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To determine the optimal alert threshold for sliding surface replacement of bridge bearings, a cost-efective maintenance policy is
proposed in this paper using a gamma stochastic process. First, the sliding surface-triggered run-to-failure process of bridge
bearings is discussed based on existing feld inspection and maintenance records. Ten, the wear thickness of sliding materials is
estimated step-by-step based on the cumulative travel distance and wear rate. Te gamma stochastic process is used to model
degradation of sliding surfaces by using the indicator of wear thickness to depict uncertainties during the degrading process. Next,
the optimal alert threshold for replacement of sliding surfaces is determined based on the cost-efective maintenance policy by
minimizing the long-term expected maintenance cost rate. Finally, bearings of a long-span suspension bridge are employed to
demonstrate the potential efectiveness of the proposed methodology. As a result, the wear thickness of sliding materials ap-
proximately follows a linear degrading law. Based on the gamma degrading model, the objective function subject to the long-term
expected cost rate is formed. After optimization, the optimal alert threshold for replacement of sliding surfaces is 2.016mm to
achieve a minimum long-term expected maintenance cost rate of US$9,427 per day. In addition, the estimated service life subject
to the alert threshold obeys a Gaussian distribution with a mean of 1278 days based on the one-year monitored displacement data.

1. Introduction

Bearings are critical articulation components of bridge
structures, supporting the superstructure while accommo-
dating rotational or translational movements [1, 2]. Bridge
bearings not only carry static loads induced by permanent
weights of superstructures but also variable forces due to
trafc, temperatures, winds, and earthquakes. However,
owing to the motion of bearings, they are more vulnerable,
especially sliding surfaces, when compared to other com-
ponents. According to existing feld engineering records, the
service life of sliding surfaces is frequently much lower than
expected. Premature failures of sliding surfaces have been
increasingly observed in recent years, especially on large-
span bridges, due to unexpectedly large amounts of accu-
mulated travel distance of girder ends, signifcantly

weakening the serviceability of bridges [3, 4]. Te failure of
sliding surfaces will lead to serious defects in a short time
such as locking up of bearings. Te failure of bearings will
result in potential damage to surrounding structural com-
ponents due to increased transferred forces. For instance, the
Birmingham Bridge in Pennsylvania sufered damage in-
duced by the failure of bearings in 2008, which cost an
estimated repair fee of $8 million [5]. Furthermore, the
failure of bearings will change the dynamic behaviour of
bridges since bearings are critical constraints for bridge
structures.

Given that the traditional visual inspection is incapable
of ofering a timely alert on potential deterioration or
malfunctioning of bearings, the long-term monitoring
technology is developed to monitor the wear condition of
sliding surfaces [6]. Te travel distance of girder ends, i.e.,
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cumulative displacement, is one of the dominant factors
contributing to the wear of sliding surfaces. Displacements
are mainly caused by temperatures, winds, trafc, and
earthquakes, where the linear relationship between dis-
placements and temperatures is well studied [7–10]. Te
temperature-induced displacement is used to estimate the
maximum displacement at the bridge design stage to help
choose an appropriate type of bearings or expansion joints.
However, vehicle-induced dynamic displacements, rather
than static ones due to temperatures, contribute to the major
part of cumulative sliding displacements, which dominate
the wear condition of sliding materials [4, 6, 11, 12]. Al-
though some methodologies were proposed to estimate
cumulative travel distances based on dynamically monitored
data or random trafc fows [4, 13], the displacement
transducer is still the most straightforward way to obtain
cumulative travel distances. Newly built large-span bridges
are always equipped with displacement transducers to
monitor the displacement behaviour of girder ends.

In addition to cumulative travel distances, the wear rate
(i.e., wear thickness per sliding distance unit) is the other key
factor contributing to the wear condition of sliding surfaces.
Many studies have been undertaken to investigate the tri-
bological behaviours (i.e., friction and wear) of sliding
materials (e.g., PTFE and its composites) [14–16]. Various
factors, including contact pressure, temperature, lubrication,
sliding surface material, sliding speed, and mating surface,
infuence the wear rate of sliding materials [17]. Although
fruitful experiments were conducted in the lab, the size of the
studied samples was relatively small compared to that of the
sliding surfaces used in bridge bearings. In this regard, the
size efect is the main limitation when using laboratory
conclusions in tribology. Full-size experiments were
designed and completed by Ala et al. [18] and Stanton et al.
[19] for plain PTFE and its composites to investigate their
wear behaviour. Tey found that the wear rate signifcantly
depended on the contact pressure and travel speed. A model
was established to determine the wear rate based on the
product of contact pressure and travel speed. A relatively
reliable wear rate could be estimated based on these full-size
experiment results.

