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Continuous monitoring of the prestressed members of a bridge under construction using the free cantilever method (FCM) is
crucial for ensuring bridge safety. Temperature-sensitive sensors require special considerations as they maymisinterpret the signal
and tension. Moreover, the unnecessary and inappropriate use of features obtained from the sensor signal can deteriorate the
efciency of the signal and, therefore, tension analysis. Tis study proposes a tension estimation method using an embedded
elastomagnetic (EM) sensor with a temperature-compensation technique. Changes in the signal due to the tension in the
temporary steel rods were analyzed using a full-scale test, and the sensor data were acquired for 15months via the feld application.
Te temperature efect on the signal could be removed by subtracting the tension from the signal using the thermistor data,
reducing the error by 91.99% when considering permeability. Additionally, linear regression (LR) and machine learning (ML)
algorithms were adopted to predict the tension. Furthermore, the performances of both algorithms were compared using mean
absolute error (MAE) and R2. For the prediction using each feature in magnetic hysteresis, LR surpassed ML and the permeability
exhibited the highest prediction performance. Meanwhile, predictions using multiple features were attempted to investigate the
applicability of ML. Two cases of prediction were performed using ML: on using all the features and the other using three features
excluding coercivity, which showed poor relevance to tension. As a result, the performance of the tension prediction was improved
signifcantly compared to the results obtained by LR. In summary, the obtained results have demonstrated that the utilization of
selective features of data with temperature compensation techniques could enhance predictive power.

1. Introduction

Free-cantilever method (FCM) is a bridge construction
technique for superstructures that does not require the
deployment of scafolding systems. Temporary steel rods are
used to attach the upper girder to the pier to provide re-
sistance against imbalanced forces generated when one
girder is longer than the other.

In 2016, as shown in Figure 1, the Chilsan Bridge tilted
during construction and collapsed while the segments were
connected [1]. Te bridge collapsed primarily because it

could not withstand the tensile stress generated during the
concrete pouring of the last segment. Te generated tensile
stress disjointed the steel rods fastened by the coupling and
separated the pier and head of the bridge. Te overturning
and collapse of the girder could have been prevented if the
tension applied to the temporary steel rod had been ex-
amined in real time.

Generally, instruments such as accelerometers, strain
gauges, fber Bragg grating (FBG) sensors, lead zirconate
titanate (PZT) sensors, and elastomagnetic (EM) sensors are
used to monitor the tension of prestressed members in civil

Hindawi
Structural Control and Health Monitoring
Volume 2023, Article ID 5316136, 18 pages
https://doi.org/10.1155/2023/5316136

https://orcid.org/0000-0002-0634-9436
https://orcid.org/0000-0002-4225-4581
https://orcid.org/0000-0003-1683-6120
https://orcid.org/0000-0002-6265-7652
mailto:shparkpc@skku.edu
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/5316136


structures. Te cable tension estimation in cable-stayed
bridges has mainly been performed using contact-based
measurement techniques with accelerometers, and there
are several related studies [2–6]. By obtaining the dynamic
characteristics from the modal frequency using acceler-
ometers installed on the cable, the proposed formula for
cable tensile force estimation can be applied to calculate the
cable tension of a cable-stayed bridge; the relation between
the cable tension and vibration data was verifed using the
dependency of the acceleration data on cable vibration.
Subsequently, studies were conducted using noncontact-
based laser Doppler vibrometers (LDV) and radar devices
[7, 8]. Furthermore, computer vision-based measurement
systems have been utilized recently [9, 10]. A noncontact,
video-based method that uses image-processing techniques,
phase-based motion estimation, short-time Fourier trans-
form (STFT), and taut-string theory was proposed to isolate
cable vibrations from camera movement and calculate real-
time tension. Tese methods have been confrmed to exhibit
acceptable accuracy in structural health monitoring of cable-
stayed bridges through feld application. However, it is
difcult to manage the tension of prestressed members
embedded inside, such as steel strands or rebars.

