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Te deformation properties of concrete arch dams are afected by the synergistic efects of multiple factors, featuring strong,
multidimensional spatialtemporal evolution and distribution characteristics. Tis paper proposes a zoned safety monitoring
model for arch dam deformation based on spatialtemporal similarity and model optimization to evaluate the deformation safety
state of arch dam structures. First, zoned clustering of the deformationmonitoring points at diferent locations of an arch damwas
performed using a panel data multi-index clustering method to determine the deformation laws at diferent positions of the dam.
Next, multipoint comprehensive displacements of the deformation properties of each zone were extracted using principal
component analysis to extract the uniform deformation law of the monitoring point in each zone. Finally, we adopted Bayesian
model selection (BMS) and Bayesian model averaging (BMA) for the regression model set, considering the uncertainty of the
model.Te engineering case study showed that BMA yielded robust and efective prediction results for the deformation of the arch
dam.Te analysis of the zoned deformation mechanism indicated that the deformation of the arch dam followed the general rule.
Te temperature component of the arch dam was mainly refected in the middle with a hysteresis efect, and the time-dependent
component was evident in both sides of the dam shoulder. Te arch dam deformation safety monitoring model proposed in this
study has strong robustness and interpretability, which can provide valuable technical support for analyzing the evolution of arch
dam deformation properties.

1. Introduction

Te construction of dams, an important engineering mea-
sure to transform nature and exploit water resources, also
brings huge economic and social benefts. Recently, several
200–300m class extrahigh arch dams have been planned,
constructed, and implemented in China. Tese projects are
completed under complex topographic and geological
conditions. During their long-term services, the body and
base of arch dams sufer various levels of aging and damage,
resulting in reduced structural load-bearing capacities and
increased risk of signifcant engineering accidents [1]. Te
concept of “structural health monitoring” has been put
forward since the 1990s for which the measurements of the
displacement. Te study of the evolution of deformation

properties based on monitoring data is critical for safe arch
dam operation [2].

A commonly used method to monitor dam safety in-
volves a mathematical monitoring model based on the
prototype measurement data from a monitoring instrument
to analyze the mechanical deformation of the dam structure
[3, 4]. Mata et al. [5] used the three-factor hydraulic-sea-
sonal-time (HST) model to describe the displacement
monitoring data of concrete dams. In another study, Hu and
Ma [6] proposed two improved statistical models to address
the nonstationary thermal and nonmonotonic time-
dependent efects and analyze the deformation mecha-
nism of high-arch dams at the initial impoundment. Rele-
vant research of Wang et al. [7] introduced a hysteresis
water-pressure component into the HST model and
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proposed a hydraulic-hysteretic-seasonal-time (HHST)
model to explain the anomalous deformation behaviors
caused by hysteresis water-pressure deformation and am-
bient temperature drop efects. Te above studies focus on
single monitoring points while ignoring the deformation
similarity among various monitoring points.

Te general structure of arch dams has unique de-
formation characteristics, so a deformation analysis using
a traditional monotonous method is not appropriate. In-
stead, a comprehensive evaluation with multiple measuring
points and factors should be developed to replace the in-
dependent single-factor evaluation based on the complex
spatialtemporal characteristics of arch dam deformation [8].
In developing a safety monitoring model for arch dam
deformation at multiple monitoring points, Wei et al. [9]
introduced spatial coordinates and calculated the water-
pressure component using the fnite element method. In
addition, they proposed a hybrid model of a particle swarm
algorithm-optimized support vector machine (SVM) for
concrete arch dam deformation monitoring at multiple
monitoring points.

Furthermore, Xu et al. [10] used principal component
analysis (PCA) to extract the comprehensive displacement of
multiple monitoring points. Tey then decomposed the data
into seasonal and trend displacements using the Bayesian
estimator of abrupt change, seasonal change, and trend
(BEAST) methodology, followed by quantifying and ana-
lyzing the changing laws of displacement. Similarly, Wang
et al. [11–15] introduced the spatialtemporal clustering
concept into the multipoint analysis of arch dam de-
formation and clustered or divided the objects in space
according to the spatialtemporal data.

Tese mathematical models usually employ spatial co-
ordinates, PCA dimensional reduction, and panel data
clustering to establish the dependence relationship between
multipoint deformation and environmental quantities. Re-
gression analysis or optimizationmethods follow to establish
the model’s coefcients for each factor and physical in-
terpretation of the components to further analyze the dam’s
working state [3, 16].

With the development of computing technology and
artifcial intelligence, algorithms such as random forest (RF)
[17, 18], neural network (NN) [19, 20], long- and short-term
memory (LSTM) [21, 22], SVM [23–26], extreme learning
machine (ELM) [27], and Gaussian process regression
(GPR) [28, 29] have been applied to security monitoring
successively. However, such models are usually aimed at the
ftting accuracy to test their validity, while mathematical
model optimization based on optimization theory has
attracted signifcant attention.

