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A stacked ensemble learning model is developed to predict the modal parameters of space grid steel structures under envi-
ronmental efects. Potential damage is detected via statistical analysis of the prediction residuals. For this purpose, fve standalone
heterogeneous machine learning models were trained for predicting natural frequencies; each model used the principal com-
ponents of the environmental data as input parameters. Next, a stacked ensemble learner was built using the outputs of the fve
standalone models as its inputs. Finally, a damage indicator combining the predicted residuals of multiple orders of natural
frequencies is proposed and statistically analyzed for accurate damage detection. To verify the efectiveness of the proposed
method, a space grid model was created in the feld environment and measured for a period. Dynamic and environmental data
were collected, such as ambient temperature, humidity, wind speed and direction, and structural surface temperature. An
automated procedure of the covariance-driven stochastic subspace identifcation method was conducted to identify bulk mode.
Te environmental dependence of the natural frequencies, damping ratios, and vibration modes was analyzed. Ten, the method
was validated based on short-termmonitoring data from the baseline health state and unknown future states.Te results show that
the natural frequencies and damping ratios of space grid structures fuctuate signifcantly on a daily basis due to environmental
infuences. Stacked ensemble learning utilizes predictions from multiple heterogeneous models to produce a better predictive
model. Te statistical analysis of the prediction residuals by ensemble learning efectively removes the environmental infuences,
allowing for timely structural damage detection.

1. Introduction

Space grid steel structures (e.g., lattice grids and lattice
shells) are often used in large public buildings, such as
airports, train stations, and stadiums. Tese buildings have
extremely high signifcance, and severe damage to people
and property can occur in the event of a collapse. Structural
health monitoring (SHM) efectively ensures the safety of
these structures by analyzing the dynamic and static
structural responses of sensors. In recent years, with the

development of artifcial intelligence technology, especially
the advancement of machine learning methods [1], a variety
of SHM systems have been successfully used to secure these
types of on-site structures [2–4].

Vibration-based diagnostic analysis [5, 6] is a valuable
tool to efectively identify and locate structural damage. By
conducting a modal analysis of the dynamic data, param-
eters such as the frequencies and mode shapes of the
structure can be obtained. Te theoretical relationship be-
tween these modal parameters and structural properties
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(e.g., structural stifness and mass) is apparent; therefore,
changes in the modal parameters indicate structural
changes. Moreover, the analysis of numerous SHM datasets
from various sites shows that modal parameters, such as
frequencies, are related not only to the structural domain
itself but also to outside factors [7]. For example, variations
in loads resulting from the operation of human beings, such
as heap load and trafc load. In addition, more periodic and
regular factors, such as temperature, humidity, wind speed,
and other environmental changes will also afect the modal
data changes [8, 9]. Te fuctuation of modal parameters
with environmental changes and operational efects can
signifcantly interfere with the damage diagnosis, resulting
in a false negative or false positive diagnosis [10, 11]. In
recent years, the issues such as correlation between modal
parameters and environmental or operational factors, pre-
diction modal features, quantifcation, and separation of
variability of modal parameters as well as environmental or
operational efects removal techniques have received con-
siderable scholarly attention [7, 12]. Research studies of
correlation analysis, for example, Petters and De Roeck [13]
conducted a long-term systematic monitoring study of the
concrete bridge Z24 in Switzerland and revealed a nonlinear
correlation between the natural frequencies and the surface
temperature. Further comparative analysis showed that
temperature changes would most likely negate the efects of
damage on the structure in most prediction models. Zhou
et al. [14, 15] studied the correlation of natural frequencies
with environmental factors, such as temperature, humidity,
and wind speed, for the Ting Kau Bridge in Hong Kong.
Results showed that natural frequencies were most strongly
correlated with temperature, the frst natural frequency
changing by up to 6.7% within one year; however, the data
tested were more discrete than those in this study due to the
large volume of the structure. Te correlation of modal
parameters with environmental factors is less studied for
space grid steel structures than for bridge structures due to
the higher degree of difculty in testing. Zhang et al. [16]
performed two months of dynamic tests on the Chinese
National Aquatics Center to obtain its modal parameters
(e.g., natural frequencies and damping ratios), which were
analyzed for environmental correlations. Te results in-
dicated that second- and third-order natural frequencies
increase with temperature; this difers from the results
obtained in the Ting Kau Bridge study. However, this re-
lationship between natural frequencies and temperature may
not be universal due to the discrete nature of the data.

Furthermore, based on the correlation analysis, eforts
have been made to predict modal parameters or eliminate
environmental efects in order to correctly identify the
damage of interest. In summary, these methods are divided
into output-only methods and input-output methods
according to whether environmental measurement data are
used or not [7, 12]. Te output-only approach assumes that
the environmental efects are embedded variables in the re-
sponses, and the assessment is performed by only analyzing
the responses when environmental measurements (inputs)
are not available. Among these, frstly, environmental efect
normalization methods have been used, such as linear or

nonlinear principal component analysis [17, 18] and coin-
tegration analysis [19], so as to separate environmental var-
iables. In addition, some feature matching methods have also
been used, such as outlier discrimination [20], supervised
classifcation [21], and unsupervised clustering [22, 23].
Notably, these featurematchingmethods are generally used to
identify structural damage directly, rather than separating
environmental and operational efects from features.

On the other hand, when the environmental measure-
ment data from the SHM system are obtained simulta-
neously, things become easier compared to the output-only
approach because then the input-output regression model
can be developed, which is the focus of this study. Moser and
Moaveni [24] and Moaveni and Behmanesh [25] applied
a series of multiple linear regression (MLR) models to the
prediction of natural frequencies under temperature vari-
ation and established confdence intervals for the diagnosis
of future damage. Te results indicated that the quadratic
polynomial exhibits a better ft than the regressive model
with an exogenous input (ARX). Ni et al. [26] developed
a support vector regression (SVR) model to predict natural
frequencies for long-term data and subsequently combined
SVR with the extraction of temperature principal compo-
nents. Tis led the authors to propose the artifcial neural
network (ANN) method for frequency prediction [15].
Petters and De Roeck [13] predicted the natural frequencies
using an ARX model regression with temperature as an
exogenous input and evaluated the long-term performance
of the Z24 bridge, showing that ARX predicts better than the
simple linear regression. Based on fnite element simulation
data, Jang and Smyth [27] used four models to predict
natural frequencies, MLR, random forest, ANN, and SVR,
respectively. Te results show that ANN and SVR out-
performed the other two models. Although diferent models
have been developed for frequency prediction under tem-
perature variation, several drawbacks, such as overftting
and unstable performance, are usually identifed with each
single model. Tis suggests that no model is universally
applicable because of the algorithm’s preferences and the
variability in monitoring data. Compared to single-class
models, combining multiple estimators has been shown to
be efective in improving generalization errors for classif-
cation and regression tasks [28, 29]. Ensemble learning is
a class of machine learning algorithms, which is a method of
combiningmultiple models into amore accurate and general
model. In recent years, ensemble learning has been applied
to the feld of SHM to further improve the accuracy of
anomalies and damage detection under environmental
changes [10, 30]. To improve the damage localization ac-
curacy under environmental changes, Fallahian et al. [21]
used weight majority voting ensemble learning method to
combine two classifers. However, this supervised learning
approach requires prior knowledge of the damage class
labels, which has limited use in practical damage detection
scenarios. Sarmadi et al. [10] improved the accuracy of
damage detection by combining multiple Mahalanobis
distance metrics in a sequential manner and introducing
nongenerative ensemble learning into an unsupervised
learning model.
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To summarize the above studies, it can be seen that
although the previously mentioned single-classinput-output
based models (e.g., MLR, ANN, SVR, etc.) have application
limitations in terms of modal parameter prediction per-
formance due to their generalization problems, each model
has its unique advantages. Terefore, combining multiple
models through ensemble learning is a good way to solve
generalization problem.Te main contribution of this paper
is to propose amodal parameter predictionmethod based on
ensemble learning, which can combine multiple heteroge-
neous regression estimators with higher accuracy and better
generalization ability, and damage detection based on im-
proved prediction accuracy. Specifcally, the proposed
stacked ensemble prediction method for modal parameters
(natural frequencies) can aggregate the best model under the
efects of the environment to predict modal parameters from
fve standalone basic models including MLR, Gaussian
process regression (GPR), SVR, regression tree (RT), and
ANN. On this basis, the natural frequencies of the future
(unknown) state are predicted, and statistical hypothesis
testing is performed based on the predicted residuals to
accurately detect the damage state of the structure. To verify
the efectiveness and applicability of the proposed method,
the dynamic responses of a grid structure were recorded for
a period. Environmental data, such as temperature and
humidity, were also collected simultaneously. Based on these
monitoring data, stacked ensemble learning (SEL) was used
to predict the natural frequencies, and then damage de-
tection was performed by statistical analysis of the prediction
residuals. Note that the data used for prediction model
building and damage diagnosis were collected over a short
period of time. Te purpose is to avoid the interference of
human operation randomness and uncertainty in the
damage detection method and also to reduce the burden of
data storage. Te proposed method can efectively capture
the changes in dynamic features of such structures, con-
sidering diferent environmental factors such as temperature
and humidity. Tus, it is expected that the presented ap-
proach can further contribute to continuous assessment
under environmental change, providing technical support to
ensure the safe operation of such structures.