For tension monitoring of prestressed concrete (PSC)
girders or reinforced concrete (RC) beams, FBG, PZT, and
EM sensors are primarily used. Te FBG sensor detects
physical properties such as tension via a change in the re-
fected light spectrum of the Bragg grating inside an optical
fber varying with strain and temperature. Hence, it allows
for precise measurement and achieves accuracy with a rel-
ative error of less than 3% [11]. However, implementing the
FBG requires modifcation of the central wire of the strand
to insert the optical fber, which can be highly susceptible to
damage under high load conditions. Tension management
was also performed using a PZT interface, which detected
variations in prestress forces by measuring changes in the
electromechanical impedance response resulting from al-
terations in the stress feld and contact parameters of the
tendon anchorage [12]. However, this method indirectly
estimates the tension by detecting changes in contact force
and stress feld between the anchor block and the bearing

plate, unlike the accelerometer applied to the cable. Tis
makes it difcult to estimate the tensile stress occurring in
the material directly.

Te EM sensor, a noncontact sensor that is not directly
coupled to the tension member, can be either embedded in
or installed outside the structure to estimate the tension of
the prestressed member, marking the frst application of this
method to bridge cables [13]. While load cells must undergo
equipment calibration every 1 to 2 years, EM sensors are
inexpensive to fabricate and can be used during both the
construction and maintenance phases. Studies have used
embedded EM sensors to estimate the tension of prestressed
(PS) tendons inside PSC girders [14, 15]. Tese studies
predicted the tension using the permeability or the area of
the magnetic hysteresis curve and showed that as the tension
increases, the permeability and area decrease. However,
depending on the inherent material and magnetic properties
of the ferromagnetic specimen, the relationship between
tension and permeability can either be inversely pro-
portional or directly proportional [16, 17].

During the construction phase of the bridge using FCM,
steel rods with large diameters such as 40mm or larger are
used as prestressed members. Furthermore, there is only one
study analyzing the diference in induced voltage signals
according to the change in tension between them [18].
However, the relationship between the features of magnetic
hysteresis and environmental factors such as temperature
was not analyzed theoretically. In other words, signal
changes due to temperature changes during long-term
monitoring were not considered though the result of ten-
sion estimation using EM sensors had practical accuracy. A
few studies have considered the temperature for tension
estimation using stress-measurement sensors based on
a polynomial ftting method or artifcial intelligence (AI)
[12, 18–20]. Because the studies were performed under
specifc temperature conditions, variations in temperature
from a long-term perspective were only partially considered.
Terefore, the results may not be reliable because the
temperature and force-related data were ftted without
identifying the efect of the temperature analytically [18, 20].
Moreover, if artifcial neural networks (ANNs) are used
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Figure 1: Collapse of Chilsan Bridge (2016) under construction. Images reproduced from an article by Gyeongwoo park, the hankook
ilbo [1].
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without analyzing the efect of temperature properly, the
number of training patterns, that is, the number of obser-
vations, can adversely afect the results [12].

Meanwhile, using machine learning (ML) is advanta-
geous for prediction with various data features and has been
widely used in structural health monitoring [21]. Te results
were satisfactory for predicting the target values in previous
studies [22, 23]. However, a question remains as to whether
ML should be applied to the prediction of tension using the
EM sensor data. Tis is because the relationship between the
used features of the hysteresis curve and the tension was
derived almost linearly in previous studies
[13–15, 18–20, 24]. Terefore, it is necessary to compare the
results obtained using ML to those obtained using a simple
regression method when predicting tension. Accordingly,
the applicability of ML should be subsequently analyzed by
establishing if the prediction performance improves when
utilizing various characteristics of the hysteresis curve
properly.

Tis study proposes a long-term tension monitoring
method for temporary steel rods as prestressed members
using an embedded EM sensor through feld application to
a bridge under construction. First, a theoretical analysis
was performed using a magnetic hysteresis model about
the stress in the ferromagnetic material. Subsequently, the
change in the magnetic hysteresis due to the tension was
analyzed by conducting a full-scale test before the feld
application. Ten, the efect of temperature on the EM
sensor signal was examined logically and compensated
using the full-scale test and feld application data. A linear
regression (LR) model was used for tension prediction,
and an appropriate ML model was adopted for compar-
ison. Finally, both models were compared using evalua-
tion metrics, and the applicability of the ML model was
investigated.

2. Methodology

2.1. Embedded Elastomagnetic (EM) Sensor. An EM sensor
consists of primary and secondary coils. A magnetic feld
develops inside the ferromagnetic core in the longitudinal
direction when a voltage is applied to the primary coil [13].
Te developed magnetic feld induces a voltage in the sec-
ondary coil based on Faraday’s law. Terefore, the magnetic
fux density can be calculated by measuring the induced
voltage using an EM sensor. Figure 2 shows the architecture
of the embedded EM sensor.