For instance, Huang et al. [3] proposed the optimal
statistical model selection method for dam monitoring from
the perspective of system theory with the optimization
principles of good model ft, test validity, and model sim-
plicity. Although such a method considered the ftting ac-
curacy, model factors, and verifcation efect, most variables
in the model had to be known while ignoring the model’s
uncertainty. Bayesian class selection has been well studied in
structural and geotechnical engineering [30–32]. Tus,

Gamse et al. [33] applied the Bayesian model selection
(BMS) to the HST model updating, which could rapidly
acquire new information embedded in additional mea-
surements to improve the dam’s safety and reliability.
Similarly, Prakash and Balomenos [34] used the Bayesian
method to estimate and update model parameters, pro-
posing the following two approaches: the naive Bayesian
model (NBM) and the Bayesian model averaging (BMA).
BMS and BMA can solve the uncertainty in dam modeling
and yield the most reasonable HST model from a set of
model class candidates based on the model criterion pro-
vided by the data.

Tis paper proposes a multipoint deformation safety
monitoring model for concrete arch dams based on BMS
and BMA. In this work, a comprehensive list of similarity
indicators was established using a panel data multi-index
clustering method, and zoned clustering was performed on
the deformation of the dam measuring point using an an-
alytic hierarchy process. In addition, PCA was carried out on
the deformation of each zone to extract multipoint dis-
placements containing the deformation state of each zone,
and a regression model was established to form a model set.
Next, BMS was performed on the model set, and BMA was
conducted considering the model uncertainty, followed by
an analysis of the period prediction results and deformation
mechanism.

Tis paper is composed of three parts. First, an in-
troduction to the theories and principles of spatialtemporal
clustering is presented along with multipoint comprehensive
displacement extraction and BMS and BMA based on panel
data. Ten, the building process of the arch dam multipoint
BMS is described. Finally, a verifcation of the robustness
and strong interpretability of the multipoint deformation
safety monitoring model of concrete arch dams based on
BMS and BMA is performed through engineering cases.

2. Multipoint MonitoringModel for Arch Dams
Based on BMS

2.1. Spatialtemporal Clustering Method Using Panel Data.
Traditional analyses of concrete arch dam deformation
monitoring data focus on the time-domain characteristics of
single monitoring points without considering spatial in-
formation. We can achieve more dynamic information and
empirical results using comprehensive panel data modeling
rather than single-point modeling, improving the model’s
validity and accuracy. Two-dimensional panel data include
timeseries and cross-sectional information, [12] as shown in
Figure 1(c). Cross-sectional data indicate the locations of the
observation points, as shown in Figure 1(a), and time-series
data refect the time efects of the prototype observation data,
as shown in Figure 1(b).

One common method for panel data modeling is to
cluster or divide the monitoring points in space according to
the spatialtemporal characteristics of the panel data, through
which monitoring points with similar characteristics can be
classifed together. When performing the cluster analysis,
the following two fundamental issues should be considered:
(i) the method to measure the similarity betweenmonitoring
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points and (ii) the systematic clustering method to be used.
In this paper, similarity measurement based on the com-
prehensive index of panel data was adopted, and the Ward-
based hierarchical clustering method was used for the
clustering.

To refect the correlation and dynamic change in-
formation between the displacements at various areas of the
arch dam, the time series of measured displacements at
multiple monitoring points can be expressed in the form of
panel data as follows:

δ �

δ11 δ12 · · · δ1T

δ21 δ22 · · · δ2T

⋮ ⋮ ⋱ ⋮

δN1 δN2 · · · δNT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where δit (I� 1, 2, . . ., N; t� 1, 2, . . ., T) is the actual
measured data of dam displacement, N is the number of
monitoring points, and T is the number of observations of
each monitoring point time series.

We can divide panel data cluster analysis into single-
indicator and multi-indicator forms [35]. Most current
studies use the single-indicator panel data clustering
method, which is simple to use with a wide application.
However, the prototype dam monitoring data present
a more complex pattern, and using a single-indicator cannot
fully refect the changing process and trend of each

monitoring point. Terefore, this study performed the
clustering of dam deformation monitoring data using the
following three basic similarity indicators: the absolute
distance dij (AD), incremental distance dij (KD), and speed
increase distance dij (GRD). Tus, the deformation moni-
toring values, such as absolute initial value, incremental
range, growth rate, and acceleration, are thoroughly eval-
uated. Te defnitions of the three basic similarity indicators
are found in the literature [12]. Teir integration can help
obtain a general similarity indicator to measure the overall
similarity of the deformation monitoring points. Tis
comprehensive index is as follows:

dij(CD) � β1dij(AD) + β2dij(KD) + β3dij(GRD), (2)

where dij (CD), dij (AD), dij (KD), and dij (GRD) are the
comprehensive, absolute, incremental, and speed increase
distances between point i and point j, respectively, and β1,
β2, and β3 are the weight coefcients of dij (AD), dij (KD),
and dij (GRD), respectively. Te weight coefcients can be
assigned subjectively or objectively based on the actual
situation, and the weight coefcients in equation (2) were
determined using the variation coefcient method [36].

