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For the wind speed prediction, many researchers have established prediction models based on machine learning methods,
statistical methods, and theoretical methods, that is, direct methods. However, the direct method cannot be widely used in the
wind direction prediction because the wind direction has strong randomness and uncertainty. In order to solve this problem, this
paper proposed a wind direction prediction method, that is, indirect method. Specifcally, the wind speed is decomposed into
crosswind speed and alongwind speed considering the correlation between wind speed and wind direction. Te crosswind speed
and alongwind speed are predicted based on long short-term memory (LSTM) model with empirical mode decomposition
(EMD), and then, the wind direction prediction value can be calculated, that is, the wind direction prediction is realized. One-
month wind monitoring data collected by the structural health monitoring (SHM) system installed on investigated bridge are
employed to demonstrate the efectiveness of direct and indirect prediction for forecasting the wind speed and wind direction.

1. Introduction

With the continuous advancements of modern bridges to-
ward super long spans and extreme fexibility, the infuence
of wind on bridges is becoming more obvious, and it even
plays a control role [1]. How to accurately predict wind load
for long-span bridges during operation is critical for trafc
control because excessive wind load will cause bridge vi-
bration and may lead to trafc accidents [2].

To predict wind load, we need to frst obtain a large
amount of wind feld data, i.e., wind speed and direction data
[3]. Nowadays, the structural health monitoring (SHM)
systems are installed on new long-span bridges to obtain
wind feld data [4]. For example (see Appendix B for detailed
abbreviations), Xu et al. [5] estimated site-specifc extreme
wind speeds, structural temperatures, and trafc load efects
of a long-span cable-stayed bridge using long-term SHM

data and compared them with respective design values. Ye
et al. [6] calculated full-scale wind feld characteristics using
feld monitoring data from the SHM system of Xihoumen
Bridge. Zhou and Sun [7] focused on the efects of high
winds on vibrational responses and variation in modal
parameters for a unique sea-crossing cable-stayed bridge,
i.e., Donghai Bridge, using long-term SHM data.

In addition, an SHM system may be unstable, such as
voltage instability, which will lead to noise in the obtained
data (Li et al. [8]). Terefore, the SHM data should be
preprocessed, that is, the data should be denoised [9]. At
present, several methods can be used to denoise data. For
example, Hu et al. [10] decomposed the original wind speed
data into several independent intrinsic mode functions
(IMFs) and one residual series by ensemble empirical mode
decomposition (EEMD) using the principle of de-
composition. Wu et al. [11] used complete EEMD to an
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original wind speed sequence into a set of IMFs. Hu et al.
[12] proposed a new data-driven model that combined
variational mode decomposition and prediction models for
daily streamfow forecasting. Pandey et al. [13] proposed an
EEMD-diference pattern sequence forecasting method,
which signifcantly outperformed other state-of-the-art
methods in terms of prediction accuracy. Qian et al. [14] and
Bokde et al. [15] reviewed the evolution of empirical mode
decomposition (EMD)-based methods and novel techniques
for treating IMFs generated by EMD/EEMD.

When wind speed and direction data are available,
a prediction model needs to be established to predict them.
In this regard, many researchers have predicted wind speed
using machine learning methods, traditional theoretical
analysis models, mathematical statistics, and these can be
called direct methods. For example, Liu et al. [16] proposed
a seasonal auto-regression integrated moving average
(SARIMA) model to predict hourly measured wind speeds
in the coastal/ofshore area of Scotland. To verify the per-
formance of the SARIMA model, it was compared with the
newly developed deep learning-based algorithms of gated
recurrent units and long- and short-term memory (LSTM).
Shahid et al. [17] proposed a machine learning paradigm by
exploiting the strength of recurrent neural networks based
on LSTM, embedded with wavelet kernels, to encompass the
dynamic behavior of temporal data. Liu et al. [18] proposed
a novel hybrid short-term wind speed forecasting model
based on singular spectrum analysis, convolutional neural
networks, gated recurrent units, and support vector re-
gression. Liu et al. [19] proposed three hybrid models,
wavelet packets, time series analysis, and artifcial neural
networks (ANNs), to predict wind speed. Jung et al. [20]
used ANNs to predict the long-term wind speeds of a par-
ticular site and to estimate the annual energy production of
wind turbines using the predicted wind speeds. Guo et al.
[21] developed a hybrid SARIMA and least square support
vector machine model to predict the mean monthly wind
speed in the Hexi Corridor.