Te EM sensor has both primary and secondary coils.
Te magnetic feld strength H (or magnetizing feld) gen-
erated by the primary coil is expressed as

H � NI, (1)

where N and I represent the number of primary coil
windings (turns/m) and current (A) applied to the primary
coil (A), respectively. An electromotive force is induced in
the secondary coil when current I is generated by the voltage
fow through the primary coil, and it is expressed according
to Faraday’s law as

e2(t) � −N2
dΦ21(t)

dt
, (2)

where Φ21 (t) denotes the magnetic fux induced by the
primary coil of the secondary coil and N2 is the number of
the secondary coil windings (turns/m). Te magnetic fux
density was obtained by dividing the inner area of the coil by
the magnetic fux fow. Te magnetic fux density B is
expressed as

B � μ(H + M), (3)

where μ is the magnetic permeability and M is the mag-
netization vector feld that expresses the induced magnetic
dipole moments in the material. Because M is extremely
small in air, the magnetic fux density has a linear relation
with magnetic feld strength. However, it changes under
stress owing to magnetomechanical efects [25].

2.2. Magnetization of Ferromagnetic Material under Stress.
A magnetic feld was induced inside the sensor coil, and the
ferromagnetic material was magnetized when an AC voltage
was applied to the primary coil surrounding the ferro-
magnetic material. However, if a ferromagnetic material is
subjected to a constant stress, the magnetization does not
follow the original curve and takes a new path, as indicated
by the dashed line in Figure 3.

Te variation in the magnetization dM can be positive or
negative, depending on the induced stress sign and the
material property. Magnetization M comprises irreversible
and reversible components according to the Jiles–Atherton
magnetic hysteresis model [27].

M � Mrev + Mirr

� c Man − Mirr(  + Mirr,

(4)

Man � Ms cot
He

a
−

a

He

  ,

He � H + αM + Hσ .

(5)

In equation (4), Mrev represents the reversible magneti-
zation, Mirr represents the irreversible magnetization, and c

represents the reversible magnetic susceptibility. In equation
(5), Man is the anhysteretic magnetization related to the Mrev,
Ms is the saturation magnetization, a is the domain density,
and α is the domain coupling factor. Reversible magnetization
is caused by the bending of the domain wall, and irreversible
magnetization is caused by the displacement of the magnetic
domain [28]. Te efective feld He, which has a stress-related
term Hσ , changes depending on the variation in the me-
chanical stress in the ferromagnetic material. Moreover, the
parameters c, a, α, and others, which were examined in other
studies by several researchers [25, 29, 30], change owing to the
residual stress in the ferromagnetic material, making the total
magnetization diferent. Terefore, if a steel rod as a ferro-
magnetic material is under tension, reversible and irreversible
magnetization occurs, causing changes in the properties of
magnetic hysteresis.
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2.3. Feature Extraction from Magnetic Hysteresis Curve.
Figure 4 shows the extracted coercivity and retentivity
through the relation between the magnetizing force and
magnetic fux density of the magnetic hysteresis curve
generated when a sinusoidal voltage is applied to the EM
sensor coil.

Te area and permeability were determined from the
geometry of the hysteresis curve. Coercivity is defned as the
magnetizing feld when M is 0, and retentivity is defned as
the magnetization when H is 0.

2.4. Tracing Temperature Change on Embedded EM Sensor
Using Termistor. A thermistor is a sensor made of
semiconductor materials and operates on the principle
that resistance varies with temperature [31]. Negative
(NTC) and positive temperature coefcient (PTC)
thermistors are the two types of thermistors used. In the
case of an NTC-type thermistor, the resistance decreases
with an increase in temperature, while the resistance
increases with an increase in temperature in a PTC-type
thermistor.

Te sensing parts of the embedded EM sensor are
composed of copper coils that are sensitive to temperature
changes, implying that the resistance of the coils is altered
depending on the external environment [32]. For example,
the magnetic hysteresis of a ferromagnetic material with
identical tensile stress may be measured diferently owing to
temperature variations, even though it has the same material
properties. Consequently, the resistance must be measured
to interpret the EM sensor signals accurately when the
temperature fuctuates day and night over a long period.

Te thermistor was used as a sensor to obtain temperature-
related resistance by attaching it to the surface of the target
material. Te change in the signal obtained from the EM sensor
is attributed to the resistance of the coil, which changes with the
temperature or the diference in the current that accompanies it.

