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Te analysis of elastic wave propagation in cracked structures is very useful in the crack detection by the ultrasonic guided wave
method. Tis study presents an accurate spectral element modeling method for cracked slender structural members by using
refned waveguide models and a more realistic crack model. Firstly, a spatial spectral beam element model is established for
uncracked slender structural member based on the Love rod theory, the modifed Timoshenko beam theory, and the Saint-
Venant’s torsion theory. Ten, the complete local additional fexibility matrix for crack in the structural member with rectangular
cross section is derived from the theory of elastic fracture mechanics, and a two-node condensed spectral element model
considering the stifness coupling efect caused by the crack is established for cracked slender structural member. Te wave
response in cracked structures is solved by the numerical inverse Laplace transformation method. A thorough comparison of the
wave responses in cracked structural member evaluated by the presented spectral element model and the 3D solid fnite element
model is given in the numerical example, which verifes the accuracy and high efciency of the presented method.

1. Introduction

Transverse cracks often occur in structural members during
the service of structures, which poses a threat to the safety of
the structures. Efcient and accurate detection of cracks in
structures is an important task in the feld of structural
health monitoring [1, 2]. Te appearance of cracks leads to
changes in the local stifness of the structure, thus changing
the overall dynamic characteristics of the structure. Tere-
fore, many researchers have proposed various methods to
detect structural crack damage based on modal parameters
and vibration responses [3–5]. However, these methods also
have some shortcomings; for example, modal parameters are
insensitive to local minor damage of structure, and struc-
tural vibration response is easily disturbed by low frequency
environmental vibration, etc. [6, 7]. In recent years, the
nondestructive detection method of structures based on
ultrasonic guided waves has attracted much attention due to
its remarkable advantages [8–13].

In the past few decades, many researchers have studied
the modeling and analysis of cracked structures. When

cracks occur in a structural member, additional local fex-
ibility will be generated in the member. Papadopoulos and
Dimarogonas [14] proposed a method for calculating the
local fexibility matrix of cracked beams based on the laws of
fracture mechanics and pointed out that the local fexibility
matrix contains nonzero nondiagonal elements which yields
the coupling of axial vibration and bending vibration of the
beams. Zheng and Kessissoglou [15] used an “overall ad-
ditional fexibility matrix” instead of the “local additional
fexibility matrix” in the derivation of the stifness matrix of
a cracked beam element by the fnite element method (FEM)
and analyzed the free vibration of cracked beams. Muscolino
and Santoro [16] used FEM to analyze the dynamic response
of beams with multiple cracks under deterministic and
random loads. Mousavi et al. [17] proposed a damage
identifcation method for beam structures by quaternion
analysis of beam multitype vibration data and modeling the
crack as a zero-length spring located between two standard
beam elements, with rotational and translational stifnesses.
Te above-given studies are all aimed at the low frequency
vibration of the cracked structures. For simulation of high
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frequency wave propagation in structures, such as the ul-
trasonic guided wave, the traditional FEM has encountered
some problems such as numerical dispersion error and
prohibitive computational cost [18].

Te spectral element method (SEM) combines the
complex geometric adaptability of the FEM and the rapid
convergence characteristic of the spectral method, is an
efective method for wave propagation analysis of structures
[19–22]. Te conventional SEM based on the fast Fourier
transform (FFT) can obtain accurate result in the frequency
domain, but it is easy to have aliasing or leakage errors in the
time domain solution because the use of inverse FFT. To
avoid these errors, the conventional SEM uses artifcial
damping or throw-of element [19, 20]. Several other ap-
proaches have also been proposed, such as the SEM based on
the Laplace transform [21], the Wavelet based spectral fnite
element method [22], and the imaginary spectral element
method [23].