Tese direct methods can accurately predict the wind
speed. However, there are few reports on the wind direction
prediction using direct methods, which could be due to the
randomness and uncertainty of wind direction being greater
than those of wind speed. Tus, direct methods cannot be
applied to wind direction prediction (Ye et al. [22]; Alduse
et al. [23]). In addition, the wind direction has a signifcant
impact on the safe operation of bridges. On the one hand, the
wind feld environment at a bridge varies with wind di-
rection, resulting in diferent vibration modes of the bridge,
which may even lead to bridge damage. For example, Ding
et al. [24] used fnite element method software to investigate
the infuence of the wind direction on the wind feld of
bridge hangers. Wang et al. [25] conducted tests for a bridge
deck under two wind directions during the completion and
construction stages. Te test and simulation results show
that the properties of vortex-induced vibrations vary with
the wind direction because of the asymmetry of the main
girder. Xiang et al. [26] conducted a wind tunnel experiment
to study wind loads acting on a moving vehicle model on
a bridge installed with a solid wind barrier.

On the other hand, the calculation of wind load is not
only related to the wind speed but also related to the wind
direction; that is, the wind load under the combined action
of wind speed and direction is greater than that under the
action of wind speed. For example, Li et al. [27] presented
a novel copula-based approach to model the joint cumu-
lative distribution function of wind speed and direction for
the wind-resistant design of engineering structures. Wang
et al. [28] established a joint distribution of wind speed and
direction for estimating the basic wind speed. It is shown
that the calculated basic wind speed is reduced by consid-
ering the infuence of the wind direction. Te basic wind
speed considering the infuence of direction or not is sig-
nifcantly smaller than that in China’s specifcation. Zhang
and Chen [29] presented a new approach for estimating
wind load efects (responses) for various mean recurrence
intervals considering both the directionality and uncertainty
of wind speed and wind load efects. Terefore, it is essential
to predict the wind direction.

To overcome the challenges of wind direction prediction,
this study establishes direct and indirect methods for pre-
dicting wind speed and direction, respectively, based on
LSTM, which is seen as a benchmark model. First, we use the
LSTM model to directly predict the wind speed and di-
rection and observe its prediction performance, i.e., a direct
method. Furthermore, the obtained wind data were denoised
by EMD. Ten, the wind speed is decomposed into cross-
wind and alongwind speeds considering the correlation
between wind speed and direction. In addition, the cross-
wind and alongwind speeds are predicted by LSTM-EMD.
Furthermore, the expression of wind direction is deduced
based on the correlation between the wind speed and di-
rection, and the wind direction is predicted, i.e., an indirect
method.

2. Methodology

2.1. Empirical Mode Decomposition. Te EMD method is
obtained by interpolating a certain interval of data, i.e.,
selecting the maximum and minimum values of local data
and calculating the average value of the local data (Qu et al.
[30]). Ten, we subtract the average value from the original
data to obtain new data. As a result, the original data are
gradually decomposed into the (n−1) th IMF and residual
value, which can be expressed as follows (Benbouzid [31]):

P(t) � 􏽘
n−1

i�1
yi(t) + ln(t), (1)

where P(t) is the SHM data; yi(t) is the ith IMF; and ln(t) is
the residual value (see Appendix A for detailed variables
symbol).

2.2. LSTMPredictionModel. LSTM is a type of cyclic neural
network that can analyze the input information based on the
time series (Meng et al. [32]). In other words, it considers the
correlation between the input information at the current and
next times (Yuan et al. [33]). Generally, an LSTM network
consists of an input gate, a forgetting gate, and an output
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gate, as shown in Figure 1. Te input gate saves the input
information to the cell and creates a new state vector. Te
forgetting gate stores hidden state information about the
previous unit in the current unit. Te output gate outputs
unit status information to the next unit (Xu et al. [34]).

Specifcally, the parameters in Figure 1 can be expressed
as follows (Zhang et al. [35]):

ft � sigmoid Wf × ht−1, xt􏼂 􏼃 + bf􏼐 􏼑,

it � sigmoid Wi × ht−1, xt􏼂 􏼃 + bi( 􏼁,

ot � sigmoid Wo × ht−1, xt􏼂 􏼃 + bo( 􏼁,

zt � tanh Wz × ht−1, xt􏼂 􏼃 + bz( 􏼁,

ct � ct−1 × ft( 􏼁 + zt × it( 􏼁,

ht � tanh ct( 􏼁 × ot,

(2)

where it denotes the input gate, and its weight and ofset are
denoted by Wi and bi, respectively; ft denotes the forgetting
gate, and its weight and ofset are denoted by Wf and bf,
respectively; ot denotes the output gate, and its weight and
ofset are denoted byWo and bo, respectively; xt denotes unit
input; zt denotes the status of the temporary unit, and its
weight and ofset are denoted by Wz and bz respectively; ct
denotes the current unit state; ct−1 denotes the status of the
previous unit; ht denotes the hidden state of the current unit;
ht−1 denotes the hidden state of the previous unit.