2.5. Tension Estimation. Te relation between the raw data
from the EM sensor and the stress in the temporary steel rod
is complex, and there is no theoretical formula to express
this relationship. Tus, it is necessary to use LR analysis or
ML to predict the material tension.
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Figure 3: Variation of the magnetic hysteresis curve caused by the stress state. Image reproduced from Markar and Tanner [26].
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Figure 2: Architecture of EM sensor. Image reproduced from Sumitro et al. [24].
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First, a full-scale test was conducted to estimate the
tension of temporary steel rods in the feld application,
and the obtained data were analyzed using the afore-
mentioned algorithms. For the LR, a linear regression
analysis was performed to ft the extracted features of the
magnetic hysteresis curve to the tension measured by
a load cell. Te developed relational expressions were then
used to calculate the tension of temporary steel rods in
feld applications.

For tension prediction using a ML model, the open li-
brary provided by PyCaret (v. 3.0.0) was utilized. Figure 5
shows the process to select a proper ML model for tension
prediction and its confguration.

After temperature compensation and the hysteresis
curve, the extracted features are input into the ML models
provided by PyCaret. Te ML models used for evaluation
include tree-based models such as Extra Trees (ET),
Random Forest (RF), and Decision Tree (DT), Boosting
models such as Gradient Boosting Regressor (GBR), Light
Gradient Boosting Machine (LightGBM), Extreme Gra-
dient Boosting (XGBoost), and CatBoost, and linear
models such as Ridge Regression (Ridge) and others. Te
k-fold cross-validation method was employed for training
and validation. In this method, the dataset is divided into
k subsets and the model is trained k times, each time using
k-1 subsets for training and the remaining subset for
validation [33]. Te average performance of each model is
determined by a designated evaluation metric during the
cross-validation. In this study, the cross-validation results
of the top three performing models are compared to select
the best model ultimately. After selecting the best model,
a Bayesian search algorithm that explores a new combi-
nation of hyperparameters at each iteration and seeks the
optimal hyperparameters based on previous results is
utilized to optimize the evaluation metric [34].

Hyperparameter tuning is carried out for up to 100 it-
erations and adopts current hyperparameters if there is no
further performance improvement.

Data obtained from the feld application are input into
two established algorithms to compare the predictive force
for each feature. To assess the ML application, the prediction
performance for a case where all features are input to theML
model is analyzed. Finally, the efectiveness of selective
feature use is examined, and the applicability of ML to EM
sensor data is discussed.

2.6. Model Evaluation. Te analysis models obtained by the
LR and ML were assessed using the mean absolute error
(MAE) and R-squared (R2).
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Figure 4: Feature extraction from the magnetic hysteresis curve.
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where yi,ref and yi,pred represent the reference values of the
load cell and the values predicted by the estimation model,
respectively. Te MAE evaluates the absolute distance be-
tween the tension by the load cell and the response from the
model considering negative errors. In contrast, R2 is a sta-
tistical measure that represents the explanatory power of the
regression analysis model. Tis value generally ranges from
0 to 1 when using training data, with values closer to 1
indicating that themodel explained the variability of the data
well. However, R2 can be negative when new data are used,
which leaves the possibility that used that feature should be
discarded.

3. Field Application

3.1. Full-ScaleTest. As shown in Figure 6, a full-scale test was
conducted to verify the feld applicability of the EM sensors
a priori application at the construction site. Te primary and
secondary coils of the EM sensor with a diameter of 1.2 and
0.2mm were wound with 300 and 180 turns, respectively.
Additionally, an NTC-type thermistor (SA1-TH-44004-40-
T, Omega) was attached between the primary and secondary
coils to obtain temperature-related data. Te inner face of
the embedded EM sensor bobbin is connected to a sheath
thread around the steel rod.

For the measurement, the embedded EM sensors were
connected through a data transmission cable to a data ac-
quisition (DAQ) device, and the signal amplifer was in-
corporated into a controlling desktop PC using LabVIEW
software (v. 19.0). For the DAQ device, a National In-
strument (NI) USB-6212 was adopted, which had two 16 bit
analog output channels: 250E3 Samples/s and ±10V an
output range. A sinusoidal alternating current signal of ±3V
at 1Hz was input through the coils of the EM sensors. A
vibrating wire-type load cell (SJ-3000) with a capacity of 120
tons was used with sensors to measure tension as
a reference value.