Based on the measured displacements and the wear rate
of sliding materials, the derived wear thickness is regarded as
the indicator to depict the state of sliding surfaces for
condition-based maintenance [4, 11]. Although wear
thickness is available continuously, an optimal alert
threshold subject to maintenance operations requires fur-
ther work. Existing alert/serviceability thresholds for
maintenance are based on engineering experience (Table 1).

Te objective of the maintenance policy could be divided
into economy/availability and safety ones. For damage that
has a large probability of causing tragic casualties, a safety
objective is prioritized. For damage with a small probability
of leading to casualties, an economy/availability objective is
applied. In this paper, the topic is bearing failure triggered by
the wear of sliding surfaces, which is a long-term efect under
normal operational conditions. In addition, the sliding
surface-triggered failure of bearings has a very low proba-
bility of causing casualties like earthquake or typhoon.

Within this context, we set the economy/availability as the
objective of the maintenance policy. In practice, one cannot
wait until the failure level to schedule maintenance due to
the large number of temporary works that may be involved.
Tus, an alert threshold should be more conservative than
the failure level.Te optimal alert threshold is determined by
maximizing the availability of the bridge or minimizing the
lifetime expected cost rate. If the alert threshold is defned at
a high level of wear, the probability of breakdown is large,
leading to a signifcant cost of correction or even impacting
structural or operational safety. If the alert threshold is
defned at a low level of wear, the material is underutilized,
resulting in higher lifetime cost.

Many stochastic maintenance models were proposed
under the context of continuously monitored deteriorating
systems to determine the optimal alert threshold [22, 23].
Te maintenance model is frst determined based on the
given case, including perfect maintenance and imperfect
maintenance. A perfect maintenance action restores the
device to a “good or new” state [24]. For sliding surfaces of
bridge bearings, the only option for maintenance actions is
replacement, belonging to perfect maintenance. In addition,
the stochastic model should be chosen to capture the un-
certainty of the degrading process. Te commonly used
models contain the gamma process, Wiener process, and
inverse Gaussian process. Te gamma process is good at
describing monotonic degradation paths, such as the deg-
radation in the form of cumulative damage [25].TeWiener
process is more suitable for modelling degradation with
nonmonotonic deterioration over time [26]. Te inverse
Gaussian process is a limiting compound Poisson process
that is appropriate for modelling heterogeneous degradation
of systems deteriorating in a random environment [27]. In
this study, the gamma process is adopted since the degrading
process of sliding surfaces is monotonic. Finally, the ob-
jective function is established, which aims to achieve
maximum availability or the minimum cost rate. Compared
to availability, bridge owners prefer to minimize the long-
term expected cost rate. Terefore, a stochastic gamma
process, together with perfect maintenance actions and cost-
based objective functions, is desired to determine the op-
timal alert threshold under the context of continuous
monitoring.

To determine the optimal alert threshold for replacement
of sliding surfaces of bridge bearings, a cost-efective
maintenance policy is proposed in this paper by assuming
continuously monitored degrading systems. First, the sliding
surface-triggered run-to-failure process of bearings is dis-
cussed based on existing feld recorded inspection and
maintenance information. Subsequently, the degrading
process of sliding surfaces is developed according to the wear
rate of sliding materials and monitored displacements,
which is modelled by the gamma stochastic process. Next,
the cost-efective maintenance model is built to consider
a delayed maintenance operation, and the optimal alert
threshold is proposed after optimization of the maintenance
model. Finally, actual spherical bearings of a large-span
suspension bridge are used to verify the efectiveness of
the proposed cost-efective maintenance policy.
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2. Methodology

Since the maintenance cost largely depends on the timing of
intervention, an optimal alert threshold is developed to
lower potential costs [28, 29] (see Figure 1). Monitored
girder end displacement data and wear rate models of sliding
materials (e.g., PTFE) are used to calculate wear thickness.
Based on the wear thickness of sliding surfaces within
a relatively long time window, a gamma stochastic model is
used to model the thickness reduction of the sliding surface.
Considering the run-to-failure process of bearings, a main-
tenance model is built, including maintenance plans,
maintenance actions, andmaintenance completions. Finally,
the maintenance cost rate is set as the objective function, and
the optimization algorithm is used to fnd the optimal
thickness for replacement of the sliding surface by mini-
mizing the cost rate.