2. Methodology

As mentioned earlier, the adoption of stacked ensemble
learning methods for modal parameter prediction can
overcome the problems of overftting and poor general-
ization that exist in traditional standalone model-based
prediction methods. Te proposed method can more ac-
curately establish the input-output mapping between en-
vironmental factors and modal parameters, making more
accurate predictions of modal parameters under environ-
mental changes and enabling timely detection of early-stage
damages to structures. As illustrated in Figure 1, when
modal parameters and environmental data from the SHM
system over a long period of time are acquired simulta-
neously, the proposed method is divided into two stages, i.e.,
modal parameter prediction and damage detection. In the
modal parameter prediction stage, a stacked ensemble

learning model for modal parameter prediction is developed
from the data obtained from the baseline state, which is
usually a known health state. Specifcally, the environmental
factors and modal parameters of the baseline state were
frstly used as both input and output to develop fve
standalone models, including MLR, GPR, SVR, RT, and
ANN, respectively. Additionally, before the training pro-
cesses of the standalone models, the 5-foldcross-validation
method is applied to the baseline state data, among which 4
folds are used to train the model, then the 5th fold of data is
applied for blind testing. Tis process is repeated 5 times
using the same folds to achieve the best training results for
the standalone models. Once the standalone models are
trained, a stacked ensemble learning model can fnally be
built, using the outputs of the fve standalone models as its
inputs and the actual modal parameters as its outputs. Fi-
nally, the performances of various models are compared
using a composite performance index (CPI). In the damage
detection stage, the data of both the baseline state and the
future state (unknown state) are frstly predicted based on
the trained stacked ensemble learning model. Ten, the
prediction residuals of modal parameters of each order are
normalized, and their mean values are calculated. Finally,
the statistical analysis method of hypothesis testing is used to
determine the damage. Details about each stage of the
methodology are in the following sections.

2.1. Modal Parameter Prediction

2.1.1. Principal Profle of the Standalone Methods. In this
section, a concise overview of fve standalone models that
have been implemented in this study, namely, MLR, GPR,
SVR, RT, and ANN. Each of these models here is used to
solve a regression problem for modal parameter (i.e., natural
frequencies) prediction. Tese regressors take environ-
mental factors as inputs and the dynamic modal parameters
of the structure as outputs. However, some of the methods
(i.e., MLR, SVR, and ANN) have already been applied by
researchers to study modal parameter prediction problems
under the infuence of the environment [15, 25, 26]. Limited
by space constraints, only some details of their modeling are
presented in combination with the basic formulas of the
methods, while more discussion on the basic principles of
these three methods and their applications to this problem
can be found in the summary of references [7, 12].

(1) Multiple Linear Regression. As the simplest machine
learning prediction method, linear regression (LR) is widely
used to establish correlations betweenmodal parameters and
environmental efects due to its ease of understanding and
display of model formulations. A linear regression model is
driven by independent predictor variables to predict the
target response variable. Te vector form formula for the
MLR model is

YMLR � Iβ0 + Xβ + Iε, (1)

where YMLR ∈ Rn×1 is the estimation of the response variable
using MLR, that is, the ith modal parameters in this paper, and
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n is the number of samples; X ∈ Rn×p is the predictor variable,
i.e., environmental factors, and p is the number of independent
variables; β ∈ Rp×1 is the coefcient; β0 is the constant term in
the model; ε is the noise term, that is, random error; and
I ∈ Rn×1 is the unit vector. In this study, the inevitable outliers
in the monitoring process have a signifcant impact on the
regression model, so robust regression is used instead of the
traditional least squares-based regression to improve the ro-
bustness, and bisquare weight function was used in the re-
gression. In addition, the robust MLR uses M-estimation to
formulate estimating equations and solves them using the
method of iteratively reweighted least squares [31].

(2) Gaussian Process Regression. In linear regression models,
input and output values are assumed to exhibit linear de-
pendency, and in classical Bayesian regression models,
a probabilistic approach is used to fnd the distribution of
data in the vicinity of the expected value. GPR is a kind of
nonparametric probabilistic model in which any given
subset of the organized data invariably follows a multivariate
Gaussian distribution. In vector form, the GPRmodel can be
denoted as [32]

P(Y|F ,X) ∼ N Y|Hθ + F , σ2I , (2)
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Figure 1: Modal parameter prediction and damage detection process.
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where F � F(X1), F(X2), · · · , F(Xn) 
T, Xj ∈ Rp×1(j � 1, 2,

· · · , n) is the predictor variable vector of the jth sample point,
and F(Xj) ∼ GP[0, k(Xj, Xj

′)], that is F(Xj) are from
a 0 mean Gaussian process (GP) with covariance function
(i.e., kernel function) k(Xj, Xj

′); H � h(XT
1 ),

h(XT
2 ), · · · , h(XT

n )}T, where h(XT
j ) is a set of basic functions

that transform the original feature vector XT
j ∈ R

1×p into
a new feature vector h(XT

j ) ∈ R1×q; and θ ∈ Rq×1 is a vector
of coefcients. It is easy to see that the accuracy of the GPR
model prediction depends heavily on the selection of the
kernel functions and basis functions.

(3) Support Vector Regression. Support vector machine is
a machine learning method that is also known as support
vector regression when applied to determine the nonlinear
relationship between the inputs and outputs. Te geo-
metrical principle of SVR can be conceptualized as ftting the
input data into the higher dimensional feature space by
diferent nonlinear kernel functions, in which the data are
distributed in a sparser form than the original one.Ten, the
largest intervals in the feature space are defned.Te decision
function of SVR can be expressed as [26].