A full-scale test was conducted to test the sensors that
would be installed on temporary steel rods with a design
prestressing force of 60 and 64 tons for on-site applications.
Two sensors and two concrete specimens were used, and
each sensor was embedded in a single specimen for the
measurement. Te specimen for sensor 1 was gradually
prestressed from 18.26 to 66.52 tons, and the specimen for
sensor 2 was prestressed from 21.88 to 70.82 tons. Figure 7
shows the magnetic hysteresis curves measured at each
load step.

First, both curves exhibit a steepening of the corre-
sponding closed curve towards the y-axis as the tension
increases, and the area of the curve gradually increases.
Additionally, as the tension increases, the remaining
magnetization in the temporary steel rods increases

despite removing the magnetic feld and the coercivity
required to eliminate the residual magnetization increases
slightly.

Table 1 presents the numerical changes in the magne-
tizing feld and the maximummagnetization of the steel rod,
along with the rate of change for the initial loading step, as
the load increases. Te change in the magnetizing feld with
the increase in load was found to be negligible, showing
changes within 0.71% of the value when the load was 21.88
tons, as in the case of sensor 2. Te magnetization, however,
increased by up to 36.26% for sensor 2 compared with the
lowest load. In Figure 8, four features of the magnetic
hysteresis curve were extracted and examined for each
load step.

Four features of the magnetic hysteresis curve were
extracted and examined for each load step, all of which
showed a positive correlation with an increase in the load.
When conducting long-term monitoring after on-site
application, the range in which the tension introduced
into temporary steel rods varied was very narrow, and it
was found that the number of features within that range
was insufcient to derive a relation with the tension.
Terefore, it was necessary to interpolate the full-scale test
data after identifying the changing tension range and the
size of data acquired during on-site monitoring.Tis will be
addressed after presenting the results of the on-site
applications.

3.2. Field Application of EM Sensor. An experimental study
was conducted using FCM on the Jusangcheon Bridge,
a bridge under construction in Buan-gun, Jeollabuk-do,
South Korea. Te Jusangcheon Bridge is an extradosed
bridge with a PSC box girder having a length and width of
210 and 30m, respectively. Figure 9, a construction site
photograph and a drawing provided by Lotte E&C, shows
the location of the EM sensors on the pier head.

During construction, steel rods of lengths 10.47 and
9.47m with a diameter of 40mm were embedded, and the
EM sensor was installed on the shorter ones located at the
edge of the pier head, as shown in Figure 10(a). Two EM
sensors with the same specifcations as those in the full-scale
test were embedded in the pier table for measurements in
feld applications.Te steel rod with sensor 1 was prestressed
to a design load of 60 tons, and the steel rod with sensor 2
was prestressed to a design load of 64 tons. Te EM sensor
signals were measured to estimate the tension of the tem-
porary steel rods at 30-min intervals for approximately
15months from October 2020 to February 2022, except
when the on-site power supply was cut of.

3.3. Measurement Results. Load cells were installed on-site
to measure the tension of the temporary steel rods to secure
the main pier and pier table, as shown in Figure 10(b), and
data were acquired along with the installed EM sensors. A
total of 10,954 data were obtained from the EM sensors and
load cells during the measurement period. Te area, per-
meability, coercivity, and retentivity extracted from the data
of the two EM sensors over the approximately 15-month
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Figure 7: Property changes of the magnetic hysteresis curve according to prestressing force. (a) Magnetic hysteresis curve obtained from
sensor 1. (b) Magnetic hysteresis curve obtained from sensor 2.

Table 1: Numerical analysis of full-scale test results.

Sensor 1 Sensor 2
Load (ton) Hmax (kA/m) Δ (%) Mmax (kA/m) Δ (%) Load (ton) Hmax (kA/m) Δ (%) Mmax (kA/m) Δ (%)
18.26 482.92 — 51.31 — 21.88 483.20 — 48.90 —
26.00 482.99 0.01 52.99 3.17 29.61 484.66 0.30 50.65 3.46
33.62 483.66 0.15 54.69 6.18 37.70 486.12 0.60 52.43 6.73
41.56 483.93 0.21 56.37 8.98 45.43 486.09 0.59 54.69 10.59
49.55 484.50 0.33 58.05 11.61 52.46 486.06 0.59 56.96 14.15
57.12 481.97 −0.20 64.84 20.87 61.25 486.65 0.71 64.02 23.62
60.24 482.80 −0.02 69.23 25.88 64.42 483.45 0.05 68.56 28.68
64.75 484.55 0.34 73.63 30.31 69.61 485.24 0.42 73.11 33.11
66.52 484.18 0.26 74.23 30.88 70.82 484.11 0.19 76.72 36.26
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Figure 6: Setup and components of the full-scale test. (a) Composition of EM sensor. (b) Full-scale test setup.
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measurement period are shown in Figure 11, and the load
cell data are shown in Figure 12.