Common cluster analysis methods mainly consist of
partition and hierarchical clustering. Comparatively, hier-
archical clustering is more suitable for dam monitoring
points because the number of clusters of concrete arch dam
deformation data cannot be determined in advance. Tis
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Figure 1: Panel data schematic: (a) cross-sectional data; (b) time-series data; (c) panel data.

Structural Control and Health Monitoring 3



paper used the Ward method as the clustering method for
concrete dam deformation monitoring data [37].

Assuming that the N monitoring points of the dam can
be divided into k regions, denoted as G1, G2, . . ., Gk, within
the deformation data, Yi refers to the indicator value of the
monitoring point i(i � 1, 2, . . . , N) in H, and Y is the in-
dicator center ofHu. Te sum of deviation squaresWu of the
monitoring points inHu is calculated based on the following
equation:

Wu � 

Nu

i�1
Yi − Y( 

2
. (3)

Te pedigree clustering dendrogram and the de-
formation status of the monitoring points should be con-
sidered before the fnal determination of the number of
clusters k. In practice, the number of hierarchical clusters
can be defned by the abrupt change of the sum of deviation
squares.

2.2. Bayesian Model Selection and Averaging Principle

2.2.1. Bayesian Model Selection. BMS is a statistical analysis
method that considers the uncertainty of the model based on
the Bayesian theory. Tis modeling technology is commonly
used to deal with model uncertainty problems [35–38]. Tis
study used two cases for each factor of the statistical model,
i.e., selected model and unselected model, resulting in
a model space M � M1, M2, . . . , Mv  (composed of all

possible models) to be generated. Te posterior probabilities
of its parameters can be derived from equation (4):

P(θ|D) � 
v

j�1
P Mj|D P θ Mj

 ,D , (4)

where θ is the parameter vector to be estimated, i.e., the
coefcients of each factor of the statistical model; D is the
observed data sample; and Mj is the jth model in the model
space. Te posterior density distribution of the parameter
vector θ is the weighted average of the posterior density
distribution of θ under the model space condition, i.e., the
posterior probability P(Mj|D) of the model, which the fol-
lowing equations can calculate:

P Mj|D  �
P D Mj

 P Mv( 


v
h�1P D Mh

 P Mh( 

, (5)

P D Mj

  �  P D θj

 , Mj P θj Mj

 dθj. (6)

Equation (6) denotes the likelihood function integral
corresponding to model Mj, where θj is to the parameter
vector corresponding to model Mj, P (θj | Mj) is the prior
probability distribution of parameters in modelMj, P (D | θj,
Mj) is the likelihood function of modelMj, and P (Mj) is the
prior distribution of model Mj.

We calculate the posterior mean and posterior variance
of the parameter vector θ using equations (4)–(6), which is
expressed as the follows:

E[θ|D] � 
v

j�1
E θ D, Mj

 P Mj|D ,

Var[θ|D] � 

v

j�1
Var θ D, Mj

  + E θ D, Mj

  
2

  − E[θ|D]
2
,

(7)

where E[θ|D] and Var[θ|D] are the posterior mean and
posterior variance of the parameter vector θ, respectively,
and E[θ|D, Mj] and Var[θ|D, Mj] are the posterior mean
and posterior variance of θ in model Mj, respectively.

2.2.2. BayesianModel Averaging. Te posterior probabilities
of each model can be used as the weights for inference, and
the weighted average of the models of interest can be ob-
tained to determine the BMA [39–43]. Te BMA modeling
approach is based on a large model space, but performing
scientifc sampling in the model space to identify models
with high posterior probabilities remains a challenge in
applying BMA.

Madigan and Raftery [44] proposed a highest prob-
ability model that used Occam’s window approach to
delete models with low posterior probabilities in the
model space. In addition, Chib [45] recommended the
Markov chain Monte Carlo (MCMC) method for

sampling in the model space, which is efective at dealing
with high-dimensional space problems. Te BMA
method needs to calculate the marginal likelihood
function of the posterior probability distribution of
models in the model space, and the calculation process
often includes high-dimensional and complex integrals
of all parameters and hidden variables. Te MCMC
method can calculate the posterior distribution of the
weights and variances of models and parameters quickly.
Terefore, this study adopted the MCMC method
for BMA.

3. Construction Process of Multipoint BMS and
BMA Models for Arch Dams

By combining the panel data clustering, PCA dimensional
reduction, BMS, and BMA, we inferred the modelMmop that
could best refect the properties of “real” dam engineering
systems from model set M before analyzing the
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spatialtemporal deformation properties of the arch dam.
As shown in Figure 2, the arch dam multipoint model
based on BMS and BMA included the following four main
steps:

3.1.Data Preprocessing. We extracted the data from the dam
monitoring database. As the prototype dam observation data
contain unequal time interval observations, coarse error
processing and a missing value complement task should be
conducted before the clustering analysis of observation data.
Te preprocessed data comprised a factor set and an efect-
quantity set.