YSVR � FSVR(X, ])

� 
m

i�1
]iK X,Xi(  + b,

(3)

where YSVR is the estimation of the response variable using
SVR, K(X,Xi) is the set ofm nonlinear kernel functions, b is
a bias term, and ] represents the weight vector consisting of
m choice coefcients. Te process of deriving the optimal
decision function FSVR(X, ]) and the associated parameters
(i.e., b and ]) is a global minimum optimization problem
with the constraints as

minimize:
1
2
‖]‖

2
+ c 

m

i�1
ξi + ξ∗i , (4)

subject to
Yi − FSVR Xi, v(  − b≤ ε + ξi,

FSVR Xi, v(  + b − Yi ≤ ε + ξ∗i ,

ξi and ξ∗i ≥ 0, and i � 1, 2, 3 . . . m,

⎧⎪⎪⎨

⎪⎪⎩
(5)

where c is a constant called the regularization term and
represents the degree of penalty of the sample with error
exceeding ε and ξi and ξ∗i are positive slack variables that
represent the Euclidian distance of the predicted value from
the corresponding boundary values of the ε-tube. Terefore,
based on the formulation described here, the parameters that
need to be optimized are ε and c. In addition, any parameter
associated with the kernel function also needs to be opti-
mized; in this paper, the radial basis kernel function (RBF) is
chosen as

G Xj,Xk  � exp − c Xj − Xk

�����

�����
2

 , (6)

where c is the kernel scale to be optimized.

(4) Regressions Tree. Tree algorithms are an important
branch of machine learning, of which decision trees (DTs)
are the most basic type. Depending on the type of data being
processed, DTs can be divided into classifcation trees and
regression trees, where the former can be used to process
discrete data and the latter can be used to process continuous
data. A DTmodel consists of the node and the directed edge.
Tere are two types of nodes within a tree structure: internal
nodes and leaf nodes. An internal node represents a feature
or attribute, while a leaf node represents a category or
a value. When using DTs for classifcation and regression
tasks, starting from the root node, a feature of the sample is
tested, and the sample is assigned to its child nodes based on
the test results; at this point, each child node corresponds to
a value taken for that feature. Te samples are tested and
assigned in this way recursively until they reach the leaf
node. In comparison, the RT is a process of predicting the
dependent variable for continuous or ordered discrete
values. Te prediction error is usually measured by the
squared diference between the observed and predicted
values, and the predicted value Y is obtained by ftting
a regression model to each node. Te specifc theory of the
RT algorithm can be found in reference [33].

(5) Artifcial Neural Network. ANN is currently the most
commonly used machine learning model. It is widely used in
classifcation and regression problems for its powerful ability
to solve nonlinear problems. For the regression task of
modal parameter prediction under environmental varia-
tions, the robustness of ANN models has been confrmed
[15]. In simple terms, a neural network is composed of
a number of neurons connected by neurons that compute
the inner product of the input vector and the weight vector
to obtain a scalar through a nonlinear transfer function

YANN � f W
TX + b , (7)

where W is the weight, b is the bias, f is the activation
function, where common activation functions such as ReLU,
Tanh, and Sigmoid exist, and X and YANN are the input and
output of the neuron, respectively. In addition, the neural
network structure improves the nonlinear computational
capability of the model by adding hidden layers between the
input and output layers.

2.1.2. Teoretical Background of Stacked Ensemble Model.
Ensemble learning is a machine learning method that
combines multiple independent models based on certain
strategy to obtain better generalization performance. Te
output of ensemble learning-based models can be combined
by many methods. According to diferent ways of in-
tegration, the current ensemble learning can be roughly
divided into the following three categories: bagging,
boosting, and stacking. Diferent from bagging and boosting
ensemble, stacking is a heterogeneous model collection
technology, which is an efective tool to realize the diversity
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of basic learners in the set, to improve the accuracy of the
combinationmodel.Te stacking strategy adopts a two-layer
framework, which mainly focuses on how to use meta-
learner to ensemble the results of all basic models [29].
As shown in Figure 2, the frst layer is composed of several
standalone regression learners, and then the training results
obtained by each learner are calculated. Finally, the output of
the meta-learner in the second layer model is the fnal output
[34]. For stacking, there are two choices for the selection of
basic learners: one is to select the same type but diferent
parameters, and the other is to select diferent types of basic
learners, or heterogeneous ones. In this paper, the second
selection method is adopted to combine several diferent
regression learners based on the two-layer framework of
stacking ensemble learning. Five standalone models, i.e.,
MLR, GPR, SVR, RT, and ANN, are used as the frst layer of
basic learners. Since these fve common standalone learners
have the characteristics of excellent performance and a large
gap in their training mechanisms, a combination of the fve
methods is proposed to further improve the regression
performance of the estimators. Ten, their output is used as
input to train the second layer of meta-learner. Diferent
from the static ensemble methods such as the voting
committee approach, stacking is a trainable combiner, i.e.,
meta-learners such as tree type or neural network type can
be combined to dynamically optimize the optimal model
performance. Teoretically, the meta-learner in the second
layer can be practically any kind of regression estimator,
such as SVR, ANN, and RT. In this paper, random forest is
chosen as a meta-learner to ensemble each single hetero-
geneous model, given its excellent ensemble performance
[35]. Random forest is an extension version of bagging
ensemble learning, whose elementary unit is a binary tree
[36]. It is worth noting that, though random forests are
commonly used to solve classifcation tasks, they are used in
this paper to solve regression problems. Space limitations
and the details of the principles of random forests can be
found in reference [37] to fnd more details.

2.1.3. Performance Comparison of Diferent Models. In order
to quantify the predictive performance of the diferent
models, fve diferent statistical parameters are used, namely,
mean absolute error (MAE), mean absolute percentage error
(MAPE), root mean square error (RMSE), correlation co-
efcient (R), and Nash Sutclife efciency (NSE). Essentially,
these parameters are all designed to estimate the cumulative
error between the predicted and actual measured values, and
their formulas are, respectively,

MAE �
1
n

|Y − Y|,

MAPE(%) �
100
n


|Y − Y|

Y
,

RMSE �

������������

1
n



i�n

i�1
Y − Y

′



2
,




R �
n Y · Y −  Y)  Y 

��������������
n  Y

2
  −  Y)2

 ���������������

n  Y
2

  −  Y 
2

 ,

NSE � 1 −
|Y − Y|

2

|Y − (1/n)  Y|2
,

(8)

where Y and Y are the predicted and actual values of the
modal parameters. In order to obtain a comprehensive
measure of the predictive performance of diferent models
for comparison, the above fve statistical parameters are
unifed into a composite performance index [37] as

CPI �
1
N



j�N

j�1

Pj − Pworst,j

Pbest,j − Pworst,j
, (9)

where N=5 is the total number of statistical parameters, Pj is
the value of the jth statistical parameter, and Pworst,j and Pbest,j
are the worst and best values of the jth statistical parameter
among the fve values generated by the same number of
models. Te CPI takes on values ranging from 0 to 1, where
0 (or the lowest value) represents the worst model and 1 (or the
maximum value) represents the best model. In this paper, the
diferent models are ranked according to their CPI values—
from worst to best based on predictive performance.