In the areas of wave propagation analysis in cracked
slender structures, Palacz and Krawczuk [24] modeled the
crack as a massless axial spring and used the SEM to study
the propagation of longitudinal waves in cracked rod.
Lucena and Dos Santos [25] used the SEM and time reversal
method to detect and locate the damage of cracked rod by
modeling the crack as an axial spring. Krawczuk et al. [26]
studied the propagation of fexural wave in a cracked
Timoshenko beam with rectangular cross section by mod-
eling the crack as a dimensionless and massless spring with
bending and shear fexibilities. Xu et al. [27] established the
SEMmodel of Euler–Bernoulli beam with multiple cracks by
modeling the crack as a massless spring with bending
fexibility. Izadifard et al. [28] modelled the crack as massless
rotational and translational springs and established the
dynamic model of cracked frame structure by the SEM.
Ritdumrongkul and Fujino [29] established a cracked
Timoshenko beam spectral element model in which the
crack was modelled by shifting the neutral axis of the beam.
Although the SEM has been used in wave propagation
analysis of cracked structures in the above-given studies,
there are still two critical issues need to be further studied.
Te frst one is that the structural members were all modeled
by simplifed waveguide models (such as the elementary rod
model and the classical Euler–Bernoulli beam or Timo-
shenko beam model) and the stifness coupling efect caused
by the crack was neglected in the previous studies, which
inevitably lead to errors in the simulation results, especially
for simulation of high frequency wave such as the ultrasonic
guided wave. Te second one is that a thorough comparison
between the wave responses obtained by the spectral element
models and those obtained by experiments or 3D solid FEM
models was lacked in the previous studies.

In this study, an accurate spectral element modeling
method was presented for cracked structural members based
on refned waveguide theory and considering the stifness
coupling efect caused by the crack; furthermore, a thorough
comparison between the wave response obtained by the
spectral element model and the 3D solid fnite element
model was made. In Section 2, the spectral element model

was established based on the Love rod theory, the modifed
Timoshenko beam theory, and the Saint-Venant’s torsion
theory, frstly. Ten, the local fexibility matrix caused by the
crack was derived from the strain energy release rete. A two-
node condensed spectral element model for the cracked
structural member was established and the wave response of
the cracked structure was solved by numerical inverse
Laplace transformation method. In Section 3, numerical
example was given to verify the correctness of the presented
modeling method and analyze the propagation behavior of
ultrasonic guided wave in cracked structural members. In
Section 4, conclusions are given.

2. Theoretical Modeling

As shown in Figure 1, a straight structural member with an
open crack is considered in this study. Te length of the
member is l, and the distances between the crack and the two
ends of the member are la and lb, respectively. Te dynamic
model of this cracked member is established by the spectral
element method, in which the left and right sides of the crack
are modelled as a spatial beam element, respectively, and the
crack is modeled as a massless elastic connection element.

2.1. Spectral Element Model of the Uncracked Structural
Member. Te classical continuum mechanics models such
as the elementary rod model and the Euler–Bernoulli beam
model are proved to be suitable for analyzing most of static
and vibration problems of slender structures [13, 30].
However, these elementary models may encounter problems
in some special engineering felds, such as micro- and
nanostructures [31, 32], lattice structures [33], and high-
frequency wave propagation analysis [34]. To overcome
these problems, some refned models or higher-order
models are usually resorted.

For analyzing the propagation of longitudinal wave in
a slender structural member, the elementary rod model was
often used in previous studies, which gives the following
wave equation:
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z
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2 − ρA

z
2
u

zt
2 � 0, (1)

where E and ρ are the Young’s modulus and density of the
material, A is the area of the cross section. However, the
elementary rod theory ignores the lateral expansion and
contraction of the cross section of structural member caused
by the Poisson’s ratio efect, which will bring error in
simulating the propagation of longitudinal wave in struc-
tural member. Alternatively, the Love rod theory considers
the above-given Poisson’s ratio efect by calculating addi-
tional kinetic energy due to lateral motion, and the wave
equation takes the following form [19, 34]:
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where v is Poisson’s ratio, J is the polar moment of inertia of
the cross section of the member.
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According to equation (2) and using the spectral element
method based on Laplace transformation [21], the equation
of longitudinal wave motion of the structural member can be
written as