Te initial tension when the load cells began measuring
with the EM sensors was 59.7 and 63.6 tons for the tem-
porary steel rods where sensor 1 and sensor 2 were installed,
respectively. As the temperature decreased, the tension
gradually increased to approximately 60.8 and 64.5 tons by
the end of January. Tis showed a low change rate of ap-
proximately 2%, and the alteration in the tensile stress came

from the contraction of the material caused to the change in
the thermal expansion coefcient of the temporary
steel rods.

All features, excluding the permeability, increased
with the tension in the temporary steel rods. However,
considering the positive correlation between tension and
permeability in the results of the full-scale test in Fig-
ure 8, the permeability extracted from magnetic hys-
teresis data of sensors 1 and 2 exhibited an opposite
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Figure 9: Site view of the feld application and EM sensors’ location. Images reproduced with permission from Lotte E&C. (a) Main pier of
the Jusangcheon Bridge under construction. (b) Location of EM sensors and applied prestressed force in temporary steel rods.
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trend, as shown in Figure 11. Tis indicates that the
characteristics of the sensor coil owing to temperature
changes and the signifcant changes in temperature
during the long-term monitoring of the sensor afected
the output signal. Although the other features had the
same tendencies as the full-scale test results, their
magnitudes may have been diferent. Terefore, as
mentioned earlier, it is necessary to eliminate the tem-
perature efect on the output signal.

3.4. Temperature Compensation Method. Te resistance of
the thermistor (R), magnetizing feld (H), magnetization
(M), and load cell values were compared to eliminate the
infuence of temperature on the EM sensor. H did not
change signifcantly as the tension increased in the full-scale
experiment; therefore, it was found to be afected only by
temperature. M is afected by the tensile stress of the
specimen, according to the theory of the magneto-
mechanical efect [25], and temperature, which changes the
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Load cell

Hydraulic jack
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Figure 10: Installation of EM sensors and load cell. (a) Installation of EM sensor. (b) Prestressing and load cell.
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Figure 11: Measured and extracted features from the magnetic hysteresis curves.
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physical characteristics of the copper coil. Terefore, the
infuence of temperature can be removed for each data point
using the relations between the mentioned values, as shown
in Figure 13.

First, the average resistance of the thermistor measured
in the full-scale test was 1006Ω, and a specifc resistance
value showing the most identical value to it was selected.
Among the 10,954 data points, the 6,719th measurement was

almost similar at 1006.6Ω. Te Hpeak, Mpeak, and load cell
values at this point were used as reference values for the
values at other data points, which were relative to the ref-
erence values.Te relative values were calculated by dividing
the original value of each data point by the value at the
reference point, and the diferences between each value and
the reference values were derived as follows:

∆ Hrel,peak, Mrel,peak, Lrel (t) � Hrel,peak, Mrel,peak, Lrel (t) − 1,

∆Hrel,peak(t)

∆Mrel,peak(t)

∆Lrel(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

Hrel,peak(t) − 1

Mrel,peak(t) − 1

Lrel(t) − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

Hcompensated � 1 − ∆Hrel,peak(t)  × H
T
orig

Mcompensated � 1 − ∆Mrel,peak(t) − ∆Lrel(t)   × M
T
orig(t),

(7)

where Hrel,peak, Mrel,peak, and Lrel represent the
relative values of the peak magnetizing feld, peak
magnetization, and load cell, respectively. Horig and Morig
are the original values of the magnetizing feld and
magnetization, respectively, and Hcompensated and
Mcompensated are the temperature-compensated values.
Te results of temperature compensation are shown in
Figure 14.

Using the proposed temperature compensation method,
the efects of temperature on the magnetizing feld (H) and
magnetization (M) of each sensor were removed. Te
fuctuating tendencies of all features were signifcantly
eliminated, leaving only the efects of stress changes in the
temporary steel rods. For permeability, the trends before and

after temperature compensation difer; the value decreases as
the stress increases before compensation, whereas the two
values are proportional after compensation. Because the
trend became consistent with the data obtained during the
full-scale test when the temperature was constant, it was
found that the proposed method of eliminating temperature
efects was efective.