2.2. Damage Detection. After an SEL model is constructed
using the data from the baseline state, the trained model is
used to predict the modal parameters for the future un-
known state, and then the prediction residuals for the
current baseline state and the future unknown state are
calculated. Te residuals between the predicted output Y of
the model and the actual output Y are expressed as

e � Y − Y, (10)

where e ∈ Rn×1 is the predicted residual of the ith order
modal parameter of the current baseline condition or the
future unknown condition.
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Teoretically, when damage occurs in the structure during
a monitoring period, the constructed models will no longer
result in similar prediction performance. In other words, the
deviation between the predicted and measured values of the
model increases, so the damage can be detected by using the
prediction residuals of the SEL model. For on-site monitoring,
due to various subjective and objective uncertainties, themodal
identifcation results of some orders may be inaccurate or may
even be false modalities. In addition, when damage occurs in
diferent parts of the structure, the changes of the modal pa-
rameters of each order may be diferent. Terefore, damage
detection using a particularmode of a certain ordermay lead to
false negative or false positive damage detection results [13]. In
order to eliminate the infuence of uncertainty of a single order
modal in damage detection, the sum of the predicted residuals
of each order of natural frequency is further constructed as
follows:

e �
1
n



n

i�1
ei. (11)

To identify damage more accurately, hypothesis testing of
prediction residuals was performed in this study to avoid false
negative or false positive diagnostic results. Te predicted re-
siduals for each state may have some skewness from the normal
distribution. Before doing the hypothesis test, the Box-Cox
method [38] is used to transform the residual series with
a certain skewed distribution into a normal distribution, and the
transformed residuals obey the normal distribution after the
Kolmogorov–Smirnov test [39]. Te mean and variance of the
baseline state and future unknown state prediction residuals e0
and ed can be determined as μe0

, σ2e0 and μed
, σ2ed

, respectively.
Te data collected during the baseline stage need to last for
a period to provide a better removal of temperature efects, so it
can be regarded as a large sample of data, and its mean and
variance can be approximated as the mean and variance of the
population in healthy condition.

According to a priori knowledge, the stifness of the
structure decreases when damage occurs, and the natural
frequency decreases, so the predicted value of the model in
the damaged condition is always greater than the measured
value in theory. Terefore, whether an unknown future
condition is damaged or not can be determined by a one-
sided test of the mean, μed

of its predicted residuals ed,
specifcally,

(1) H0: μed
≤ μe0

null hypothesis: the structure is healthy;
(2) H1: μed

> μe0
alternate hypothesis: the structure is

damage.

Te above hypothesis testing problem can be accom-
plished by t-test, and the null hypothesis H0 is rejected by α
at the critical signifcance level and the alternative hypothesis
H1 is accepted only if,

μed
− μe0

σed
/

�
n

√ ≥ tα,(n− 1), (12)

where tα,(n− 1) is the α percentile of the student t distribution
of n-1 degrees of freedom and n is the number of sampling
points of ed.

Obviously, the choice of the threshold value for
tα,(n− 1) directly determines the appearance of false neg-
ative (“missing” alarm) or false positive (“false” alarm)
damage detection results and should be chosen with
caution in practical use. A specifc discussion of this
parameter can be found in ref. [40]. In this paper, we
choose α� 0.05.

3. Monitoring of the Grid Structure

3.1. Structure Information. To study a series of problems of
SHM for spatial grid structures in natural environment, an
experimental grid model was constructed near Tianjin
University and then sited in a naturally exposed environ-
ment [30]. Te specifcations of all the members of the

Dataset

ANN RT …

Meta-learner

1st layer

Training set
(k-fold cross-validation)

Predicted responses
2nd layer

SVR

Predicted responses

Figure 2: Diagram of stacked ensemble learning method.
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structure (as shown in Table 1) were taken from the di-
mensions used in commonly real projects and were not
scaled down, which was to make it closer to the actual
structures. Specifcally, the size of the structure is shown in
Figure 3, its overall dimensions are 5.4m× 5.4m, containing
a total of 9 orthogonal square pyramid units, each unit
measuring 1.8×1.8m and 0.5m high. All the components of
the grid structure are made of Q235 steel, and the nodes are
bolt-ball joints, and each end of the circular steel tubes are
made up of bolts, casings and closing boards that can be fxed
to the joints by rotating them with a spanner. Te bolted
balls on two symmetry sides of the structure are welded onto
the supports, which are restrained above eight H-supported
steel columns measuring 250×125× 5mm. Te C30 con-
crete foundations have been installed below the columns to
fx them to the ground, and the lower chord nodes of the grid
are 1.0m above the ground.

3.2. Monitoring Hardware and Continue Monitoring Process.
Te grid structure was equipped with a full set of dynamic
and environmental monitoring systems after its construc-
tion in April, 2021, to explore the various responses of the
structure under natural environmental efects. Teoretically,
the natural environment mode identifcation technique can
identify themode parameters by the dynamic response of the
structure under earth impulse excitation, but in order to

make the signal-to-noise (SN) ratio of the dynamic response
higher, a vibration exciter was installed right beneath the
bottom bolt-sphere joint of the central pyramid unit using
a metal rod to pass the excitation force to the structure. Te
input signal to the vibration exciter was a series of Gaussian
white noise generated by a signal generator, which was then
amplifed by a power amplifer to guarantee that an accurate
and comprehensive structural response could be captured
through the dynamic tests. Before initiating the experiment,
the optimal sensor placement plan was frstly discussed. An
initial fnite element model (FEM) was constructed based on
the design data of the grid structure, and the 1st– 20th modal
shapes (z-dimensional) of the FEM were obtained through
dynamic simulations. Tese calculated modal shapes are
later used to calculate the Fisher matrix, and the optimal
sensor placement was then settled by the efective in-
dependence method based on the Fisher matrix [41]. Hence,
9 accelerometers (z-dimensional) were installed on the
structure as presented in Figure 4, connecting to the indoor
dynamic acquisition instrument through water-proof wires.
Additionally, 6 fber Bragg grating (FBG) temperature and
strain sensors were bonded to the surface of 6 diferent steel
rods, for the record of structural strain and temperature
data. Last, an ensemble meteorological monitoring system
was installed next to the structure with the function of
acquiring environmental data on temperature, humidity,
wind speed, and direction.

Te acceleration dataset utilized in this paper was ob-
tained through dynamic tests of the grid structure. Precisely,
three constant 2-min tests were carried out in each hour of
a day at the sampling frequency of 500Hz, and the data
length for each single test was 60,416. It is worth noting that
the monitoring scheme in this paper is short-term, with data
collection periods of only a few days rather than annual and
monthly time periods. Although, in some cases, for example,
the Z24 bridge, a long-term monitoring scheme is used to
assess the safety of the structure under environmental and
operational efects [11]. However, for vibration-based SHM
methods, the use of short-term monitoring data is also
feasible with some a priori knowledge of the structural health
state [42]. In addition, short-term monitoring requires less
continuous storage of data, thus greatly reducing the
pressure on data storage for continuous sampling of
structural dynamics at high frequencies. Te complexity of
damage identifcation methods due to partial data anomalies
in long-term monitoring is also avoided. For the sake of
storing the acquired data expediently and clearly, the data
structure of the experiment was constructed according to the
format of “Date-Time-Test No.-Sensor No.” as shown in
Figure 5. Last but not least, the environmental data and the
temperature data of the structural surface during this time
period are also recorded synchronously, as shown in Fig-
ure 6. Shown in Figure 7 is one set of time history of the
acceleration and the corresponding power spectrum density
(PSD) curve of the measured data according to the Welch
method. Here, the raw data series with a total length of
60,416 is split into segments with a length of 8,192, and the
overlapping rate between data segments is 50%. From
Figure 7(b), it can be obtained that the frst three orders of

Table 1: Specifcation and quantity of main components of the
structure.