2.1. Sliding Surface-Triggered Run-To-Failure Process of
Bearings. Tere are multiple failure models for bearings in
practice, such as excessive pressures and corrosion or
cracking of steel components. In this paper, we focus on the
sliding surface-triggered run-to-failure process.

Spherical bearings, usually used on large-span bridges,
are examined.Te specifc confguration is demonstrated in
Figure 2, which comprises upper plates, middle plates,
lower plates, sliding surfaces, anchor bolts, and anchor
sockets.

Although the run-to-failure process of bearings is well
studied under seismic loads [30], the run-to-failure process
under normal operating conditions is rarely investigated due
to a lack of valid information. From inspection and main-
tenance records of some actual large-span bridges, the
sliding surface-triggered run-to-failure process is as follows:

(1) First, with the accumulation of travel distances of
girder ends, sliding materials are worn gradually,
resulting in the reduction of thickness.

(2) Ten, if failed sliding surfaces are not replaced
timely, direct steel-to-steel contact of plates occurs,
which will quickly lead to locking up of bearings.

(3) Finally, due to the requirement for motion of
bridges, anchor bolts will fracture by large shear
forces, leading to total failure of bearings.

Te time duration from failure of sliding surfaces to total
failure of bearings is quite short in practice. Te total failure
of bearings impacts the serviceability of bridges, leading to
operational and structural safety issues. In this regard, it is
assumed that the maintenance cost is equal to the potential
expense of sliding surface replacement before the failure of
sliding surfaces plus the potential expense of bearing re-
placement after the failure of sliding surfaces.

2.2. Stochastic Degrading Model of Sliding Surfaces

2.2.1. Degrading Process of Sliding Surfaces. PTFE and its
composites are always adopted as the material for sliding
surfaces of bridge bearings due to their high wear resistance

and low friction factor. Te tribological behaviour of PTFE
and its composites (e.g., friction and wear) has been well
studied over the past fve decades [17, 31].

Various factors, including travel distance, contact
pressure, temperature, lubrication, sliding surface materials,
sliding speed, and mating surface, infuence the wear per-
formance and behaviour of sliding materials [19]. With the
accumulation of travel distance, the wear degree of sliding
surfaces increases progressively. Composite materials (e.g.,
glass-flled reinforced PTFE) always perform better in wear
performance than the plain ones.

In general, the quantitative expression of wear volumes is

Vw � 􏽚 DWvdD, (1)

where Vw is the total volume reduction, D is the travel
distance, and Wv is the wear rate in volume, namely, volume
reduction per kilometer of travel distance. In practice, the
wear degrees over contact areas are assumed to be uniform.
Tus, Equation (1) is simplifed as

Tw � 􏽚 DWtdD, (2)

where Tw is the total thickness reduction and Wt is the wear
rate in thickness, i.e., thickness reduction per kilometer of
travel distance.

In equation (2), the wear rate Wt is not constant and
travel speed is the dominant parameter, along with pressure,
temperature, lubrication, sliding surface material, and
mating surface [19]. Tus, a general equation is proposed to
estimate the wear rate as follows:

Wt � αW, (3)

where α is a synthetic modifcation factor considering the
impacts of temperature, lubrication, and mating surfaces,
and W is a base wear rate subject to a determined sliding
surface material, which is a function of the product of the
travel speed V and pressure P, termed as W(PV).

Two distinct base wear rate values were observed with an
increase in PV: one is associated with mild-wear regimes
(low W) and the other is subject to severe-wear regimes
(high W) [32]. Tere was an abrupt transition between the
two regimes at the so-called PV limit. Figure 3 plots the
measured base wear rate values with an increase in PV for
plain PTFE tests performed by Ala et al. [18] and NCHRP
432 tests [19], where full-size experiments were designed and
carried out. Once the value of PV exceeds the limit, the base
wear rate increases quickly. Moreover, linear functions are
proper to ft the measurements both in low and high wear
regimes. Similar rules were found for composited PTFEs,
such as ultrahigh-molecular weight PTFE and glass-flled
reinforced PTFE [18]. Tus, the base wear rate is expressed
as a piece-wise function to distinguish between low and high
wear regimes as follows:

W(x) �
k1x, x≤PVlimit,

k2x + b2, x>PVlimit,
􏼨 (4)
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where x is the product of pressure and travel speed, i.e., PV, k1 is
the slope within the low wear regime, and k2 and b2 are slopes,
and the Y-intercept corresponds to the high wear regime.