3.2. PanelDataClustering. We applied theWard method for
the dam body deformation and panel data clustering. First,
based on the efect-quantity set obtained by preprocessing,
we analyzed the deformation similarity characteristics, and
then calculated the absolute distance, incremental distance,
and speed increase distance between the monitoring points.
Next, according to the three distance indicators, we calcu-
lated the weight coefcients using the variation coefcient
method to obtain the comprehensive similarity indicator.
Finally, based on the comprehensive similarity indicator, we
conducted the spatialtemporal monitoring point clustering
using the Ward hierarchical clustering to obtain the arch
dam zoned deformation family, followed by a qualitative
analysis.

3.3. Comprehensive Displacement Extraction. Te compre-
hensive displacement extraction of the deformation in the
dam zones was realized through PCA dimension reduction
analysis [9]. First, we performed the equalization treatment
of the data before conducting the PCA analysis of the de-
formation data for each zone. Next, we calculated the co-
variance matrix of each zone displacement matrix and
obtained the eigenvalues and eigenvectors. In addition, the
cumulative contribution information was calculated based
on the eigenvalues, and the comprehensive displacement
best refecting the zoned deformation properties was selected
from the principal components.

3.4. BMS and BMA

(a) We preselected the factor sets in line with the actual
operation of the dam based on the qualitative
analysis of the measured point deformation moni-
toring volume and the rigorous physical derivation
theories of previous studies.

(b) We then constructed the BMS and BMA zoned data
samples with comprehensive displacements, fol-
lowed by the elimination of the infuence of the
factor set dimension and standardization of the
dataset.

(c) Te posterior inclusion probability (PIP) of each
factor and model was calculated using the MCMC
sampler, followed by the uncertainty analysis.

(d) We applied the probabilities to determine a weighted
average of the models of interest. Models with higher
posterior probabilities were assigned higher weights,
and models with lower posterior probabilities were
given lower weights to quantify the uncertainty of
the models.

(e) Te prediction results of BMA were compared to
analyze the robustness of the model.

(f ) Finally, we conducted the quantitative analysis and
interpretation of the mechanistic causes of each zone
based on the BMA results.

4. Case Study

4.1. Project Overview. Te water-retaining structure of a hy-
dropower station proposed in this study was a concrete
double-curvature thin arch dam arranged with seven sets of
vertical lines used to monitor the dam body’s horizontal
displacement. Each line set included a combination of positive
and inverted vertical lines, totaling 28 positive vertical line
monitoring points and seven inverted vertical line monitoring
points. Table 1 defnes the radial and tangential displacements
of the vertical line system in the positive direction, and the
monitoring layout is shown in Figure 3.

Figures 4(a)–4(f) show the radial displacement data of
each monitoring point on the dam. Te time series of the
data analyzed in this paper was from January 2014 to De-
cember 2020, with a sampling frequency of once every seven
days. A total of 365 datasets were collected at each moni-
toring point. Figure 5 shows the water level and air tem-
perature at the upstream reservoir as functions of time.
Figures 4 and 5 yielded the following fndings:

(i) Te radial displacement of the arch dam shows
strong temporal and spatial regularity. From
Figures 4(b)–4(f), it can be seen that the periodicity
of the measurement point of the top part of the
2–6 dam of the perpendicular dam section is ob-
vious, and the periodicity is weaker the closer to the
dam foundation, so it is necessary to cluster the
measurement point data

(ii) Te water level of the upstream reservoir had two
short-lived lifts during 2015, followed by small
water level changes.

(iii) A six-month gap in air temperature data was
present in 2018.

4.2.ClusterAnalysis ofConcreteArchDamDeformationBased
on Comprehensive Similarity Indicator. Tis study adopted
the deformation monitoring data during the dam’s opera-
tion period. We calculated dij (AD), dij (KD), and dij (GRD)
according to the absolute initial value, incremental range,
growth rate, and acceleration of the deformation. Addi-
tionally, we determined the weight coefcients using the
variation coefcient method, as shown in Table 2. Based on
the weight coefcients, the indexes had infuences on the
clusters, and the absolute distance accounted for a large
proportion.
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Ten, we calculated the comprehensive similarity in-
dicator and performed the spatialtemporal multipoint
clustering accordingly to obtain the pedigree clustering
dendrogram. In Figure 6, the selected monitoring points are
represented by the horizontal coordinates, and the vertical
coordinates are the sum of deviation squares of the indexes
between the monitoring points. Te spectrum diagram
Figure 6(b) shows that smaller link distances between
clusters yielded more clusters. As shown in Figure 6(a), the
sum of deviation squares had two obvious points of abrupt
change, so we chose three clusters. Figure 7 shows the
clustering results of the spatial monitoring points, and
Figure 8 illustrates the measurement process hydrograph of
the monitoring points in each zone.