No. Type Specifcation Quantity
1 Bolt-ball joint φ100× 4 25
2 Bolt M12 144
3 Circular steel tube φ48× 3.5 72
4 Casing 21× 25 144
5 Closing board 48×12 144

50
0

1800 1800 1800

18
00

18
00

18
00

Figure 3: Size of the grid structure.
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the structural frequencies are about 25Hz, 46Hz, and 70Hz,
respectively. Te natural frequencies of the structure,
however, cannot be directly determined according to the
PSD of the data acquired from a single sensor, for the energy
proportions of the frst few frequencies are relatively lower,
in addition to the variation between diferent sensors that
would also afect the calculation. Terefore, the calculation
of the modal parameters (frequency, damping ratio, mode
shape, etc.) requires specifc processing and analysis.

After obtaining the original dynamics data (acceleration),
the covariance-driven stochastic subspace identifcation
method (SSI-COV) [43] is used for the identifcation ofmodal

parameters, which has the advantage of being faster and
requires less memory. During the process of the modal pa-
rameter identifcation process of SSI-COV, the only pa-
rameter to be determined is the system order. Te
stabilization diagram is utilized to determine the system
order, so as to efectively identify the true and false modes
from various obtained modes. Finally, the modal parameters
of the tested period are obtained. A set of frst 4 mode shapes
of the grid structure, as determined by the stability diagram, is
shown in Figure 8. Figure 9 shows the variation curves of the
natural frequencies, f and the damping ratios, and ζ of frst 4
orders (versus time) during the measurement period (May
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Structural temperature
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Figure 4: Photograph of the tested feld and hardware equipment: (a) site photo of the structure, (b) structural sensors placement, (c) environmental
parameter monitoring sensors, and (d) structural monitoring hardware equipment.
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Figure 5: Data storage structure of continuous monitoring process.
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18th∼ June 1st, health state). Visible periodic fuctuation
patterns can be obtained, from Figure 9, for both modal
parameters, followed by further calculation and analysis of
their fuctuation amplitudes using the equation given below:

∆ηi �
ηimax − ηimin

ηi

, (13)

where ηimax, ηimin, and ηi represent the maximum, mini-
mum, and average values of the ith order natural frequency
fi or the ith order damping ratio ζ i. Te results shown in

Figure 10 demonstrate that the change rates of the natural
frequencies are within the range of 3.13%– 8.72% during the
monitoring period of 2 weeks. In stark contrast, the change
rates of the damping ratios are proven to be exponentially
larger and are within the range of 56.14%– 181.93%. Because
no sudden changes on the structural level in any form
(damage, abnormal loads, etc.) had been assumed to occur to
the target structure during the period of monitoring process,
the observed periodic fuctuation patterns of modal pa-
rameters can be concluded to be related to the environ-
mental efects. Te specifc analysis of the correlation

05/23 00:00 05/27 00:00 05/31 00:0005/19 00:00
Date (m/d h:min)

0

10

20

30

40
Te

m
pe

ra
tu

re
 (°

C)
 

(a)

05/23 00:00 05/27 00:00 05/31 00:0005/19 00:00
Date (m/d h:min)

0

20

40

60

80

100

Re
la

tiv
e h

um
id

ity
 (%

)

(b)

1 ≤ WS < 2
2 ≤ WS < 3

0 ≤ WS < 1

S (180°)
SW (225°)

W (270°)

NW (315°)

N (0°)

NE (45°)

E (90°)

SE (135°)

Wind Speeds in m/s
WS ≥ 6
5 ≤ WS < 6
4 ≤ WS < 5
3 ≤ WS < 4

(c)

T 
(°

C)

40

20

6 5 4 3 2 1Sensor No.
05/21

05/22

05/23

05/24

05/25

Date (m/d)

(d)
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Figure 8: A set of identifcation results of frst 4 mode shapes. (a) 1st order. (b) 2nd order. (c) 3rd order. (d) 4th order.
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between modal parameters and environmental parameters
will be given in Section 4.1.

4. Modal Parameters Prediction under
Environmental Factors

4.1. EnvironmentalCorrelationAnalysis ofModalParameters.
In this section, the correlation between the modal param-
eters (natural frequencies, damping ratios, and mode
shapes) and the environmental efects was studied. Based on
the results of the modal shape at the initial time (reference
time) of the ith order, φRi, the modal assurance criterion
(MAC) [44] is calculated regarding the modal shape at other
time nodes φoi, thus analyzing its correlation with the en-
vironmental parameters.

Te Spearman correlation coefcient is utilized to
achieve the quantifcation of the correlation between the
parameters in this paper, which is defned as the Pearson
linear correlation coefcient of two variable orders and has
been widely utilized to investigate the correlation of non-
normal distributed or small sample variables. Taking two
parameters with n variables, respectively (X � (x1,

x2, · · · , xn), Y ∈ (y1, y2, · · · , yn)), the ranks of both X and Y
are assumed to be unequal, thus the above equation can be
simplifed as

ρ � 1 −
6 d

2

n n
2

− 1 
, (14)

where d is the diference between the ranks of two columns
in the matrixes. Te obtained values of ρ vary from − 1 to +1,
where ρ� − 1 indicates a complete negative correlation, ρ� 1
indicates a complete positive correlation, and ρ� 0 indicates
no correlation between the columns.

Taking the example of the 1st order modal parameters as
an instance, Figure 11 shows the correlation scatter diagrams
and correlation coefcient heatmaps, specifcally, the 1st
order modal parameters versus environmental temperature
(Envir. T), environmental relative humidity (Envir. RH),
wind speed, wind direction, and the structural surface
temperature (Struc. T). What is worth mentioning is that

only the structural temperature data acquired from the No.1
temperature sensor is given, since a similar relationship
between the environmental temperature and modal pa-
rameters can be obtained. It can be concluded from Fig-
ure 11 that there is a strong correlation between
temperature, humidity, and modal parameters. Compared
with temperature and humidity factors, it can be seen that
the correlations between the natural frequency, damping
ratio, and vibration mode shape (i.e., MAC) of the grid
structure and the wind speed and direction are not signif-
icant (the correlation coefcients are less than ±0.5). Te
main reasons for this may be that, on the one hand, the
overall stifness of the structure is large and thus the in-
fuence of wind speed is limited; on the other hand, the wind
speed of the actual tested feld environment is small and
random.

To conclude, there is an obvious negative correlation
between natural frequencies and temperature factors (in-
cluding environmental temperature and structural surface
temperature). However, a positive correlation between
damping ratio and temperature can also be observed, which
is even more discrete than that with natural frequency.
Teoretically, it is mainly caused by the uncertainty of the
process of modal analysis of calculating damping ratios.
Due to this fact, many researchers have stated that a strong
correlation between damping ratio and temperature can
hardly be found [12]. Additionally, the correlation between
natural frequencies and humidity is proven to be positive,
while a negative correlation between damping ratio and
humidity is detected. Nevertheless, because of the char-
acteristics of steel structures, the studied spatial grid
structure’s stifness is hardly afected by humidity, and thus
it is reasonable to consider the obtained correlation results
to be mainly caused by the obvious and natural correlation
between temperature and humidity. Last, the relationship
between modal shapes and environmental factors is not
clear enough compared with that between natural fre-
quencies and damping ratio.TeMAC value of the 1st order
modal shape was greater than 0.98 during the whole
monitoring period (except for the individual outliers), with
slight fuctuation amplitude was observed.
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It can be seen from the above section that modal pa-
rameters such as the natural frequencies will fuctuate sig-
nifcantly due to environmental changes, and such periodic
fuctuations will directly afect the damage monitoring
process, resulting in a false negative or false positive safety
assessment. Terefore, predicting the fuctuations of these
modal parameters with environmental factors and thus
removing such environmental efects from future moni-
toring data can lead to more accurate damage assessment
results.