2.3. Prediction Performance Evaluation. To evaluate the
prediction performance of the model, the root mean square
error (RMSE) is used to assess the performance of the wind
speed and direction prediction model as follows (Ye et al.
[36]):

Figure 2: Deployment of wind anemometers on the investigated bridge.
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Figure 1: LSTM network.
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RMSE �

��������������

1
N

􏽘

N

n�1
yn − Yn( 􏼁

2

􏽶
􏽴

, (3)

where yn denotes the nth observation data point; Yn denotes
the nth corresponding model prediction; and N represents the
size of the test set sample. Based on the defnition of the RMSE
rule, the smaller the RMSE value, the better the ft of themodel.

3. Illustrative Application: Investigated Bridge

3.1. Bridge and Its SHM Description. An SHM system, i.e.,
an ultrasonic anemometer (UAN-G54-001-1), was installed
to monitor the environmental wind around the bridge being

investigated (Ding et al. [37]). In particular, the UAN is
installed at a horizontal distance of 4m from the bridge deck.
Te sampling frequency of the UAN is set as 10Hz.Tewind
speeds of the UAN range from 0 to 60m/s with a resolution
of 0.01m/s to ensure measurement accuracy. Te UAN
layout on the bridge being investigated is shown in Figure 2.

We use a UAN to collect wind speed and direction data
of the Jiashao Bridge from December 1 to 31, 2020. During
this period, the UAN collected 10 wind data points in 1 s. To
facilitate data processing and analysis, we selected the
maximum wind speed and its corresponding wind direction
data every 10min, i.e., extreme wind speed, as shown in
Figure 3. Figure 3 shows that Jiashao Bridge experienced less
strong wind during the study period, i.e., fewer times when
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Figure 4: Statistical characteristics of wind data. (a) Statistical of wind speed. (b) Statistical of the wind direction.
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Figure 3: Wind monitoring data.
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the wind speed exceeded 17m/s. Te collected wind speed
can efectively represent the wind speed changes in daily
operations. In addition, the wind direction data show ob-
vious uncertainty, i.e., it has large fuctuations. In particular,
the wind direction of the Jiashao Bridge in the study month
is mainly northwest, which is mainly related to winter
weather.

In addition, to better discuss the wind dataset, we have
performed statistical analysis of the wind speed and di-
rection, respectively (Ding et al. [38]). As shown in
Figure 4(a), the statistical probability distribution of wind
speed has two peaks, 5 and 12m/s. Specifcally, the 5m/s
peak refers to the daily wind speed, and the 12m/s peak
refers to the impact of gale weather. Tat is, the Jiashao
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Figure 5: EMD of the wind monitoring data. (a) Wind speed decomposition. (b) Wind direction decomposition.
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Bridge was less afected by the strong wind in December
2020, and the collected wind speed data can represent the
daily wind speed changes. Terefore, the change in wind
speed has some regularity and can be accurately predicted.
In contrast, the wind direction is mainly concentrated be-
tween 300° and 360°, as shown in Figure 4(b). Furthermore,
the statistical probability distribution of the wind direction
has multipeak characteristics, i.e., strong random charac-
teristics, which will lead to difculties in wind direction
prediction.

3.2. Data Preprocessing. First, the wind monitoring data are
denoised, i.e., the EMD method is used to decompose and
reconstruct the wind speed and direction, as shown in
Figure 5. As shown in Figure 5(a), the wind speed is
decomposed into seven IMFs and one residual. Specifcally,
the IMF-1 displays the high-order frequency of wind speed,
and the residual represents the trend term of wind speed. As
shown in Figure 5(b), the wind direction is decomposed into
nine IMFs and one residual. Specifcally, the IMF-1 displays
the high-order frequency of wind direction, which is more
random and uncertain compared to wind speed. Similarly,
the residual represents the trend term of the wind direction.

Specifcally, the relative tolerance between IMF com-
ponents and the wind speed is shown in Table 1. Te relative
tolerance between the IMF components and the wind di-
rection is shown in Table 2. Specially, the relative tolerance is
a Cauchy-type stop criterion in the EMDmethod, the sifting
stops when current relative tolerance is less than relative
tolerance.