Figures 7 and 8 yield the following fndings:

(i) Te radial deformation of the arch dam presented
a gradual, downward trend from the middle of the
dam to the shoulders on both sides, with the largest
deformation in the middle of the dam roof, and
good symmetry of the deformation distribution.

(ii) Te monitoring points in each zone showed high
spatialtemporal correlation. For example, Zone I,
located in the middle of the arch dam top, was easily
afected by temperature fuctuations. Zone II, in the
middle of the arch dam, was similar, especially at
a high water level, while Zone III, located at the dam
base, was less afected by temperature fuctuations.

(iii) According to Zone I, the deformation peak fuc-
tuations and temperature changes showed a certain
negative correlation and hysteresis. For instance, the
air was in the high-temperature peak stage during
August, while the deformation showed a lower peak
in September.

4.3. Comprehensive Displacement Extraction for Each De-
formation Zone of Concrete Arch Dam. Te above results
reveal that the clustering in Zones I–III was more con-
centrated and Zone IV on both sides of the dam shoulder
exhibited dispersed clustering. Using the PCA to obtain the
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Figure 2: Flow chart of the multimeasurement point modeling method of arch dam based on Bayesian model selection and averaging.

Table 1: Radial and tangential displacement positive direction of the perpendicular system.

Perpendicular number Dam section (#) Radial
positive direction (°)

Tangentially to the
positive direction (°)

No. 1 1 NE 40.5 NE 130.5
No. 2 4 NE 42.1 NE 132.1
No. 3 7 NE 49.4 NE 139.4
No. 4 11 NE 81.0 NE 171.0
No. 5 16 NE 112.6 NE 202.6
No. 6 19 NE 119.8 NE 119.8
No. 7 22 NE 121.3 NE 211.3
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Figure 3: Schematic diagram of the monitoring layout of the positive inverted line of an arch dam.
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Figure 4: Measured radial displacement: (a) perpendicular number no. 1 and no. 7, (b) perpendicular number no. 2, (c) perpendicular
number no. 3, (d) perpendicular number no. 4, (e) perpendicular number no. 5, and (f) perpendicular number no. 6.
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comprehensive displacement law of multiple monitoring
points is a means to extract the deformation characteristics
of multiple monitoring points [9]. Tis research extracted
the comprehensive displacement (PC) for multiple moni-
toring points of Zones I–III, as shown in Figure 9.
Figure 9(a) displays the eigenvalues and the cumulative

contribution rate, and Figure 9(b) compares the compre-
hensive displacement PC of each zone with the deaveraging
information of the monitoring points.

Figure 9 provides the following information:

(i) Te frst principal component of Zones I–III con-
tained more than 95% of the information on the
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Figure 5: Time series of environmental quantities: (a) upstream water level; (b) air temperature.

Table 2: Te weight coefcient is obtained by using the coefcient of the variation method.

Distance indicator Absolute
distance (dij (AD))

Incremental distance
(dij (KD))

Growth distance
(dij (GRD))

Weight coefcient 0.373 0.283 0.344
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Figure 6: Arch dam deformation sequence division lineage cluster tree: (a) sum of squares of deviations; (b) genealogy chart.
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sequence of measured values of the zoned moni-
toring points. In addition, the eigenvalues showed
a downward trend, as shown in Figure 9(a), in-
dicating that the frst principal component meets
the requirement for analyzing the comprehensive
information of multiple monitoring points in
the zone.

(ii) According to Figure 9(b), the upward or downward
trend of the comprehensive displacement was more
evident than that of the monitoring points. Addi-
tionally, in Zone II from 2016 to 2017, the com-
prehensive displacement mainly occurred at the

mean value of several data in the zone if the change
of each monitoring point was stable. Furthermore,
the periodicities of the comprehensive displacement
of each zone and each monitoring point were nearly
equal, and the zones’ periodic variations were larger
than that of each monitoring point of the zone.

(iii) Te comprehensive displacement retained the main
information of several monitoring points and am-
plifed the small changes in the overall law of zones,
which was conducive to the analysis of the de-
formation properties in diferent zones of the
arch dam.
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Figure 7: Arch dam deformation cluster zoning.
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4.4. Arch Dam Multipoint BMS and BMA Analysis. Te
above analysis showed that Zone I had signifcant periodic
variations. In this section, we frst used BMS for the model
set selection based on the engineering experience and the
physical causes of the monitoring volume and then adopted
BMA for uncertainty interpretation.

4.4.1. Determination of Model Class. According to the
working principle of concrete arch dams, the main statistical
model factors of arch dam deformation include water
pressure, temperature, and time dependence. A priori
knowledge of dam system indicates that diferent compo-
nents have specifc optional factor sets.