4.2. Principal Components Extraction of Environmental
Factors. Although many environmental factors have been
tested, aiming to make the best use of the environmental
monitoring data to model and predict the modal parameters,
principal component analysis (PCA) [15] has been utilized in
this case to extract features from the raw data. Te moti-
vation can be concluded as follows: (1) as shown in Fig-
ure 12, the correlation between all environmental factors and
the natural frequencies can hardly be comprehensively il-
lustrated, thus making it less rigorous to use the raw data to
model because of the uncertainty; (2) it can be rather clearly
observed that a strong correlation between various envi-
ronmental parameters, for instance, an obvious negative
correlation between environmental humidity and environ-
mental temperature can be concluded (Figure 13); (3) the
temperature of the structural surface is obviously afected by
the environmental temperature, especially for the data
sampled during the night hours with no solar radiation, the
structural surface temperature was approaching the envi-
ronmental temperature. Te above reasons have made it
redundant and less signifcant to utilize all environmental
factors to model the structure. Terefore, in this section,
PCA has been used to extract features from 10

environmental factors obtained from the experiment. Tese
10 environmental factors are environmental temperature,
environmental humidity, wind speed, wind direction, and
six structural surface temperature from 6 measuring points
on the structural surface, as shown in Figure 4, respectively.
Te results present the proportion in total variance value of
top three principal components (PCs) are, respectively,
89.96%, 9.87%, and 0.08%, making up more than 99% of the
total variance value, as a result of which the author considers
the frst three PCs (Figure 13) as the input for the predictor
models.

4.3. Prediction Models Development. In this section, six
machine learning models, i.e., fve standalone models and
one ensemble model, will be developed to estimate the
modal parameters. Te natural frequency is mainly con-
sidered because its physical meaning is clearer and thus
more widely used than the damping ratio. In addition, the
natural frequency is more signifcantly afected by the en-
vironment compared to the mode shape. Te regression
input parameters, i.e., predictors or independent variables,
are chosen to be the principal components of the envi-
ronmental factors, and the response variable is the ith order
rate of change of natural frequency.Temodelling process is
described in detail in the following section.

Specifcally, MLR uses linear terms as variables and
robust regression to avoid the impact of noisy data on the
regression results. Since GPR, SVR, RT, and ANN models
all involve the selection of a large number of hyper-
parameters, and the size of the hyperparameters has an
important impact on the accuracy of the model, this paper
uses a Bayesian optimization method [45] for the
hyperparameters of the four models. Te selection was
performed with 50 iterations, and the optimized

-0.026 -0.063 0.054 -0.009-0.120

0.789 -0.481 0.336 0.8180.056

-0.762 0.409 -0.194 -0.713-0.146

Co
lo

r b
ar

 o
f t

he
 co

rr
el

at
io

n 
co

ef
fic

ie
nt

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

0.94

0.96

0.98

1
M

A
C

1

1.5

2

ζ (
%

)

25

25.5

26

f (
H

Z)

3020 400 10
Envir. T (°C)

75 10025 500
Envir. RH (%)

2 4 60
Wind speed (m/s)

90 180 270 3600
Wind direction (°)

20 30 40 5010
Struc. T (°C)
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parameter types and their ranges are shown in Table 2. If
the predicted responses of the base models are simply
obtained using the training data, the stacked ensemble
may sufer from overftting, and to reduce overftting, a k
fold cross-validation (in this paper, k � 5) of the predicted
response is used. To ensure that each single model is
trained using the same k-fold data split, a random par-
tition on the dataset is created prior to training, and this
partition is used to defne the training and validation sets,
which are passed to each single model to ensure unifor-
mity of cross-validation using the root mean square error
(RMSE) from 5-foldcross-validation.

Furthermore, by training the SEL model using the
predicted responses from standalone model cross-
validation, this paper uses random forests as a meta-
learner for stacking integration. Te random forest (FR)
is a meta estimator containing and ftting a certain number
of decision trees (DTs) on various subsamples of the dataset
and uses a bagging-based ensemble strategy to integrate the
prediction results of the DTs, thus improving the estimator’s
accuracy while minimizing the possibility of overftting.
Specifcally, each DT of a random forest regressor (RFR) is
individually trained on samples randomly selected from the
dataset known as the boostrap process. Ten, the fnal
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decisions are made via the voting method, which generally
integrates and combines the learning advantages of each DT.
Researchers have indicated that the RFR specially excels at
overftting control in several regression problems. To obtain
the best results for integration learning, the hyperparameters
of the random forest are optimized using the same Bayesian
optimization method with 100 iterations, and the tree model
is set to be reproducible while random seeds are set.

4.4. Evaluation and Comparison of Prediction Results.
Following the above process to establish the SEL model, the
monitoring data of May 18th∼ June 1st were divided into
a baseline state set (data before May 28th) and a future state
set (data from May 29th to May 31th) in time sequence. In
fact, since the future state set can be identifed as a healthy
state based on a priori knowledge, it can be used to test the
performance of the model. Te model trained using the
baseline state set was used to predict the natural frequencies
of the frst 8 orders, and the prediction results of the train
(baseline state) and test (future state set) sets are shown in
Figure 14 for the 1st order natural frequency as an example
where the thickened dashed line represents the line of
ideality and the thin dashed line represents the ±20% bound.
Simultaneously, to determine the predictive performance of
these models, fve statistical parameters and the composite
performance index, CPI of the test set were calculated
according to equation (9), and the results are shown in
Table 3. As can be seen from Figure 14 and Table 3, after
optimizing the hyperparameters by Bayesian method, all the
six models used in this paper can predict the natural fre-
quencies with relatively reasonable accuracy, which can be
seen by the higher R values and the lower RMSE of the
training set, especially the R value of ensemble learning,
which is as high as 0.80. In addition, for the test set, the
prediction efect of ensemble learning is also better than that
of the standalone model. On the one hand, the prediction
values of the test set of the ensemble learning model are
more concentrated within the ±20% boundary line than
those of the standalone models; there is no overftting, and
on the other hand, the CPI of the ensemble learning model is
signifcantly higher than that of the standalone models.

5. Damage Detection Application

5.1. Simulation Dataset Validation

5.1.1. Structural Simulation. Based on the original design
information of the structure, ANSYS was used to construct
the initial fnite element model (FEM) of the structure.
Material properties of Q235 steel, such as Young’s modulus,
mass density, and Poisson’s ratio, were used to initially
defne the physical parameters of the structural components
of FEM. Te details are shown in Table 4.