Sl(s)ul(s) � Fl(s), (3)

where ul(s) � ui, uj 
T
and Fl(s) � Fxi,

Fxj 
T
are the nodal

displacement vector and nodal load vector for longitudinal
motion of the member after Laplace transformation, re-
spectively, the variables with overhead symbol “^” denotes
the Laplace transform of the corresponding variables in the
time domain, the subscripts i an j are the number of the
nodes of the spectral element

Sl(s) �
EA

l

kxl cot kxl(  −kxl csc kxl( 

−kxl csc kxl(  kxl cot kxl( 

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, (4)
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kx � is
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, (5)

the complex variable s � σ + iω is the Laplace transform
parameter, σ is a positive real constant, ω is the circular
frequency, i �

���
−1

√
is the imaginary unit.

For analysis of the propagation of high frequency fex-
ural wave in the structural member, the Timoshenko beam
model is usually adopted. However, the classical Timo-
shenko beam model also has some diferences with the
behavior of wave propagation in real structure, the modifed
Timoshenko beam model is used here. Taking the transverse
motion around the y-axis as an example,
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where Iy is the area moment of inertia of the cross section
around the y-axis, G is the shear modulus, w, and θy are the
transverse displacement and rotation of the cross section,

respectively; K1 and K2 are the correction coefcients. Te
choose of the correction coefcients has diferent criterions,
a suggested selection method for the correction coefcients
is [19]

K1 �
0.87 + 1.12v

1 + v
 

2
,

K2 �
12K1

π2 ,

(8)

which matches the cut-of frequency of the modifed Tim-
oshenko beam model with that of the Lamb mode. Te
correction coefcients can be adjusted to give the best
correspondence with the experimental results in the con-
sidered frequency range [6], so the following expressions are
used here instead of equation (8):

K1 � η1
0.87 + 1.12v

1 + v
 

2
,

K2 �
12K1

π2
,

(9)

where η1 is an adjustment coefcient.
According to equations (6) and (7) and using the spectral

element method based on Laplace transformation, the
equation of transverse wave motion of the structural
member can be written as

Sby(s)uby(s) � Fby(s), (10)

where uby(s) � wi,
θyi, wj,

θyj 
T

and Fby(s) � Fzi,
Myi,

Fzj,
Myj}

T are the nodal displacement vector and nodal load
vector for transverse motion of the member after Laplace
transformation, respectively,
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Figure 1: Spectral element model of the cracked structural member.

Structural Control and Health Monitoring 3



F1y � −i
rtyrey

∆y

e
2
ty − 1  e

2
ey + 1 rty − e

2
ty + 1  e

2
ey − 1 rey  ktyrty − keyrey 

F2y �
−rtyrey

∆y

e
2
ty − 1  e

2
ey − 1  ktyrey + keyrty  − e

2
ty + 1  e

2
ey + 1  − 4etyeey  ktyrty + keyrey  

F3y � 2i
rtyrey

∆y

e
2
ty − 1 eeyrty − e

2
ey − 1 etyrey  −ktyrty + keyrey 

F4y � −2
rtyrey

∆y

ety − eey  1 − etyeey  −ktyrty + keyrey 

F5y � −i
ktyrty − keyrey 

∆y

− e
2
ty + 1  e

2
ey − 1 rty + e

2
ty − 1  e

2
ey + 1 rey 

F6y � −2i
ktyrty − keyrey 

∆y

e
2
ey − 1 etyrty − e

2
ty − 1 eeyrey 

∆y � 2rtyrey e
2
ty + 1  e

2
ey + 1  − 4etyeey  − r

2
ty + r

2
ey  e

2
ty − 1  e

2
ey − 1 

ety � e
− iktyL

, eey � e
− ikeyL

rty � kty
− 1

k
2
ty + s

2ρA/K1GA , rey � key
− 1

k
2
ey + s

2ρA/K1GA 

kty �
1
�
2

√

����������������������������������������������

−
K2ρIy

EIy

+
ρA

K1GA
 s

2
+

�������������������������

K2ρIy

EIy

−
ρA

K1GA
 

2

s
4

− 4
ρIy

EIy

s
2








key �
1
�
2

√

����������������������������������������������

−
K2ρIy

EIy

+
ρA

K1GA
 s

2
−

�������������������������

K2ρIy

EIy

−
ρA

K1GA
 

2

s
4

− 4
ρIy

EIy

s
2








(12)