Furthermore, we conduct Pearson correlation tests on
the obtained IMF, residual, and raw data (wind speed and
direction), as shown in Tables 3 and 4. As can be seen in
Table 3, the IMF-6 and IMF-7 have the best correlation with
wind speed, and these two components can be used to
represent the trend of wind speed changes. Similarly, the
IMF-6 has the best correlation with the wind direction, and
this component can be used to represent the trend of wind
direction changes as shown in the Table 4.

Finally, the wind speed and direction data were
reconstructed, as shown in Figure 6. Figure 6 shows that the
reconstructed wind speed and direction data can maintain
the characteristics of the original wind data. Te data also
exclude some abnormal data, such as noise data. Terefore,
we can obtain high-quality monitoring data using the EMD
method.

3.3. Case Study 1: Prediction of the Direct Method. In this
paper, the dataset is divided into three categories in LSTM
model: training set is 80% of the dataset, validation set is 10%
of the dataset, and test set is 10% of the dataset at frst. Ten,
the Adam optimizer is used to train model to obtain the best
parameter (weight and ofset), the learning rate is 0.001, and
the error function is mean squared in the LSTM model. In
which, the conditions for stopping training or predicting of
LSTM model are: (1) the model meet the set accuracy re-
quirements, that is, the minimum error is set to 10−6. (2)Te
model reached the maximum number of iterations, that is,

the number of iterations is set to 100. In addition, the dataset
is full used based on cross-validation method, which can
avoid the model from under ftting or over ftting (Bokde
et al. [39]).

Table 1: Relative tolerance between IMF components and
wind speed.

IMF Relative tolerance
IMF-1 0.138
IMF-2 0.031
IMF-3 0.092
IMF-4 0.088
IMF-5 0.056
IMF-6 0.016
IMF-7 0.003

Table 2: Relative tolerance between IMF components and wind
direction.

IMF Relative tolerance
IMF-1 0.054
IMF-2 0.053
IMF-3 0.099
IMF-4 0.037
IMF-5 0.055
IMF-6 0.117
IMF-7 0.090
IMF-8 0.034
IMF-9 0.069

Table 3: Correlation coefcient between IMF components and
wind speed.

IMF Correlation coefcient
IMF-1 0.138
IMF-2 0.151
IMF-3 0.244
IMF-4 0.264
IMF-5 0.332
IMF-6 0.610
IMF-7 0.531
Residual 0.145

Table 4: Correlation coefcient between IMF components and
wind direction.

IMF Correlation coefcient
IMF-1 0.415
IMF-2 0.240
IMF-3 0.177
IMF-4 0.009
IMF-5 0.317
IMF-6 0.497
IMF-7 0.375
IMF-8 0.429
IMF-9 0.081
Residual −0.043
Te closer the correlation coefcient is to 1, the stronger correlation be-
tween the IMF component and the original data.
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Figure 6: Reconstruction and the original wind data.
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In particular, we use a direct method to predict the
wind speed and direction in case study 1, i.e., the LSTM
model is used to directly predict the wind speed and
direction in a multistep approach. For the LSTM model,
the number of hidden layer nodes is 32, and the number
of steps is 10. As shown in subfgure-1 of Figure 7, the
direct method can predict the trend of changes in wind
speed. Furthermore, the prediction performance of wind
speed is very good; that is, its RMSE value is 0.6148, as
shown in subfgure-2 of Figure 7. However, the direct
method cannot predict the change law and the specifc
value of wind direction; that is, the direct method cannot
be applied to the wind direction prediction, as shown in
Figure 8.

3.4. Case Study 2: Prediction of the Indirect Method. In the
case study 2, we try to use LSTM model to predict the wind
direction based on indirect method. First, we can see that the
LSTM model has a good prediction efect on wind speed in
the case study 1. Terefore, we decompose the wind speed
into the crosswind speed and alongwind speed with con-
sidering the correlation between the wind speed and wind
direction, as shown in Figure 9.