To investigate the degrading process, the degrading
indicator should be defned in advance. For sliding surfaces
of bearings, the wear thickness of sliding materials is
regarded as a quantitative indicator to depict the wear
condition of sliding surfaces. Terefore, the degrading
process of sliding surfaces is defned as

Tw � 􏽚 αDW(x)dD. (5)

Te displacements of girder ends are monitored by using
transducers, which could indirectly refect wear status of
sliding surfaces [33]. Tus, the monitored data of dis-
placements should be introduced to express the degrading
model of sliding surfaces. Since measurement noise largely
afects calculated results, denoising is an essential data
preprocessing step. Herein, the Butterworth low-pass flter
with a cutof frequency of 0.5Hz is employed [6, 34].
According to Equation (5), the degrading process of sliding

surfaces using the monitored displacement vector
(d1, d2, . . . , dN) is

Tw � 􏽘
N

i�2
α di − di−1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌W xi( 􏼁, (6)

where

W xi( 􏼁 �
k1 Pif di − di−1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑, Pif di − di−1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤PVlimit,

k2 Pif di − di−1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 + b2, Pif di − di−1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌>PVlimit,

⎧⎪⎨

⎪⎩

(7)

where Pi is the contact pressure at instant i and f is the
sampling frequency of displacement transducers.

Te variation of pressures is not signifcant since the
permanent load (or dead load), rather than the variable load
(or live load), i.e., vehicle-induced loads, contributes to the
major part of contact pressures. If the contact pressure is not
monitored, the following assumption could be made. Two
signature pressures are defned herein, including the per-
manent load/dead load pressure and all load pressure (i.e.,
permanent plus variable). Te all load pressure is the load

Upper Plate

Sliding
Surface

Sliding
Surface

Lower Plate

Middle Plate

Anchor
Socket

Anchor
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Figure 2: Confguration of spherical bearings.
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Figure 1: Flowchart of the workfow subject to the proposed cost-efective maintenance policy.
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taken by bearings under the combined loading condition.
During normal operational phases, the contact pressure will
fuctuate between the permanent load and all load pressures.
Tus, it is acceptable to use a normal distribution (μ, σ) to
model the contact pressures based on permanent load and all
load pressures, where

μ + 3σ � PD; μ − 3σ � P0, (8)

where PD is the all load pressure and P0 is the permanent
load pressure.

Te parameters, k1, k2, and b2, of the linear ft are derived
from existing full-scale testing results.Ten, according to the
product of pressure and travel speed, the base wear rate is
determined, as shown in Figure 3.

Te synthetic modifcation factor α should be obtained
through tests. However, at present, insufcient data are

available to work out the factor [11]. Until further tests are
conducted, the factor is assumed to be 1 herein.

Based on the aforementioned discussions, the steps to
generate the degrading process are summarized as
follows:

(1) Based on the monitored displacements of girder
ends, the travel distance Di from instant (i− 1) to i is
calculated as |di − di−1|.

(2) Te average sliding speed Vi during the time window
(i−1, i) is then computed as fDi, where f is the
sampling frequency.

(3) Te average contact pressure Pi is randomly gen-
erated, where Pi ∼ NP(μ, σ).

(4) According to the product value of PiVi and Figure 3,
the base wear rate W(PiVi) is determined.
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Figure 4: Description of the maintenance policy.
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(5) According to Equation (6), the degrading indicator
Tw at instant i is calculated, where α equals to 1.

(6) We repeat steps (1)–(5), from i= 2 to i=N, where N
is the number of measured displacement time series.

2.2.2. Gamma Stochastic Model. Te gamma process is
a popular stochastic process to model the degrading process
due to its three features: (1) independent increments, (2) not
decreasing, and (3) homogeneous in time [35]. Te gamma
process is a Levy process that has explicit marginal prob-
ability density functions to facilitate computations. In this
paper, the gamma stochastic model is applied to model the
degrading process.

Replacement is the only optional maintenance action for
sliding surfaces in practice. Once replacement is completed,
the device is assumed to be “good or new,” and the degrading
indicator is set at zero. Te system evolution after re-
placement is independent of the past. Although multiple
replacement actions are conducted during the service life of
bridges, the maintenance policy only needs to be studied
within one replacement cycle since the degrading process of
each replacement cycle is independent and identical. Within
the replacement cycle of sliding surfaces, the degrading
indicator Tw(t) is assumed to evolve following a gamma
stochastic process. Te gamma process 􏽢X(t) subject to the
service age t has the following three attributes:

(1) 􏽢X(0) � 0
(2) For all 0≤ ti< tj, the increment in the degrading

indicator 􏽢X(δt) subject to the time window δt �

(tj − ti) follows a gamma probability density:

f(x; αδt, β) �
βαδt

Γ(αδt)
x
αδt− 1

e
− βx

, (9)

where αδt is the shape parameter and β is the scale
parameter. Te two parameters of the gamma dis-
tribution can be estimated using degrading data by
the statistical procedure.