For analyzing the propagation of torsional wave in the
structural member, the Saint-Venant’s torsion theory [35] is
adopted to consider the warping of the member with
noncircular cross section, and the wave equation is

St

z
2θx

zx
2 − ρJ

z
2θx

zt
2 � 0, (13)

where St is the torsional stifness of the member, which can
be evaluated as follows [35]:
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where ψ is the warping function.
Based on equation (13), the equation of torsional motion

of the structural member can be obtained as

St(s)ut(s) � Ft(s), (15)

where ut(s) � θxi,
θxj 

T
and Ft(s) � Mxi,

Mxj 
T
are the

nodal displacement vector and nodal load vector for tor-
sional wave motion of the member after Laplace trans-
formation, respectively,
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(16)

Combining the spectral element equations describing
the longitudinal wave motion, the transverse wave motion
and the torsional wave motion of the structural member, the
equations of motion of the spatial spectral beam element
model of the structural member can be written as

SB(s)uB(s) � FB(s), (17)

where
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uB(s) � ui, vi, wi,
θxi,

θyi,
θzi, uj, vj, wj,

θxj,
θyj,

θzj 
T
,

FB(s) � Fxi, Fyi, Fzi, Mxi, Myi, Mzi, Fxj, Fyj, Fzj, Mxj, Myj, Mzj
T
.

(18)

In order to consider the efect of damping in the sim-
ulation of the high-frequency wave propagation in the
structural members, the complex modulus method is often
used [36–38]. Te exact complex modulus of material is
a function of the vibration frequency [39, 40].

E
∗
(ω) � E(ω)[1 + η(ω)], (19)

where E(ω) and η(ω) are frequency-dependent Young’s
modulus and loss factor, respectively. Tere are diferent
models for expressing E(ω) and η(ω) with frequency ω;
however, the coefcients in the formulas of these models for
diferent materials need to be determined throughout ex-
perimental testing. In simulation study, an approximation
method was often used which adopts constant Young’s
modulus and loss factor instead of the frequency-dependent
ones [37, 38].

2.2. Spectral Element Model of the Crack. Te calculation of
the additional fexibility caused by the crack in structural
member is related to the section type of the member. Taking

themember with rectangular cross section shown in Figure 2
as an example, the height and width of the cross section are
b and h, respectively, the depth of the crack is a. By using the
theory of fracture mechanics and calculating the additional
strain energy produced by the crack, the additional fexibility
coefcient at the crack position can be obtained.

According to the theory of elastic fracturemechanics, the
strain energy release rate for the crack is as follows [3, 14]:
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(20)

where E′ � E/(1 − v2), m � 1/(1 − v), the subscript I, II, and
III represent three basic modes of fracture, namely, the
opening mode, the sliding mode, and the tearing mode [41];
the stress intensity factors corresponding to the three modes
are as follows [3]:
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with the correction functions [14, 15],

F1(ξ) �

��������������
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πξ
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, (25)

where P1,..., P6 are the internal forces of the structural
member, whose defnitions are shown in Figure 2(a), βy and
βz are shear shape coefcients of the cross section, ϕy and ϕz

are functions describing the stress distribution during tor-
sion of the cross section, ξ � ξ/h.

Te additional fexibility coefcients caused by the crack
can be evaluated from the strain energy release rate as

Cij �
z
2
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0
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Substituting equation (20) into (26) yields
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where a � a/h, η � η/b. Substituting equations (22)–(25)
into equations (27)–(33), the local fexibility coefcients can
be evaluated by numerical integration method.