(i) For the water-pressure component, a priori in-
formation shows that its factor set comprises the
primary, secondary, tertiary, and quadratic up-
stream water depths. However, the lift pressure of
the arch dam has a negligible impact on the dis-
placement and is therefore not considered.

(ii) For the temperature component, the dam has been
in service for over ten years, and the dam tem-
perature feld is in a quasi-stable temperature feld
state, so the multi-period (one year and six months)
harmonic combination can be used as the factor set
of temperature component.

(iii) For the time-dependent component, after more
than ten years in operation, the dam’s time-
dependent deformation of the concrete and
rock mass is mainly irreversible creep with slight
restorable creep. Terefore, the creep factor of
the concrete and rock mass caused by water level
ebb and fow is not considered. In addition, the
optional domain of the time-dependent com-
ponent is time polynomial (primary to qua-
dratic), time logarithm, and e-exponential of
time. As a result, the optional factor sets for each
component of the arch dam are shown in Table 3,
with the statistical model expressed as the fol-
lowing equation:
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Figure 9: Comprehensive displacement analyses.
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Yt � a0 + 
4

i�1
aiH

i
+ 

2

i�1
b1i sin(iα) + b2i cos(iα)  + b3T + 

4

i�1
ciτ

i
+ c5 ln τ + c6e

− τ
, (8)

where Yt is the zone’s comprehensive displacement; ai, b1i,
b2i, b3, and c1–c6 re to the regression coefcients of each
component, respectively; H is the water depth in front of the
dam, α � 2πt/365, and τ is the number of days from the
monitoring date to the starting date divided by 100.

4.4.2. Model Selection Strategy Analysis. Te comprehensive
displacement data (PC1, PC2, and PC3) were used for the
BMS of Zones I–III. We employed 15 factors in the full
model, and Table 4 lists their statistics (mean, median,
minimum, and maximum). Large numerical diferences
were evident between the comprehensive displacements and
the factor sets. Terefore, data standardization was required
before model selection to eliminate the magnitude and
numerical diferences.

(1) BMS. Each factor has two possibilities during model
selection, i.e., selected or not selected. So the best model is
one of 32,768 (or 215) possible models. Tis study aims to
fnd the best parsimonious model for future prediction and
dam health monitoring. For model selection in this study, we
explored options through the MCMC sampler based on the
data from Zone I. A total of 10 [6] sample models were
simulated using the MCMC algorithm, while also in-
vestigating the convergences. Te coefcient PIP conver-
gence plot of Zone I is shown in Figure 10, and Figure 11
shows the model posterior probability convergence plot.
Notably, most points remained on the 45° diagonal, and
most coefcient PIP and model posterior probabilities of the
MCMC method converged to the theoretical posterior
probabilities, indicating strong reliability.

For a clearer view of the model comparison, we used the
best model space image (Figure 12) to depict the model’s

uncertainty. Figure 12 shows the predictors, including the
intercept on the Y-axis, while diferent models are plotted on
the X-axis, i.e., each vertical column corresponding to
a model and each horizontal row representing a variable.Te
black rectangles in Figure 12 indicate the variables that were
not included, and the color of each column is proportional to
the logarithm of the posterior probability. Models with the
same color had similar posterior probabilities and could be
clustered together. Te analysis of Figure 12 shows that at
least three factors were not selected in the models with the
top 18 posterior probabilities, and cos (2α), T, τ2, τ3 and τ4
were not selected in most models. Tis phenomenon is
consistent with the results of the PIPs of the model co-
efcients in Figure 13, in which the PIPs of all three factors
were less than 0.5, while those of the other factors were
greater than 0.5.

(2) BMA. After treatment with the MCMC sampler, we
performed BMA on all possible models and estimated the
parameters of BMA models. Table 5 shows the posterior
mean, posterior standard deviation, and PIP of each co-
efcient estimated using BMA. In the model, the PIPs of the
intercept and cos (α) were 1, and the PIPs of other factors,
except cos (2α), T, τ2, τ3, and τ4, were all greater than 0.5,
indicating that other factors were most likely to be included
in the model compared with cos (2α), T, τ2, τ3, and τ4w. Te
posterior probability distribution of each factor is shown in
Figure 14.

After obtaining the model posterior probabilities, we
performed BMA and plotted the comparison diagram be-
tween ftted and measured values (Figure 15). Te moni-
toring points of Zones I–III and PL1-1 were all close to the
45° diagonal, implying the BMA ftting was efective.

Table 3: Factor sets selected by the Bayesian models.