Te 72 bars were simulated using BEAM188 units. Te
semirigidity of the bolt nodes was considered by adding
short rods at both ends of a bar, with a length equal to the
radius of the bolt nodes. In addition, regarding the con-
nection uncertainty of the supports, an articulated con-
nection was used for the z-directional translational restraint,
and translational restraints were added to the x- and y-
direction using COMBIN14 units. Te modal calculations
were performed using the stochastic subspace method to
obtain the frst 15 orders of modal frequencies and vibration
patterns of the structure.

Due to the errors between the initial FEM parameters
and the physical parameters of the actual structure, the
modal parameters of the structure calculated by the FEM are
somewhat diferent from the measured modal parameters.
Te initial FEM model is further updated in order to
minimize the diferences between the two. Te model
updating process is an optimization problem, which was
carried out here using an improved cuckoo search algo-
rithm. Te algorithm uses a dynamic adjustment hyper-
parameter strategy to solve the optimization problem, which
can avoid the problems of local optimum and slow con-
vergence. As a result, more efcient and accurate global
optimization search results will be obtained. Specifc details
of the method can be found in reference [46]. Te objective
function of the optimization problem is constructed by
natural frequencies and MAC as follows:

FUN(p) �
fC − fM

fM
+ 10 · 1 −

φT
CφM 

2

φT
CφC  φT

MφM 

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, (15)

Table 2: Type and range of model parameters to be optimized.

Model Parameter Range

GPR
Basis function Constant, 0, linear
Kernel function Exponential, squared exponential
Kernel scale 0.1∼100

SVR
Regularization term 0.001∼1000

ε-tube 0.001∼1000
Kernel scale 0.0001∼100

RT Minimum leaf size 1∼130

ANN

Fully connected layer 1∼3
Activation functions ReLU, Tanh, sigmoid
Number of iterations ≥100
Nodes of per layer 1∼300
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Figure 14: Comparison of predicted and measured values of diferent models (1st order). (a) MLR. (b) GPR. (c) SVR. (d) TR. (e) ANN. (f) SEL.

Table 3: Prediction performance of diferent models (test set).

No. Model MAE (Hz) MAPE (%) RMSE (Hz) R (unitless) NSE (unitless) CPI (unitless)
1 MLR 0.09 66.61 0.12 0.78 0.61 0.50
2 GPR 0.08 56.98 0.12 0.80 0.64 0.80
3 SVR 0.08 46.43 0.12 0.79 0.62 0.77
4 RT 0.10 51.36 0.14 0.74 0.54 0.11
5 ANN 0.09 64.99 0.12 0.78 0.61 0.53
6 SEL 0.08 37.69 0.12 0.80 0.65 0.96

Table 4: Material parameter setting for numerical model.

No Parameter name Parameter value
1 Young’s modulus, E (at 20°C) 2.06×1011 Pa
2 Mass density, ρ 7850 kg/m3

3 Poisson’s ratio, ] 0.3
4 Coefcient of thermal expansion, α 12.2×10− 6/°C
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where fC and φC are the natural frequencies and mode
shapes of the structure calculated by the fnite element
model, fM and φM are the natural frequencies and mode
shapes of the actual structure measured. Te updated pa-
rameters p include the nodes’ stifness (elastic modulus of
the small short beams), the bars’ elastic modulus, the density
of the steel material, the x- and y-directional translational
constraints, and other FEM parameters. A comparison of the
natural frequencies of the updated structure with those
before the update is shown in Figure 15. It can be seen that
the relative error between the frst 8th order frequencies
obtained from structural fnite element calculations and the
actual structural frequencies is within 6%; at the same time,
the MAC value of the frst 4 orders of calculated modal
shapes and the measured modal shapes are constructed with
a value greater than 0.8. Te updated model has similar
dynamic characteristics compared to the real structure,
which indicates that the updated FEM is competent to carry
out the following analysis.

Based on the modifed FEM, the efect of environmental
parameters on the natural frequency of the grid structure is
simulated. From the analysis in Section 4.1, the main en-
vironmental parameter afecting the steel structure is, un-
questionably, temperature. By setting the coefcient of linear
expansion of steel to 1.2×10–5/°C to simulate the material’s
heat deformation, while referring to the related study of Xia
et al. [47, 48], the Young’s modulus with temperature is set as

EδT � 1 +
δE

E
  · E20℃

� 1 + θE · δT(  · E20℃,

(16)

where θE � − 3.6×10− 4/°C.

5.1.2. Setting of Environment and Damage Conditions. In
this section, the detailed settings for environment setting
and damage simulation will be demonstrated. First thing
frst, the input environmental parameters for the FEM are
based on the in-situ environmental monitoring tests of
30 days (from June 1st to June 30th). During this period, 6
temperature sensors distributed on the surface of the
structure had been recording the temperature data on 6 steel
bars of the structure. For those elements without measuring
points, the temperature data was generated via interpolation.

A gradual process of structural damage evolution to
validate the proposed damage detection approach has been
simulated. It is assumed that during the monitoring period
of 30 days, there are 2 types of working conditions, namely,
the baseline condition (BC, from 1st June to 15th June) and
the unknown conditions (HC, DC1 and DC2, from 16th June
to 30th June, each condition lasts for 5 days). Notably, only
the data collected in the BC condition (from 1st June to 15th

June) are a priori, i.e., the structural responses in a healthy
state, and will be used to train the regression model.
Terefore, the other conditions are considered as blind
datasets for validation. Te target structure in BC and HC
condition were completely intact without any damaged el-
ements. Since 21st June, however, it was assumed that the
bolt ball node unit, which accelerometer No.6 showed in
Figure 4 was located has appeared to be slightly damaged.
For the sake of convenience, diferent damage degrees were
simulated by means of modifying the elastic modulus of the
damaged members. For the DC1 condition (from 21st June
to 25th June), the node element was damaged by 10%; for the
DC2 condition (from 26th June to 30th June), the node el-
ement was damaged by 30%, which was considered more
severe damage than in the DC1 condition.

Ideally, the goal of this part of the research is to obtain
a robust regressor to detect any abnormality within the data
acquired from future monitoring processes. Consequently, it
is vital to carry out validation tests to prove the robustness of
the proposed model, concerning the possibility of the oc-
currence of false positive output. In real engineering
monitoring projects, it is almost an absolute that only the
data of the intact structure can be accessed, therefore, in this
case study, the model was trained using the data of the BC
condition and validated using the datasets of HC, DC1, and
DC2, which contain both healthy and damaged structural
conditions. Teoretically, damaged elements within the
structure will interfere with the trained model’s ability to
predict stray results, which can be the basis of damage di-
agnosis. In this case, diferent damage conditions were
considered to simulate various structural damage scenarios
regarding both health and diferent damage degrees.
Meanwhile, noise is added to the natural frequency simu-
lation data according to the given equation in order to
consider other uncertainty disturbances in the actual
monitoring process.

Y � Yo + β · RMS Yo(  · N(0, 1), (17)
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Figure 15: Te comparison between the natural frequencies of
measured and calculated.
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where Yo and Y represent the change value of ith order
natural frequencies of the structure before and after the
addition of noise, respectively, N(0, 1) is a random number
obeying a standard normal distribution, RMS(·) is the root
mean square, and β is the noise level factor, which is taken as
0.1%, 1%, and 10%, respectively, equivalent to 60 db, 40 db,
and 20 db signal-to-noise ratio.