Ten, the local additional fexibility matrix caused by
the crack can be written as
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CC �

C11 0 0 0 C15 C16

C22 0 C24 0 0

C33 C34 0 0

C44 0 0

sym C55 C56

C66

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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. (34)

Note that, diferent from the additional fexibility matrix
in Reference [3] which omitted the coefcients C22, C33, C24,
and C34 considering the length of the member is very large
compared to its transverse dimensions, here a complete
additional fexibility matrix is derived.

Using the local additional fexibility matrix CC, the
stifness matrix of the elastic connection element for the
crack can be evaluated as

SC � TC−1
C TT

, (35)

where

T �
−I

I
 . (36)

I is a 6 × 6 identity matrix.

2.3. SpectralElementModel of theCrackedStructuralMember.
Assembling the spatial beam elements and the elastic con-
nection element as shown in Figure 1, the equation of
motion of the four-node spectral element model for the
cracked structural member can be obtained as

SM(s)uM(s) � FM(s). (37)

Assuming the internal nodes m and n are not subjected
to driving forces, equation (37) can be rewritten as the
following block matrix form

SM11 SM12

SM21 SM22
 

uM1

uM2
  �

FM1

 
 , (38)

where uM1 is composed of the displacement vectors of nodes
i and j, uM2 is composed of the displacement vectors of nodes
m and n, SM11, SM12, SM21, and SM22 are submatrices of the
matrix SM.

Using the dynamic condensation method [42], a two-
node condensed spectral element model can be obtained for
the cracked structural member with the dynamic stifness
matrix

S∗M � SM11 − SM12S
−1
M22SM21. (39)

2.4. Calculation of the Wave Response. For structure com-
posed of multiple structural members, the spectral element
equation of the structure can be obtained by assembling the
spectral element matrix of each member obtained in
equation (39)

S(s)u(s) � F(s), (40)

where S is the spectral element matrix of the whole structure,
u and F are the nodal displacement vector and nodal load
vector of the whole structure after Laplace transformation,
respectively. Ten, the boundary conditions of the structure
can be implemented on equation (40) by the approaches as
used in conventional FEM method [43].

For structural damage detection using the ultrasonic
guided wave method, the sinusoidal wave signal tuned by
Hanning window is usually selected as the narrow-band
impulse excitation signal [44, 45] which can be expressed as

F(t) � F0 He(t − τ) − He t − τ −
n

f
  

· 1 − cos
2πf

n
t  sin(2πft),

(41)

where He(t) is the step function, n is the number of peaks, f is
the central frequency, and τ is the time constant for
adjusting the position of the pulse signal.

Te Laplace transformation of equation (41) can be
obtained by using the mathematic software such as Maple,
taking n� 5 as an example, its Laplace transformation is

x

y

z

O

l
la lb

P1

P3

P2

P4
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P6
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(a)

o
b

η

h
a
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(b)

Figure 2: Te cracked structural member with rectangular cross section. (a) Te cracked structural member, (b) local coordinate system of
the cross section at the crack position.
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F(s) � F0 e
(− sτ− 5s)/f

− e
− sτ

 
A

B
, (42)

where

A � 5 4π2f2
+ s

2
 (8 cos(1.6πfτ)πf + 5 sin(1.6πfτ)s) − 2 64π2f2

+ 25s
2

 

· (2 cos(2πfτ)πf + sin(2πfτ)s)] · 144π2f2
+ 25s

2
 

+ 5[12 cos(2.4πfτ)πf + 5 sin(2.4πfτ)s] · 4π2f2
+ s

2
  64π2f2

+ 25s
2

 ,

B � 2 144π2f2
+ 25s

2
  4π2f2

+ s
2

  64π2
f
2

+ 25s
2

 .

(43)

From equation (40), the wave response of the structure
in Laplace domain can be evaluated.Ten, the wave response
in time domain can be obtained by using the inverse Laplace
transformation. Taking the axial displacement uj of node j as
an example,

uj(t) �
1
2πi


σ+i∞

σ−i∞
uj(s)e

stds, (44)

where uj(s) is the axial displacement response of node j in
Laplace domain.