Ordinal Te component name Te parameter value Component symbols
X1

Water-pressure component Upstream water depth H

H1

X2 H2

X3 H3

X4 H4

X5

Temperature component α � 2πt/365

sin (1× α)
X6 cos (1× α)
X7 sin (2× α)
X8 cos (2× α)
X9 Air temperature T
X10

Aging components τ � (t − t0)/100

τ
X11 τ2
X12 τ3
X13 τ4
X14 ln τ
X15 e− τ
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(3) Predictive Analysis. To verify the model’s predictive
ability, we chose various test samples to compare the average
prediction results of the model and the commonly used
ordinary least-squares (OLS) and stepwise regression (SR)
methods. Te test sample sizes were 10, 40, and 70, and the
mean absolute error (MAE), mean square error (MSE),

mean absolute percentage error (MAPE), and root-mean-
square error (RMSE) were the indicators for model evalu-
ation. Te specifc calculations are shown in Table 6.

Figure 16 shows the prediction results, in which Figures.
16(a), (a2), and (a3) are the radar plots of the prediction
results of Zone I with diferent test sample sizes and

Table 4: Statistics of the comprehensive displacement, PL1-1 measured value and factor set of zone I–zone III.

Component Mean Median Min Max
H1 1.737E+ 02 1.743E+ 02 1.700E+ 02 1.752E+ 02
H2 3.016E+ 04 3.036E+ 04 2.892E+ 04 3.071E+ 04
H2 5.238E+ 06 5.291E+ 06 4.917E+ 06 5.381E+ 06
H4 9.099E+ 08 9.220E+ 08 8.361E+ 08 9.430E+ 08
sin (α) 4.447E− 04 4.452E− 03 −1.000E+ 00 1.000E+ 00
cos (α) −2.446E− 04 −6.455E− 04 −1.000E+ 00 1.000E+ 00
sin (2α) 4.293E− 04 −1.291E− 03 −1.000E+ 00 1.000E+ 00
cos (2α) 2.723E− 04 −1.900E− 03 −1.000E+ 00 1.000E+ 00
T 9.861E+ 00 1.030E+ 01 −6.600E+ 00 2.710E+ 01
τ 9.861E+ 00 1.030E+ 01 3.640E+ 00 2.912E+ 01
τ2 3.227E+ 02 2.683E+ 02 1.325E+ 01 8.480E+ 02
τ3 7.068E+ 03 4.395E+ 03 4.823E+ 01 2.469E+ 04
τ4 1.649E+ 05 7.199E+ 04 1.756E+ 02 7.191E+ 05
ln τ 6.177E+ 00 6.304E+ 00 4.807E+ 00 6.879E+ 00
e− τ 3.530E− 02 7.000E− 07 4.410E− 13 9.700E− 01

Convergence Plot: Posterior Inclusion Probabilities
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Figure 10: Coefcient posterior contains probability (pip) convergence plots.
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Figure 11: Model posttest probability convergence diagram.
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Figures 16(b) and 16(c) are the radar plots of the prediction
results of diferent zones with a test sample quantity of ten.
Figure 16 reveals the following:

(i) Te results of diferent test samples of Zone I showed
that the prediction performance was best when the
test sample size was ten and worst with a test sample
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Figure 12: Description of the uncertainty of the model.
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Table 5: Estimation of posterior mean, posterior standard deviation, and posterior inclusion probability (PIP) of partition I coefcients
using the BMA model.

Ordinal Post mean Post SD PIP�P (B!� 0)
Intercept −1.206E+ 00 8.981E− 02 1.000E+ 00
X1 4.189E+ 01 4.338E+ 01 6.299E− 01
X2 1.356E+ 01 6.737E+ 01 6.304E− 01
X3 −1.206E+ 01 6.870E+ 01 6.375E− 01
X4 −4.292E+ 01 4.415E+ 01 6.397E− 01
X5 7.356E− 01 1.107E− 01 9.988E− 01
X6 7.639E+ 00 1.116E− 01 1.000E+ 00
X7 −2.649E− 01 1.192E− 01 9.135E− 01
X8 −1.189E− 01 1.303E− 01 5.329E− 01
X9 −8.225E− 04 7.249E− 02 6.129E− 02
X10 5.125E+ 00 2.593E+ 01 2.927E− 01
X11 −1.206E+ 00 4.585E+ 01 3.290E− 01
X12 −4.235E+ 00 4.400E+ 01 4.232E− 01
X13 4.926E+ 00 1.800E+ 01 4.936E− 01
X14 3.924E+ 00 6.931E+ 00 7.588E− 01
X15 2.414E+ 00 3.164E− 01 9.967E− 01