(3) 􏽢X(t) has independent increments.

2.3. Cost-Efective Maintenance Policy

2.3.1. Maintenance Model. Te wear thickness of sliding
surfaces is calculated continuously based on monitored
displacement data. According to the continuous degrading
indicator, the maintenance policy is shown in Figure 4 and
specifcally described as follows:

(1) When the value of the degrading indicator equals or
exceeds the alert threshold AL, the maintenance plan
starts getting scheduled. tA denotes instant when the
degrading indicator is greater than AL:

tA � inf t: Tw(t)≥AL􏼈 􏼉. (10)

(2) When activated, a maintenance action efectively
starts after a delayed duration τ, i.e., at instant
tB= tA+ τ. Te needed delayed time before the
maintenance operation is for a global
maintenance setup.

(3) During the maintenance setup, failure of the whole
bearing might occur. If Tw(tB)≤Tw(tF) (where tF
is the instant corresponding to the failure level FL),
the whole bearing functions well, and the main-
tenance duration is subject to the time of re-
placement of sliding surfaces ρ1. If Tw(tB) > FL, the
whole bearing fails, and the maintenance duration
is the time duration of replacement of the whole
bearing ρ2. In this regard, the expression of the
expected duration of maintenance actions is as
follows:

E(ρ) � P Tw tB( 􏼁≤FL( 􏼁ρ1 + P Tw tB( 􏼁>FL( 􏼁ρ2, (11)

where P(Tw(tB)≤ FL) is the probability that the
bearing does not fail, ρ1 is the time duration of re-
placement of sliding surfaces, P(Tw(tB)> FL) is the
probability of failure of the whole bearing, and ρ2 is
the time duration of replacement of the whole
bearing.

(4) At the end of the maintenance operation tC, the
performance of sliding surfaces is as good as new,
and the degrading indicator equals to zero. Te
degrading process of the replaced sliding surfaces is
independent of the past.

Since the optimization objective of the maintenance
model is to minimize the long-term expected maintenance
cost rate, the cost model needs to be discussed in advance. It
is noted that the degrading process shown in Figure 4 is
a regenerative process with regeneration times being the
dates of the end of replacement. Once replacement is
completed, the degrading indicator is equal to zero, and the
following stochastic evolution process is independent of the
past. Terefore, the long-term expected maintenance cost
rate could be regarded as the cost of the mean downtime in
a cycle. Te maintenance cost model consists of two parts,
including the replacement cost of sliding surfaces Cs and the
replacement cost of the whole bearingCb based on the failure
criterion. In addition, the overall cost of maintenance op-
erations includes the economic loss due to bridge shut-
downs. Te specifc long-term expected cost of the
maintenance actions is as follows:

E(C) � P Tw tB( 􏼁≤FL( 􏼁 ρ1C0 + Cs( 􏼁

+ P Tw tB( 􏼁>FL( 􏼁 ρ2C0 + Cb( 􏼁,
(12)

where C0 is the toll loss per time unit.

2.3.2. Model Optimization. Te objective of the proposed
cost-efective maintenance policy is to minimize the long-

Structural Control and Health Monitoring 7



term expected cost per time unit by selecting a proper alert
threshold value AL. Te objective function U is set as

U �
E(C)

E tC( 􏼁

�
P Tw tB( 􏼁≤FL( 􏼁 ρ1C0 + Cs( 􏼁 + P Tw tB( 􏼁>FL( 􏼁 ρ2C0 + Cb( 􏼁

E tA + τ + ρ( 􏼁
.