Considering that uj(s) calculated by SEM is a group of
discrete data, equation (44) can be carried out by the numerical
inverse Laplace transformation (NILT) method. Specifcally,
the NILT algorithm proposed in [46] can be used.

3. Numerical Examples

Consider a steel structural member with rectangular cross
section, the length of the member is L� 0.4m, the width and
height of its cross section are b� h� 10mm. Te elastic
modulus, density and Poisson’s ratio of the material are
E� 210GPa, ρ� 7860 kg/m3, and ]� 0.3, respectively. As-
suming that the center of the crack is 0.2m away from the
left end of the structural member.

In this study, the parameters of the excitation signal in
equation (41) are set as F0 �1000N, f0 �100 kHz, n� 5 and
τ � 0. Te time history and frequency spectrum of this ex-
citation signal are shown in Figure 3.

In order to verify the calculation results of the presented
spectral element model, the 3D fnite element model of
structural member was established by ANSYS software. Te
FEM model was meshed with Solid185 element. For accu-
rately simulating the propagation of ultrasonic guided waves
in the structure, the element size must be very small. In this
example the element size in the axil direction of the member
is taken as 0.4mm, and the element size in the height and
width directions of the cross section is taken as 1mm. Te
FEM model of the structural member with crack depth
a= 0.5h= 5mm is shown in Figure 4, this model has 120912
nodes and 99800 elements. Considering the central fre-
quency of the excitation signal and the computational cost,
after a trial calculation with diferent time steps
(∆t= 1× 10−6 s, 1× 10−7 s and 1× 10−8 s), the time step used
in the simulation of ANSYS model is selected as 1× 10−7 s.

Firstly, the accuracy of the presented modeling method
for uncracked structural member will be checked. Consid-
ering the member is clamped at the left end and free at the
right end, the impulse excitation is applied as an area load on
the right end face of the member along the axial direction,
and the propagation of longitudinal wave in the member is
investigated. Figure 5 shows the axial displacement response
of the node at the center of the right end face of the member.
As can be seen from Figure 5, for the propagation of lon-
gitudinal waves in the cantilevered uncracked structural
member, the displacement response can be accurately ob-
tained by using the SEM model based on the Love rod
theory, while the result of the SEM model based on the
elementary rod theory has an obvious error on the arriving
time and wave form of the refected waves.

To investigate the propagation of fexural wave in the
uncracked member, the impulse excitation is applied as
a line load on the edge of the right end face of the member
along the vertical direction. Figure 6 shows the transverse
displacement response of the node at the center of the right
end cross section of the member. It can be seen that for the
propagation of high-frequency fexural wave in the canti-
levered uncracked structural member, the wave response can
be accurately obtained by using the SEMmodel based on the
modifed Timoshenko beam theory (the adjustment co-
efcient η1 in equation (9) is selected as 1.05 after a trial
calculation), while the result of the SEM model based on the
classical Timoshenko beam theory has an obvious error on
the arriving time of the refected wave.

Next, the accuracy of the presentedmodeling method for
the cantilevered cracked member will be verifed. Te crack
depth is assumed as a� 0.5h, and the impulse excitation is
applied at the freed end along the axial direction. Figure 7
shows the axial and transverse displacements of the node at
the center of the free end of the cracked member under the
axial impulse excitation. It can be found that due to the
stifness coupling efect caused by the crack, the fexural
wave is generated when the longitudinal wave reaches the
crack, and the transverse displacement caused by the fexural
wave has the same order of magnitude with the axial dis-
placement caused by the longitudinal wave. Comparing the
calculation results of the SEM model and the ANSYS FEM
model, it can be found that the results of the presented SEM
model considering the stifness coupling efect caused by the
crack are in good agreement with the results of FEM model,
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but if the stifness coupling efect is neglected in the SEM
model, the transverse displacement cannot be obtained from
the SEM model, and the axial displacement obtained by the
SEM model also has an obvious error. Te above-given
results indicate that the stifness coupling efect caused by
the crack should not be neglected in the wave propagation
analysis of the cracked structures. Besides, the fexural wave
response caused by the stifness coupling is very useful in the
crack identifcation [41].