Structural Control and Health Monitoring 13



Intercept

0.0

0.4

0.8

-1 0 1 2

X1

0.0

0.2

0.4

0.6

-200 0 100

X2

0.0

0.2

0.4

0.6

-200 0 100

X3

0.0

0.2

0.4

0.6

-200 0 100

X4

-200 0 100

0.6

0.0

0.4

0.2

X7

0.8

0.0

0.4

-0.6 -0.4 -0.2 0.0

X6

0.8

0.0

0.4

0 2 4 6 8

X5

0.8

0.0

0.4

0.0 0.5 1.0 1.5

X8

0.8

0.0

0.4

-0.4 -0.2 0.0 0.2

X9

0.8

0.0

0.4

-6 -4 -2 0 1

X10
0.8

0.0

0.4

-200 0 200 400

X13
0.8

0.0

0.4

-200 -100 0 100

X11
0.6

0.4

0.0

0.2

-500 0 500

X15

0.8

0.0

0.4

-1 0 1 2 3 4 5

X14

0.0

0.2

0.4

-100 -50 0 50 100

X12

0.0

0.4

-400 0 200 600

Figure 14: Schematic diagram of the posterior probability distribution of each coefcient in the BMA model.
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size of 40. Te BMA had the best prediction per-
formance and better prediction evaluation indicators
of MSE, RMSE, MAE, and MAPE than the OLS and
SR methods.

(ii) Comparing the results of diferent zones in the case
of a test sample size of 10, the prediction results of
BMA in all zones were better than those of other
models, except for the BMA in Zone III, which had
a worse prediction performance than the SRmethod.

In summary, the BMA method could assign more
weights to the models containing more information with
better accurate predictions, thus realizing the robustness
of the model and achieving the best predictions. In ad-
dition, this result verifed the scientifcity of the BMA
method.

4.5. Analysis of Arch Dam Body Zoned Deformation
Mechanism. A conventional statistical model can only
evaluate the impact of deformation components for a single
monitoring point. To solve this problem, this paper proposes
a model featured with regionality and integrity in evaluating
the impact of deformation components to better refect the
deformation mechanism of the arch dam. Figures 17 and 18
show the contributions of the components of each zone to
the zoned deformation, as described as follows:

(i) Te contributions of the temperature and time-
dependent components were dominant, while wa-
ter pressure had little infuence on the deformation,
consistent with the characteristics of the daily reg-
ulation capacity of the arch dam. From the spatial
perspective, the water-pressure component in Zones
I and II was more signifcant and concentrated in
2013–2016, with little infuence in other years. Te
main reason is that both zones are located in the
middle of the dam and the water-pressure contri-
bution mainly occurs in the reservoir storage period.

(ii) Te temperature component’s contribution showed
a spatial trend of gradual decrease from Zone I to
Zone III (Figure 18). When the temperature de-
creased, all the zones presented a downstream de-
formation trend, and a temperature increase yielded
an upstream deformation trend. In addition, the
temperature component efect showed a certain
hysteresis compared with the measured tempera-
ture, which was more signifcant closer to the
shoulder of the dam.

(iii) Te contribution of the time-dependent component
presented a spatial trend of gradual increase from
Zone I to Zone III, in which the middle of the dam
body was less afected than both sides of the dam
shoulder.

Table 6: Model prediction evaluation indicators.

Evaluation indicators Calculation formula
Mean absolute error MAE � 1/N

N
i�1|yi − F(xi)|

Mean square error MSE � 
N
i−1(yi − F(xi))

2/N

Mean absolute percentage error MAPE � 100/N
N
i�1|(yi − F(x))/yi|

Root-mean-square error RMSE �

�����������������


N
i−1(yi − F(xi))

2/N


�
����
MSE

√
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Figure 15: Comparison of the ftted values of each partition with the observed values: (a) Zone I; (b) Zone II; (c) Zone III.
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5. Conclusions

Based on a limited deformation sequence, this paper dis-
tinguishes the deformation laws of diferent locations of
a dam through cluster analysis, and comprehensive dis-
placements were extracted through PCA, BMS, and BMA. In
the full factor set, we used BMS to identify the infuential
factors at diferent dam locations to analyze the zone
mechanism. Te usability of the model was verifed with the
arch dam, and the results showed that the model could ef-
fectively identify the deformation characteristics of each zone.
Te main conclusions of this paper include the following:

(i) Te deformation laws of diferent locations of the
arch dam are distinguished based on the panel data
clustering of similarity indicators, considering
various deformation characteristics, such as the
absolute initial value of deformation, incremental
range, growth rate, and acceleration. Te zone re-
sults are consistent with the deformation laws of
the dam.

(ii) Te comprehensive displacement based on PCA
amplifed the common small changes in de-
formation. Te frst principal component contains
more than 95% of the information at the zone
monitoring points, enabling a better analysis of the
evolution of the safety properties of all the zones of
the observed arch dam.

(iii) BMS and BMA can analyze the deformation
properties of arch dams efectively by considering
the model uncertainty for optimal models as well as
integrated models. Te results showed that BMA
performs well in dam performance monitoring.

(iv) Te analysis of the BMA mechanism showed that,
under the efect of daily storage, water-pressure
contributes little to the deformation of each zone.
In addition, the temperature component is mainly
refected in the middle of the dam body, showing
a certain hysteresis efect. Te time-dependent com-
ponent is evident in both sides of the dam shoulder.
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