(13)

Since the maintenance setup duration is constant,
Equation (13) is further expressed as

U �
P Tw tB( 􏼁≤FL( 􏼁 ρ1C0 + Cs( 􏼁 + P Tw tB( 􏼁>FL( 􏼁 ρ2C0 + Cb( 􏼁

E tA( 􏼁 + τ + E(ρ)
. (14)

Since the degrading process is modelled by using the
gamma process, the probabilities P(Tw(tB)≤FL) and
P(Tw(tB)> FL) can be calculated as follows:

P Tw tB( 􏼁≤FL( 􏼁 � F FL − AL; ατ, β( 􏼁 � 􏽚
FL−AL

0
f(x; ατ, β)dx,

P Tw tB( 􏼁>FL( 􏼁 � 1 − F FL − AL; ατ, β( 􏼁,

(15)

where F is the cumulative density function of the gamma
distribution and f is the probability density distribution,
whose specifc expression is listed in Equation (9).

To calculate E(tA), the expected wear thickness per time
unit should be determined in advance, which is as follows:

E Tw( 􏼁 � 􏽚
∞

0
f(x; ατ, β)xdx. (16)

Ten, E(tA) is derived as

E tA( 􏼁 �
AL

E Tw( 􏼁

�
AL

􏽒
∞
0 f(x; ατ, β)xdx

.

(17)

E(ρ) can be calculated by following Equation (11).
In this regard, the objective function can be expressed by

the object variable AL, gamma degrading process function,
and known parameters (i.e., ρ1, C0, Cs, ρ2, Cb, τ, and FL).

Once the objective function is obtained, the optimization
algorithm is applied and summarized as follows:

(1) Estimate values of the shape and scale parameters of
the gamma degrading process by using the obtained
degrading data.

(2) Determine the known parameters, namely, the
maintenance setup duration τ, the time duration of
sliding surface replacement ρ1, the time duration of

bearing replacement ρ2, the direct expense of sliding
surface replacement Cs, the direct expense of bearing
replacement Cb, the expected toll loss per time unit
C0, and the failure level FL.

(3) Start with a relatively small value of AL within the
range (0, FL).

(4) Calculate the objective function listed in Equation
(14) for selected AL.

(5) Adjust AL by a small increment unless reaching FL,
and repeat steps (3) and (4).

(6) Choose the feasible value ofAL to minimize the long-
term expected maintenance cost rate.

2.3.3. Service Life Prediction. In addition, the service life
corresponding to the alert threshold AL can be approxi-
mately estimated in advance of the degrading indicator
reaching the alert threshold in practice. Based on the gamma
degradation process, the estimated service life subject to AL
is

NAL
� inf N: 􏽘

N

w,i

△Tw,i >AL

⎧⎨

⎩

⎫⎬

⎭, (18)

where ΔTw is the degrading indicator increment in a given
time step and follows the gamma distribution listed in
Equation (9), namely, ΔTw ∼ Γ(αδt, β). Since the increment
ΔTw is a stochastic variable, the estimated service life NAL
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sufers from uncertainties. After repeating Equation (18)
many times, the distribution of the service life is achieved.

Te estimated service life totally depends on the gamma
degrading process. Te gamma process is developed based
on the available degrading indicator measurements. In this
regard, the estimated service life is highly related to the
existing monitored data. With the accumulation of newly
monitored data, the gamma process and service life will be
updated accordingly.

3. Case Study

3.1. Te Studied Bridge. A double-tower, single-span steel
box girder suspension bridge with a 1200m main span,
a 360m west approach viaduct, and a 480m east approach
viaduct in China is regarded as a studied object. Te 40.5m
width deck accommodates four trafc lanes in each di-
rection, and the designed trafc volume and speed limit are
100,000 vehicles per day and 100 kilometers per hour. A
sophisticated structural health monitoring (SHM) system
was devised and implemented for the suspension bridge to
monitor environmental factors, external actions, and
structural responses. Te SHM system comprises various
types of sensors, including strain gauges, accelerometers,
global positioning system (GPS), and temperature sensors.
Four displacement transducers, denoted as DSQ-DIS-T02-
001, DSQ-DIS-T02-002, DSQ-DIS-T05-001, and DSQ-DIS-
T05-002, were installed at the ends of girders to monitor
displacements, as shown in Figure 5. Te sampling fre-
quency of the displacement transducer is 10Hz, which
satisfes the requirement to obtain high-frequency dis-
placement components induced by vehicle loadings [4].
Since tremendous diferences in cumulative travel distances
between the DSQ-DIS-T02-001 and DSQ-DIS-T02-002
sensors were observed, faults of the DSQ-DIS-T02-001 and
DSQ-DIS-T02-002 sensors were identifed as the cause of the
diference. In contrast, the measurements of the DSQ-DIS-
T05-001 and DSQ-DIS-T05-002 sensors vary in a similar
way, as shown in Figure 6, indicating the two transducers to
be in good working order [36].

