 ~6 bar)

Non-Intrusive
pressure sensor

Intrusive Pressure sensor

Wireless
receiver

power circuit and
data transmitter

Air Inlet

Air Outlet

(b)

Figure 6: Experimental setup for testing the performance of the nonintrusive pipeline pressure-monitoring sensor. (a) Schematic of the
experimental setup. (b) Photograph of the experimental setup.
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(5) Te Euclidean distance (d) was calculated using the
pressure values predicted by the combination of
candidate sensor locations between the damages. For

instance, the Euclidean distance between the pres-
sure on damage 1 (p1) and the pressure on damage 2
(p2) can be calculated as follows:
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Figure 7: Comparison of the pressures measured by intrusive and nonintrusive sensors.

Table 3: Pressure measured using intrusive and nonintrusive sensors.

Intrusive sensor (bar) Nonintrusive sensor (bar) Gap %
6.16 6.19 0.029 0.5
5.66 5.72 0.063 1.1
5.15 5.28 0.133 2.6
4.64 4.80 0.159 3.4
4.13 4.28 0.156 3.8
3.62 3.80 0.175 4.8
3.11 3.28 0.170 5.5
2.61 2.76 0.154 5.9
2.09 2.20 0.106 5.1
1.59 1.68 0.093 5.8
1.07 1.12 0.045 4.2
0.97 1.04 0.065 6.7
0.87 0.92 0.048 5.5
0.77 0.80 0.033 4.3
0.67 0.72 0.051 7.7
0.57 0.60 0.031 5.5
0.46 0.48 0.018 3.9
0.36 0.40 0.038 10.6
0.26 0.29 0.027 10.3
0.16 0.16 0.004 2.3
0.00 0.00 0.000 0.0

Structural Control and Health Monitoring 7



(6) Detectability was calculated by adding all Euclidean
distances between damages. For example, for three
damages, detectability can be obtained as
d(p1, p2) + d(p1, p3) + d(p2, p3).

(7) Te optimal sensor placement was identifed, which
exhibited higher detectability among the diferent
combinations of candidate sensor locations.

Figure 8 illustrates the fow analysis model of the testbed
pipeline system obtained using the commercial software
SimSmart. Te yellow, red, and green boxes in the fgure
represent the valves, damaged sections, and pumps, re-
spectively. Te details of the testbed are explained in Section
3.3. Tree damaged sections, namely, D1, D2, and D3, were
defned in the testbed, implying that the number of damaged
sections (Ns) was three. Te testbed comprised 10 remote-
controlled valves (RV1–RV10), and candidate sensor locations
were defned as the right-hand side (P1) and left-hand side (P2)
pipes of the valves. Terefore, the number of candidate lo-
cations (Nc) for sensor placement was 20. Table 4 summarizes
the predicted pressure values at candidate sensor locations
under the three damage conditions (D1, D2, and D3). As the
number of sensors (Ns) was set to two, the number of com-
binations was 190. Based on the Euclidean distance, sensor
combination, and damage, optimal sensor placements with the
highest detectability were determined as P2 of SV4 and P1 of
SV7, indicated as B1 and B2 in Figure 8, respectively.

3.2. Damage Detection Algorithm Based on SVM. Two
nonintrusive sensors were manufactured and installed at
locations B1 and B2, which were identifed as optimal
(Section 3.1). To determine whether two nonintrusive
sensors can detect or classify the damage conditions in the
testbed pipeline, 15 repetitive tests were performed at each
damage condition, and the pressure data measured using
nonintrusive sensors were obtained. Figure 9 depicts the
pressure profles of the two sensors under damage condition

D1. Te testbed pipeline was pressurized to 9 bar using two
pumps under normal conditions. After the occurrence of
damage (pipe rupture), the pressure measured at B1 and B2
decreased abruptly (Figure 9). Te frst maximum peak
pressure after the damage was considered a training dataset
to classify the damage conditions.

SVM is a representative machine learning algorithm that
can be used for classifying nonlinear data using kernel
calculations [26]. As shown in Figure 10, the SVM identifed
an optimized hyperplane (f (x)), which classifed a maximum
margin by learning the labeled data. Te margin indicated
the distance from the decision boundary to the nearest
vector. Te decision plane was computed by considering the
number of samples (Figure 10). When learning data are
available for linear separation, the separation hyperplane can
be defned using equation (3); the hyperplanes are referred to
as support vectors.

yi Wxi + b( 􏼁 − 1≥ 0. (3)

Ideally, two hyperplanes are required to maximize the
margin (L (W)) between two planes. Tis leads to an opti-
mization problem for the objective function described in
equation (4) under the constraints in equation (3) to obtain
two classes of hyperplanes.

L(W) � min
1
2
‖W‖

2
􏼒 􏼓. (4)

When a random input pattern is provided as the training
data to the main axis, the discriminant functions can be
defned as follows:

f(x) � 􏽘 aiyiK xi, yi( 􏼁 + b, (5)

where αi denotes the Lagrange multiplier and K indicates the
kernel function.