In order to verify the accuracy of the presented modeling
method for cracked member with various crack depth,
another two crack depths are simulated, i.e.,
a� 0.25h� 2.5mm (for a shallow crack) and
a� 0.75h� 7.5mm (for a deep crack). Figures 8 and 9 show
the axial and transverse displacements of the node at the
center of the free end of the cantilevered cracked member
under the axial impulse excitation. It can be found that the
presented method also gives accurate results for the struc-
tural member with both shallow and deep cracks.

Te infuence of crack width on the accuracy of the
modeling method is investigated next. Four cases of crack
widths are considered, i.e., 1mm, 2mm, 4mm, and 8mm,

while the crack depth is a= 0.5h= 5mm for all four cases.
Since the fexibility coefcients of the crack evaluated by the
strain energy release rate is independent of crack width, the
wave responses evaluated by the presented SEM model for
diferent crack width have no diferences. In order to check
the infuence of crack width on the wave responses, the axial
displacements at the free end of the cantilevered cracked
member under the axial impulse excitation applied at its free
end were evaluated by ANSYS model, which are shown in
Figure 10. It can be found that the wave responses of these
four cases have very slightly diferences, which mean that the
wave response is very insensitive to the crack width and the
presented modeling method can be used for simulation of
cracked structural member with diferent crack widths.

Furthermore, in order to check the applicability of the
presented modeling method for cracked members with
various boundary conditions, the crackedmember with free-
free boundary condition is considered here. Te depth of the
crack is assumed as a� h/2, and the impulse excitation is
applied to one end face of the member along the axial di-
rection. Figure 11 shows the axial and transverse displace-
ment responses of the node at the center of the end face of
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Figure 4: ANSYS model of the cracked member with crack depth a� 0.5h. (a) Geometrical model, (b) local part of the FEM model.
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the cracked member under the impulse excitation. It can be
seen that for the propagation analysis of ultrasonic guided
waves in free-free cracked member, the calculation results of
the presented SEM model are also in good agreement with
the results of FEM model.

From the above-given comparisons between the pre-
sented SEM model and the 3D solid FEM model, it can be
found that the presented SEM model can obtain accurate
wave responses in simulation of cracked slender structures.

Te vast advantage of the SEM model is its extremely high
computational efciency. Te SEM model in this example
only uses one element, while the solid FEM model uses
99800 elements. Te run of the MATLAB program of the
SEMmodel and the analysis of the ANSYS solid FEMmodel
was performed in a same computer (with AMD Ryzen
5 4600H processor, 16GB RAM), the computational time of
the SEM model is about 10 s, while the ANSYS solid FEM
model needs about 10 hours.
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Figure 5: Calculation results of longitudinal wave propagation in the cantilevered uncracked member. (a) Te result of elementary rod
model, (b) the result of love rod model.
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4. Conclusions

An accurate modeling method for simulating wave propa-
gation in cracked structural members was presented in this
paper based on the spectral element method, and the
propagation of ultrasonic guided wave in cracked structural
member was analyzed by this model. By comparing the
results of the spectral element model and the ANSYS 3D
solid fnite element model, it was found that the spectral
element model based on the elementary rod theory and the
classical Timoshenko beam theory has inevitable error in
simulating the propagation of high-frequency elastic wave in
structural member, while the spectral element model based
on the Love rod theory and the modifed Timoshenko beam
theory can obtain more accurate results. Te narrow-band
impulse excitation applied in the axial direction of the
structural member produces both of longitudinal wave and
fexural wave in the structural member, and the transverse
displacement caused by the fexural wave has the same order
of magnitude with the axial displacement caused by the
longitudinal wave.Te crack depth has a signifcant efect on
the wave response, while the crack width has negligible efect
on the wave response. For simulating the propagation of
ultrasonic guided wave in cracked structural members, the
local stifness coupling efect caused by cracks should be
considered; otherwise, the calculation results will be
inaccurate.
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