3.2. Discussion of the Recorded Displacements. Te dis-
placement transducer, DSQ-DIS-T05-002, was adopted for
the following discussion. To study the wear condition of
sliding surfaces, the cumulative travel distance is a critical
factor. To understand the wear situation of sliding surfaces,
the daily cumulative and total cumulative travel distances in
June 2019 are calculated and plotted in Figure 7, where the
Butterworth low-pass flter with a cutof frequency of 0.5Hz
is employed for denoising. It is observed that the daily
cumulative distance is relatively stable, varying between
40m and 55m, and the monthly cumulative distance ap-
proaches 1.5 kilometers.

In addition to the cumulative travel distance, the base
wear rate is also important for the wear of sliding surfaces.
According to Equation (7), the product of pressure and
travel speed determines the base wear rate, where contact
pressures slightly fuctuate between the permanent load

pressure and all load pressure as assumed. Moreover, the
travel speed can be calculated by using the monitored
displacements. Time histories of travel speeds on June 1,
2019, are plotted in Figure 8, where travel speeds vary
between 0 cm/s and 1.75 cm/s. Te distribution of travel
speeds is demonstrated in Figure 9, where the majority of
the travel speeds are concentrated in the range from 0 cm/s
to 0.3 cm/s.

3.3. Site-Specifc Degrading Model of Sliding Surfaces.
Prior to construction of the degrading model, variables (i.e.,
contact pressures and base wear rates) should be de-
termined. According to Equation (8), the distribution of
pressures is plotted in Figure 10, with the dead/permanent
load contact stress P0 �10.34MPa and all load stress
PD� 17.24MPa, according to the AASHTO code [1]. Te
base wear rate is generated based on Figure 3.

Based on the monitored displacements from the studied
bridge in June 2019, the daily and monthly cumulative wear
thicknesses of sliding surfaces are obtained and plotted in
Figure 11. Te daily cumulative wear thickness in June 2019
fuctuates between 0.0004mm and 0.0015mm, and the
monthly cumulative wear thickness is approximately
0.0225mm.

One-year data (from June 2019 to May 2020) obtained
from the displacement transducer (i.e., DSQ-DIS-T05-002)
are used to describe the degrading process. With the growth
of travel distances, the wear thickness of PTFE, regarded as
the degrading indicator, is computed, as shown in Figure 12.
It is observed that the wear thickness of sliding surfaces
approximately follows a linear degrading law. Te estimated
wear thickness in one year is 0.57mm. Moreover, according
to the visual inspection records, the reduction in the
thickness of sliding surfaces was approximately 1mmwithin
20months (i.e., the annual mean is equal to 0.6mm). Te
estimated annual mean thickness reduction (i.e., 0.57mm) is
in line with the inspection result (i.e., 0.6mm), which verifes
the efectiveness of the proposed degrading process.

Te daily cumulative wear thickness data in one year are
used to ft the gamma distribution. Te histogram and
gamma ft are plotted in Figure 13. Te ftting results show
that the shape parameter is 1.2154 subject to a time interval
of one day, and the scale parameter is 0.0013.

3.4. Cost-Efective Maintenance Policy. Te objective of the
cost-efective maintenance policy is to minimize the long-
term expected cost rate by selecting an optimal alert
threshold. First, costs of feldmaintenance actions need to be
investigated. It is known that the cost varies signifcantly for
diferent companies. For instance, based on existing records,
replacement of PTFE will cost US$111,161 and 13weeks for
a British company, while it cost US$33,585 and 6weeks for
a Chinese one in 2007 [20]. Considering the actual situation
of the studied bridge, we prefer to refer to the prices in the
Chinese market. Moreover, the total cost of replacement
should contain two parts, which are the direct expense for
replacement and the indirect cost for bridge shutdowns.
Based on statistical analysis, the mean daily toll income for
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a similar suspension bridge is approximately US$500,000
[37]. In this paper, the infuence of bridge shutdowns on the
social economy is neglected since the expense is difcult to
estimate within existing information.

Since no standard guideline regarding sliding surface
replacement is published, the costs within the analysis are
determined according to the experience and investigation.
Te cost subject to the replacement of sliding surfaces is

Expansion joint
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Figure 5: Layout of displacement transducers installed at the end of girders.
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estimated as US$33,585 and 6weeks, where the mean daily
loss of the toll income is US$310,980, while the cost cor-
responding to the replacement of bearings is US$388,726
and 12weeks. Terefore, the total expenses for the re-
placement of PTFEs and bearings are US$13,094,785 and
US$26,511,125, respectively. It is noticed that the major part
of the expense is induced by the loss of toll income.