3.5. Tension Prediction by Linear Regression and Extra Trees
(ET). Te full-scale test section confrmed that it is neces-
sary to interpolate the data to derive the relation between the
stress and the four features extracted from the magnetic
hysteresis data. Te number of EM sensor data acquired
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during the monitoring period was 10,954, and the pre-
stressing force change ranges of the temporary steel rods at
sensor 1 and sensor 2 were 58.5 to 60.8 tons and 62.0 to 64.5
tons, respectively, as shown in Figure 12. It was assumed that
each feature changed linearly within the prestressed force-
changing range, and interpolation was performed using all
data. Table 2 shows the equations for the relation between
the features and prestressed force (tons) of sensors 1 and 2

obtained from the LR analysis for the corresponding changes
in the force.

Because the magnetic hysteresis curve contains several
features, it is necessary to consider the changes in all
features in tension prediction using an ML algorithm. To
select an appropriate ML algorithm, 10,954 interpolated
data from the full-scale test were input into all the ML
models provided by PyCaret (v.3.0.0) open library, and the
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Figure 14: Temperature compensation results of extracted features from the magnetic hysteresis curve. (a) Features of the magnetic
hysteresis curve after temperature compensation (sensor 1). (b) Features of the magnetic hysteresis curve after temperature compensation
(sensor 2).

Table 2: Relation between each feature and tension through LR analysis.

Feature Sensor 1 Sensor 2
Area 0.001148 × Areas1 + 18.47 0.001065 × Areas2 + 25.49
Permeability 406.6 × Permeabilitys1 + 3.363 386.3 × Permeabilitys2 + 9.675
Coercivity 0.9631 × Coercivitys1 − 106.2 2.564 × Coercivitys2 − 380.2
Retentivity 1.951 × Retentivitys1 + 13.54 1.904 × Retentivitys2 + 18.98

Table 3: Cross-validation and test results using full-scale datasets and derived hyperparameters.

Category Extra trees (ET) Random forest (RF) Gradient boosting
regression (GBR)

MAE (ton) R2 MAE (ton) R2 MAE (ton) R2

Sensor 1 Validation 0.0026 0.9921 0.0043 0.9793 0.0094 0.9838
Test 0.0006 0.9992 0.0028 0.9867 0.0105 0.9570

Sensor 2 Validation 0.0025 0.9844 0.0032 0.9772 0.0085 0.9825
Test 0.0065 0.9373 0.0089 0.8908 0.0123 0.9371

Tuned hyperparameter

Max_features: 1.0,
min_samples_leaf: 1,
min_samples_split: 2,
n_estimators: 100

Bootstrap: true,
max_features: 1.0,

min_samples_leaf: 1,
min_samples_split: 2,
n_estimators: 100

Max_features: 1.0,
min_impurity decreases:
1e− 09, min_samples_leaf:
1, min_samples_split: 10,

n_estimators: 300
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MAE was compared and sorted as an evaluation metric. As
a result of the comparison, decision-tree-based ML models
such as ET, RF, and GBR were derived as the top three
models. Te performance of other models was found to be
relatively worse in validation and test results than the
aforementioned three models (i.e., in the case of CatBoost,
the MAE was 0.0422 tons for sensor 1 and 0.0440 tons for
sensor 2; for Ridge, the MAE was 0.0585 tons for sensor 1
and 0.0601 tons for sensor 2) while maintaining the same

performance ranking regardless of training with a single
feature or all features. Te performances with tuned
hyperparameters of the three models are shown in Table 3.
Te derived hyperparameters were the same for the two
sensors, and the performance did not improve despite
further hyperparameter tuning using the Bayesian search
algorithm in all the three models. More specifcally, in the
optimization results using the RF, despite the trial to
construct a robust model resistant to overftting by
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Figure 17: Prediction results by LR and ET using permeability.
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considering randomness through bootstrapping, the per-
formance was not superior compared to the ET model.
Furthermore, in the results of GBR, despite considering the
greater complexity of the model by setting a lower
threshold for impurity decrease and increasing the number
of decision trees, the performance did not improve.
Terefore, it can be inferred that the tension and features
from EM sensor data do not form a complex relationship
that is close to linear, as confrmed in the previous full-
scale test.