Figures 11(a) and 11(b) depict the training dataset and test
dataset for each damage condition, where the trained classifer
is depicted in pink (damage 1), blue (damage 2), and red

Smart Valve (RV1~RV10)

Damage Valve (D1~D3)

Pump (P1~P2)

D1

D2

D3
Pump1

Pump2

RV1RV2RV3

RV8RV9RV10

RV5RV6RV7 RV4

Sensor Position (B1,B2)

B1

B2

P2 P1 P2 P1 P2 P1

P2 P1 P2 P1 P2 P1

P2

P1

P2

P1

P2

P1

P2

P1

Figure 8: One-dimensional fow analysis model of the testbed pipeline system.
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(damage 3) areas. Among the applicable kernel functions, such
as linear, polynomial, and radial basis functions, a linear kernel
was selected when designing the classifer using SVM as it was
sufcient to identify the damage completely (100%) and simple
to apply when realizing a commercial controller. In the case of
the box constraint, the classifer was tuned to have an accuracy
of 100% through trial and error because the classifcation of
damage location is most important. Te value was changed
from 1 (default value) to 1000 after examination of the ac-
curacy, and it was chosen as the value of 100, which shows the
best performance.

3.3. Validations. Te testbed was designed and constructed
by referring to the fre main of an engine room and its ad-
jacent compartments for a new 3000-ton class of naval ships
from the Republic of Korea (ROK), and detailed specifcations
for the piping system are described in Table 5. Because the
piping system of naval ships has a redundant design of pumps

and piping equipment, a testbed that can realize pipeline
damage (rupture) and consider redundancy was constructed
in this research. Two centrifugal pumps to supply water for
frefghting were connected to the right and left sides of the
pipeline system. Te damage (rupture) was simulated by
opening the pressurized-air actuating valve installed at the
predesigned location in the pipeline, as indicated in
Figures 12(a) and 12(b). Te water tank was designed with
a volume of 22m3 to stably supply the excessive circulated
fow induced by the rupture inside the pipeline.

Remote-controlled valves installed at the center of each
pipeline segment were used to block the damaged pipeline
section after detecting the damaged condition (D1, D2, or
D3) using the proposed nonintrusive sensor system with the
damage detection algorithm. Table 5 lists the specifcations
of the testbed.

Te damage detection algorithm in the proposed
nonintrusive sensor system with the hyperplane (f (x)) of
the SVM was realized using a commercial controller
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Figure 9: Pressure profles before and after the pipe damage (D1): (a) 0∼100 sec and (b) 38.5∼49.5 sec.
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Figure 10: Basic concept of the support vector machine (SVM) method.
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Table 5: Specifcations of the testbed pipeline system.

Item Value Remarks

Pipe system

Length (x) 12,000mm
Overall dimensionWidth (Y) 8,000mm

Height (Z) 2,500mm
Pipe diameter 150mm Inner diameter
Pipe thickness 3.4mm —

Max. Pressure in pipe 9 bar Operating pressure of fremain

Pump
Number 2 EA —
Type Centrifugal horizontal multistage —

Maximum fow rate 114m3/h —
Remote controlled butterfy valve 10 EA Motor driven type

Damage valve for realizing pipeline rupture 3 EA Air actuating type
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Figure 11: Decision boundary of the support vector machine. (a) Train dataset. (b) Test dataset.
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Figure 12: Continued.
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(Arduino, board model: UNO R3), considering wireless
communication. Te performance of the proposed system
was verifed via three repetitive tests under three damage
conditions. Nine tests were completed, and the results are
plotted in Figure 13 along with the decision boundary of
the proposed system. Te experimental results indicated
diferent patterns despite identical experimental condi-
tions. Tis was because the fow fuctuated by approxi-
mately 10% under identical pump operating conditions
within the controllable range of the test facility. Te
results verifed that the proposed nonintrusive sensor
system installed at the two locations in the piping system
detected and classifed all three types of damage situa-
tions and locations under feasible performance test
conditions. Furthermore, the proposed design procedure
for installing the nonintrusive sensor system was rela-
tively convenient, without requiring any modifcation to
the existing piping system. Tis methodology can be
designed and applied to any piping system in an industry
with a high risk of failure.

4. Conclusions

Tis study proposes a novel nonintrusive sensor system for
monitoring pipeline pressure. We developed a methodol-
ogy to determine the optimal location for the developed
sensor in a pipeline network to detect the occurrence of
leakages in the pipeline and perform the analysis in real
time. A testbed was built for a nonintrusive sensor per-
formance test, and a parametric study was performed to
design the shape and operating circuit of the sensor for six-
inch pipes. A wireless, nonintrusive pipeline pressure-
monitoring sensor was fabricated based on the design
parameters. Te suggested sensor system installed on the
pipe predicted pressure almost the same as the sensor
installed inside the pipe, with a correlation coefcient of
0.994. Terefore, real-time monitoring of the pressure
inside the pipe was feasible. Te novel aspects of this study
can be summarized as follows:

(i) Development of a nonintrusive pipeline pressure-
monitoring sensor;

(ii) Methodology to determine the optimal sensor
placement in a pipeline network for detecting
damages using the Euclidean distance method;

(iii) Methodology to determine the decision boundary
for classifying the damage location using SVM to
rapidly detect damage; and

(iv) Performance evaluation of the nonintrusive pipeline
pressure-monitoring sensor system using a real-
scale land-based test facility for simulating the
pipeline system of a conventional-class naval ship.

Te proposed nonintrusive pipeline pressure-
monitoring sensor system with the suggested design pro-
cedure showed excellent performance. In other words, the
damage locations considered in this study were accurately
classifed, verifying that the proposed sensor can be applied
to any piping system.
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Figure 13: Performance test results of the nonintrusive sensor
system.
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Figure 12: Confguration of the testbed pipeline system. (a) Top-view confguration. (b) Photograph.
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