Te maintenance setup duration is determined as
three months in this case study. During the maintenance
setup time, the replacement plan is frst made, and then,
the preparatory work follows such as material purchase
and labour arrangement. Te failure criterion of sliding
surfaces is defned as the remaining thickness of 0.8 mm
[20]. Since the initial thickness of the PTFE pad is 3mm,
the failure level is indicated by a wear thickness of 2.2 mm
in this case.

Te initial alert threshold AL is set at 1mm, and the
increment is determined as 0.001mm. Te long-term ex-
pected maintenance cost rate is calculated and plotted in
Figure 14. With the growth of alert thresholds at an earlier
stage, the long-term expected cost rate decreases since the

failure probability is low and the expected service life gains.
When the alert threshold approaches 2.0160mm, the ob-
jective function reaches its lowest point. Once the alert
threshold exceeds 2.0160mm, the potential cost of failure
increases to enlarge the long-term expected cost rate. Tus,
the optimal alert threshold is determined as 2.0160mm to
achieve a minimum long-term expected maintenance cost
rate of US$9,427 per day. Te conclusion drawn from the
proposed cost-efective maintenance policy is similar to that
from engineering experience, which recommends replacing
sliding surfaces when the wear thickness reaches 2mm [20].
Although the conclusions are similar, this study provides
a solid theoretical foundation and could be straightforwardly
transferred to other case studies.

In addition, the service life of PTFE can be estimated
based on the gamma degradation process. Due to the un-
certainty within the degradation process, the service life
subject to the alert threshold follows a Gaussian distribution
with a mean of 1278 days and a standard deviation of 32 days
(see Figure 15). It should be pointed out that the estimated
service life totally depends on the one-year monitored
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Figure 11: Daily cumulative wear thickness and total cumulative wear thickness in June 2019.
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displacement of the girder end. With the accumulation of
newly monitored data, the gamma degradation process
should be updated, and the distribution of estimated service
life will be updated accordingly.

4. Conclusions

To determine the optimal alert threshold for replacement of
sliding surfaces of bridge bearings, a cost-efective main-
tenance policy is developed and proposed in this study to
consider maintenance setup time.Te following conclusions
can be drawn from the research:

(1) Te sliding surface-triggered run-to-failure process
of bridge bearings is discussed in this study based on
existing inspection and maintenance records. Tree
stages are observed within the failure process, in-
cluding failure of sliding surfaces, locking up of
bearings, and failure of entire bearings.

(2) Te gamma process is used to model the degrading
process of sliding surfaces by using the indicator of
wear thickness, which is derived from the continu-
ously monitored displacements and the wear rate
model of sliding materials. Te cumulative travel
distances and sliding speeds can be derived from the
measured displacements, and the base wear rate is
determined by the travel speed and contact pressure.
Te gamma stochastic model is used to model the
uncertainty within the degrading process.

(3) Te optimal alert threshold is determined through
optimization analysis to minimize the long-term
expected maintenance cost rate, where the cost in-
cludes the direct expense of maintenance operations
and the economic loss of bridge shutdowns. Te
objective function is built based on the potential cost
of failures and service ages. Te parameters in the
objective function are derived from the gamma
degrading model and known factors such as main-
tenance setup time.

(4) Bearings in the case study suspension bridge are used
to validate the efectiveness of the proposed meth-
odology. Measured displacement data of girder ends
are used to build the gamma degrading model of
sliding surfaces. As a result, the wear thickness of
sliding materials approximately follows a linear law,
and the estimated wear thickness in one year is nearly
0.57mm based on one-year feld monitored data.

(5) Based on the cost-efective maintenance model, the
optimal alert threshold is determined as 2.0160mm
subject to a minimum long-term expected cost rate
of US$9,427 per day. In addition, the estimated
service life of PTFE before the alert threshold follows
a Gaussian distribution with a mean of 1278 days and
a standard deviation of 38 days.

Tis paper makes a contribution to decision-making of
maintenance policies of sliding surfaces. In the future, full-
scale experiments regarding the tribology of sliding mate-
rials are needed to calibrate the base wear rate since only

limited data are available currently. Furthermore, the pro-
cess from the failure of sliding surfaces to failure of the entire
bearings still needs more data support for calibration. Eforts
should be made to depict this process through either ex-
perimental studies or feld observations.
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