As a result of cross-validation and testing, the ET was
selected as the model for tension prediction because it had
the lowest MAE with the highest R2 among the three
models. Te results of the tension prediction during the
monitoring period before and after temperature com-
pensation were compared using the area of the hysteresis
curve as an example of input for both LR and the ET in
Figures 15 and 16.

Te MAE for each algorithm was within 3 tons, and it
decreased by 87.73% after temperature compensation. In
both results, R2 was negative before the compensation,
which means that the used data are hard to be used for the
prediction. However, the R2 was converted into a positive
number after compensation, showing that the area of the
hysteresis curve became related to the tension. In addition,
Table 4 presents a numerical comparison of the performance
of LR and ET when all individual features were included as
inputs to the prediction model.

Te optimal feature was the retentivity, which exhibited
the lowest MAE with the highest R2 for both sensors.
However, the prediction performances of both models
changed in the order of permeability, area, retentivity, and
coercivity. Moreover, the LR prediction results exhibited
a better R2 than ET for most cases. However, in the case of
coercivity, the R2 was negative even after temperature
compensation. As shown in the theoretical background of
the magnetic hysteresis and by the analysis of the full-scale
test results, the coercivity is directly related to the magne-
tizing feld afected by temperature and most of the change
was canceled during the temperature compensation. Tus, it
was found that the coercivity cannot be utilized for the
tension prediction in both LR and ET algorithm as it may
deteriorate the prediction result.Te prediction results using
the LR and the ET algorithm are shown in Figure 17 when
permeability was input to both models, as it showed the best
results among all features.

Meanwhile, it is possible to create a prediction model
that refects various data characteristics using ML, and it is
necessary to attempt tension prediction by using several
features simultaneously in the magnetic hysteresis curve.
Te applicability of hysteresis curve features to tension
prediction could be examined by comparing the diferences
in results between the case using all the features of the
hysteresis curve and the case using three features, except for
the coercivity, which had poor relevance to the tension.
Figure 18 shows the comparison results.

When the tension was predicted using each feature in
ML, the error in the case of coercivity was higher than that in
other cases; in particular, R2 was a negative number, showing

almost no relevance to tension. When all features were
inputted into the ETmodel, the error increased compared to
a few cases using only one feature for prediction in Table 4.
However, MAE was lower, and R2 was higher when co-
ercivity was excluded as the input for the ET model.
Terefore, a robust model can be developed for tension
prediction if training and prediction are performed after
excluding the feature that shows undesirable performances
in the magnetic hysteresis curve.

4. Conclusion

Tis paper proposed a temperature compensation
method for EM sensor data. Furthermore, it analyzed the
feld applicability of the tension prediction algorithm by
comparing LR and ML algorithms during long-term
monitoring. EM sensors for measuring the magnetic
hysteresis of temporary steel rods were embedded inside
the pier table of the Jusangcheon Bridge, a bridge under
construction in Buan-gun, Jeollabuk-do, South Korea,
using FCM.

For feld applications, the necessity of removing
temperature efects in data postprocessing during long-
term monitoring has been highlighted. Terefore,
a compensation method for the efects of temperature on
sensor signals was proposed by conducting full-scale and
feld tests. Temperature compensation was successfully
performed by isolating only the diferences in the signals
caused by tension in the temporary steel rods, showing
that the estimated errors were approximately six times
larger than those without temperature compensation.
Subsequently, the tensions of the temporary steel rods
were predicted after selecting the appropriate algorithms
by adopting PyCaret open library: LR as a simple data
ftting method and ET as an ML method. Te results of
both algorithms were compared using the evaluation
metrics MAE and R2. Te results showed that the pre-
diction capability of LR surpassed that of ML. However, as
the coercivity that showed a negative R2 was found to be
sufciently not relevant to the tension, the prediction,
except for the coercivity, needed to be performed. As
a result, it was observed that the prediction accuracy of
ML improved as much as that of LR.

Te results of the feld application showed that the
embedded EM sensor has good durability as it can
withstand harsh conditions where the temperature fuc-
tuates daily. However, for long-term monitoring, the
prediction results indicated that the tension could not be
estimated correctly unless the signal was compensated
according to the variation in temperature. Prediction
without temperature compensation even could reverse the
trend of feature such as permeability, which shows the
highest correlation with tension. Additionally, the re-
lation between the tension and each feature of the mag-
netic hysteresis curve is fairly linear, indicating that LR
performs better in prediction than the ML model.
However, it was revealed that when using selective fea-
tures for training and prediction, tension is capable of
deriving results comparable to those of LR.
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