Specifcally, the relationship between crosswind speed,
alongwind speed, and wind direction can be expressed as
follows:

vcross � v × sin(θ),

valong � v × cos(θ),

θ � arctan
vcross
valong

􏼠 􏼡,

v �

����������

v
2
cross + v

2
along

􏽱

,

(4)

where v represents the total wind speed; vcross denotes the
crosswind speed; valong denotes the alongwind speed; and θ
denotes the wind direction.
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Figure 10: Crosswind speed prediction.
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Furthermore, the crosswind speed and alongwind speed
are predicted based on LSTM model, respectively, as shown
in Figures 10 and 11. In addition, the parameter settings and
training process in the LSTM model are the same as in case
study 1. Specially, the indirect method can predict the
change trend of crosswind speed and alongwind speed as can
be seen from subfgure-1 of Figures 10 and 11. Te LSTM
model has good prediction performance for the crosswind
speed and alongwind speed, and their RMSE values are
1.2524 and 0.9151, respectively, as can be seen from
subfgure-2 of Figures 10 and 11.

Based on the equation (4), the total wind speed pre-
diction can be calculated, as shown in Figure 12. It can be
seen from the subfgure-1 of Figure 12, although the indirect
method can predict the change trend and value of wind
speed. But its prediction performance is very poor as can be
seen from subfgure-2 of Figure 12, that is, its RMSE value is
3.9489. Tis is because the crosswind speed and alongwind
speed have errors in the prediction process, and then the
prediction error of total wind speed is greater due to the
accumulation of errors. Terefore, it is suggested to use the
direct method to predict wind speed.

In addition, the wind direction prediction can be cal-
culated based on the equation (4), as shown in Figure 13(a).
In particular, we used the radian (rad) wind direction data to
express the angle wind direction data because of the tangent
function is periodic, and the atan2 function in MATLAB
requires the value (wind direction) between −π and π. As can

be seen from Figure 13(b), the indirect method can predict
the change trend of wind direction in the subfgure-1, and
the prediction performance of wind speed is good in the
subfgure-2, that is, its RMSE value is 0.520.

4. Conclusions

In this study, a wind speed and direction prediction model
is proposed on the basis of direct and indirect methods.
Specifcally, the wind speed is decomposed into crosswind
and alongwind speeds considering the correlation between
the wind speed and direction. In addition, the wind speed
and direction data were denoised by EMD. Te crosswind
and alongwind speeds are predicted using an LSTM model,
and then, the wind direction is predicted. Based on the
SHM data, collected from the study bridge, the efectiveness
of direct and indirect predictions of wind speed and di-
rection is verifed. Some conclusions are as follows: (1) the
LSTM model based on a direct or an indirect method can
predict the change trend and value of wind speed, which is
verifed using SHM data. Te LSTM wind speed prediction
model based on the direct method outperforms that based
on the indirect method. Terefore, it is suggested to use
a direct method for wind speed prediction. (2) Te LSTM
model based on the direct method is unsuitable for wind
direction prediction; that is, it cannot predict the change
trend and value of wind direction. Te LSTM model based
on an indirect method can predict the change trend and

0

100

200

300

400

W
in

d 
di

re
ct

io
n 

(°
)

12/10/2020 12/20/2020 12/31/202012/01/2020
Time (d)

0

100

200

300

400

W
in

d 
di

re
ct

io
n 

(°
)

50 100 150 200 250 300 350 4000
Prediction number

True
LSTM-predicton

True
LSTM-predicton

(b)

Figure 13:Wind direction prediction based on indirect method. (a)Wind direction-radian prediction. (b)Wind direction-angle prediction.
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value of wind direction and has good prediction perfor-
mance, which is verifed using SHM data. Terefore, it is
suggested to use an indirect method for wind direction
prediction.

Appendix

A. Meaning of Variables

Tis appendix lists the variables in the equations, which
include twenty-one variables symbol, that is,

P(t) denotes the SHM data
yi(t) denotes the ith IMF
ln(t) denotes the Residual value
i denotes the input gate
Wi denotes the weight of the input gate
bi denotes the ofset of the input gate
f denotes the forgetting gate
Wf denotes the weight of the forgetting gate
bf denotes the ofset of the forgetting gate
o denotes the output gate
Wo denotes the weight of the output gate
bo denotes the ofset of the output gate
xt denotes the unit input
zt denotes the status of a temporary unit
Wz denotes the weight of the status of the
temporary unit
bz denotes the ofset of the status of the temporary unit
ct denotes the current unit state
ct−1 denotes the status of the previous unit
ht denotes the hidden state of the current unit
ht−1 denotes the hidden state of the previous unit
N denotes the size of the test set sample

B. Phrase Abbreviations

Tis appendix lists the abbreviations in this paper, which
include seven abbreviations, that is,

Long short-term memory: LSTM
Empirical mode decomposition: EMD
Structural health monitoring: SHM
Artifcial neural network: ANN
Intrinsic mode functions: IMF
Root mean square error: RMSE
Ultrasonic anemometer: UAN
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