5.1.3. Residual-Based Damage Detection. Like the process
described in Section 4.3, following the fow in Figure 1, using
BC data to develop SEL models. Te predictions are then
made using the model for data with diferent unknown
operating conditions. Taking the 1st order natural frequency
as an example, a comparison of the predicted and test values
(10% noise) is shown in Figure 16. As can be seen from the
fgure, most of the tested values fall within the 95% conf-
dence interval of the prediction interval if the future state is
healthy (HC). However, once the structure is damaged due
to some possible occurrence (e.g., DC1), the predicted re-
sults of the model will deviate signifcantly from the mea-
sured values. Te comparison of DC1 and DC2 shows that
this deviation will gradually increase with the occurrence of

damage. Te above analysis is still a qualitative judgment of
the possibility of structural damage, and for further de-
tection, the statistical testing analysis.

Furthermore, the damage was detected under diferent
noise conditions according to the method introduced in
Section 2.2. Te predicted residuals of diferent orders of
natural frequencies were averaged using equation (11),
which can reduce the negative efects of some order fre-
quencies that are insensitive. Tis approach can also efec-
tively eliminate the uncertainty of some orders of testing in
the modal analysis. Ten the t-test was performed on the
results of the unknown conditions based on the normalized
residual mean data of the healthy condition. Te obtained
results are shown in Table 5. It can be observed from the
table that all damaged cases can be accurately found out,
even under diferent noise levels. It is proven that the
proposed method has excellent robustness against noise.
Figure 17 shows a comparison of the histogram and
probability density function (pdf) plots of the normalized
prediction residuals e for the baseline condition. When it
comes to diferent unknown conditions, the highest noise
level (10%) is added. As can be seen, the mean value of the
normalized prediction residual e increases gradually with the
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Figure 16: Comparison of model predictions and measured values under diferent unknown conditions (1st order, 10% noise). (a) HC.
(b) DC1. (c) DC2.

Table 5: Damage detection results for diferent conditions.

Noise level (db) HC DC1 DC2

Whether judged to be damaged
60 No Yes Yes
40 No Yes Yes
20 No Yes Yes
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damage degrees. In addition, taking a percentile of α� 0.05
was proved to be reasonable, as all states were correctly
identifed.

5.2. On-Site Monitoring Dataset Validation. To further
validate the feasibility and generalization ability of the
proposed methodology, the on-site monitoring was carried
out from 19th June to 3rd July, 2022. Te monitoring period
was split into three stages, corresponding to three structural
health states, namely, BC/HC (19th June∼25th June), DC1
(25th June∼29th June), and DC2 (29th June∼3rd July). BC
indicates the baseline condition of the current grid structure,
which is considered intact; HC is also an intact condition,
but unlike BC, its state is unknown in advance, i.e., it is the
same as DC1 and DC2, and belongs to the blind test data;
while in DC1 and DC2 conditions, one of the steel rod
elements near accelerometer No.6 wasmanually damaged by
half and all, respectively, as shown in Figure 18. By reducing
the circular steel pipe section area, it can be assumed that the
stifness of the structure is compromised, thus simulating the
potential damage scenarios that can occur to real structures.
Te experiment went on in a particular order, from BC to
HC to DC1 to DC2.

Te monitoring data was acquired and preliminarily
processed, and the 1st and 2nd order results are shown in
Figure 19 as an example. It can be seen from the fgure that
during this period, the natural frequency obviously fuctu-
ates signifcantly due to environmental factors, and under
this fuctuation, it is difcult to detect damage from changes
in the natural frequencies through direct observation. In
addition, the measured natural frequency of the grid
structure sometimes fuctuates severely due to unexpected
rainy weather, even in healthy states, which will most likely
result in a false negative or false positive test result. Further,
the correlation between natural frequencies (take 1st order as
an example) and the frst 3 principal components (PCs) of
multiple environmental factors is shown in Figure 20. Te

expected result of this data analysis process is to delineate the
damage using the correlation or some trend that exists
between the frequency change and the environmental PC.
However, it can be observed in Figure 20 that the data from
diferent conditions overlap to a great extent. Terefore,
a more powerful method needs to be trained to reveal the
damages.

After the SEL model was trained, damage detection was
performed using the same procedure as in Section 5.1.3. Te
histograms and pdf of the normalized prediction residuals
for diferent conditions are shown in Figure 21. It can be seen
that when the damage occurs, the mean value of the pre-
dicted value of e decreases and the variance increases sig-
nifcantly, which is a good indication of the occurrence of the
damage by hypothesis testing.

6. Conclusions

In this paper, a method of stacked ensemble learning for
natural frequency prediction is proposed, and the future
state of the structure is detected based on a statistical analysis
of the prediction residuals. Te dynamic data of a space steel
grid structure model in the feld environment are measured
for a period. Te correlation of various modal parameters
with environmental factors is subsequently investigated.Te
infuence of the environment on modal parameters can then
be isolated and removed from measurements, allowing for
improved detection of early structural damage. Te con-
clusions of this study are summarized as follows:

(1) Te daily natural frequencies and damping ratios of
space grid structures fuctuate signifcantly due to
environmental infuences, while the modal shapes
are not signifcantly afected by environmental fac-
tors. Among the various environmental factors,
temperature is the primary cause of natural fre-
quency and damping ratio variations. Te damping
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Figure 21: Histograms and pdf plots of the normalized prediction residuals for diferent conditions. (a) HC. (b) DC1. (c) DC2.
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ratio fuctuates more than the natural frequency, and
the data dispersion increases with the modal order.
In comparison, the natural frequency of each order is
more regularly infuenced by the environment and
can be used as a critical feature for detecting early
damage in space grid structures.

(2) Te primary environmental monitoring data con-
tained redundant information as well as noise and
some other uncertainties; in order to provide reliable
input data for the modal parameter prediction
model, a principal component analysis was per-
formed to efectively extract the principal compo-
nents from them. Multiple heterogeneous models
(including MLR, GPR, SVR, RT, and ANN) using
Bayesian methods with optimized hyperparameters
predict the natural frequencies with some accuracy.
Still, no single model is universally applicable to all
orders of frequency due to algorithmic preferences
and the variability of monitoring data. Using stacked
ensemble learning, the prediction outputs of the fve
heterogeneous models listed above were integrated
to ultimately achieve superior prediction results.

(3) Te measured natural frequencies will deviate sig-
nifcantly from the predicted values when the
structure is damaged in the future; the statistical
analysis of prediction residuals can improve damage
detection. Te accuracy of modal recognition results
and the sensitivity of modal parameters to damage
vary with the natural frequency order. Terefore,
using the mean value of residuals for each order of
prediction efectively avoids the prediction error
incurred when using a single modal parameter. Te
t-test of the normalized prediction residuals of the
future states with various degrees of damage and
noise shows that the stacked ensemble learning
model presented in this paper achieves high damage
detection accuracy.

Notwithstanding the successful application of the
stacked ensemble learning method to modal parameter
prediction and damage detection under environmental
changes in this paper, there are still some limitations and
remaining challenges of the proposed method for further in-
depth study. In the selection of a single type of basic model,
a combination scheme of diferent types of heterogeneous
models can be tried to obtain excellent prediction results. In
the choice of stacked ensemble learning meta-learning,
theoretically any nonlinear regression estimator is feasible,
and more attempts can be made for diferent monitoring
data to obtain the best fnal output. In addition, as discussed
in the paper, the application of the present method in short-
term monitoring is very successful, and its efectiveness in
long-term monitoring needs to be further demonstrated in
the future. Finally, the proposed method can be further
extended in future research by combining statistical
methods in order to solve more complex damage detection
problems, such as damage localization and damage severity
quantifcation.
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