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Image-based bridge displacement measurement still sufers from certain limitations in outdoor implementation. Each of these
limitations was addressed in this study. (1) Te laser spot is difcult to identify visually during the object distance (OD: mm)
measurement using a laser rangefnder, which makes the scale factor (SF: mm/pixel) calibration tricky. To overcome this issue,
a stereovision-based full-feld ODmeasurement method using only one camera was suggested. (2) Sunlight refected by the water
surface during themeasurement causes light spot interference on the captured images, which is not conducive to target tracking. A
network for light spot removal based on a generative adversarial network (GAN) is designed. To obtain a better image restoration
efect, the edge prior was novelly designed as the input of a shadow mask-based semantic-aware network (S2Net). (3) A coarse-
to-fne matching strategy combined with image sparse representation (SR) was developed to balance the subpixel location
precision and efciency. Te efectiveness of the above innovations was verifed through algorithm evaluation. Finally, the
integrated method was applied to the vibration response monitoring of a concrete bridge impacted by the trafc load. Te image-
based measurement results show good agreement with those of the long-gauge fber Bragg grating sensors and lower noise than
that of the method before improvement.

1. Introduction

Calibration of the scale factor and the target location are two
critical steps in image-based bridge displacement mea-
surement technology [1–3]. However, the convenience and
reliability of traditional techniques used to perform these
two steps need to be improved.

Te scale factor (SF) is used to convert image dis-
placement (pixel) into real displacement (mm) [4]. As the
object distance (OD)-based method does not need a refer-
ence object having a known size near the measured target, it
is widely used. For this method, two parameters, OD and the
camera angle, are measured. At present, techniques to
correct the efects of camera angles have been well studied
[4, 5]. However, OD measurement relies on the laser

rangefnder, and the related challenges have not been suf-
fciently researched. On the one hand, target sections are
difcult to identify directly in the feld of view (FOV), es-
pecially when the bridge bottom is curved. On the other
hand, the indicator point of a laser rangefnder is difcult for
human eyes to capture, especially during the daytime. In
addition, laser ranging can only obtain the OD of sparse
points. Consequently, displacement conversion cannot be
carried out if the measured distance does not correspond to
the real targets. To avoid the above issues, visual ranging has
been widely used. However, the working distance of an
integrated depth camera is too small to be applied to the
bridge structures considered in this study. Given the above
analysis, a stereovision-based full-feld OD measurement
method was proposed. To improve the practicability in the
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feld measurement, only one camera and two monopods are
used in fact, which is diferent from the traditional binocular
stereovision method. Scale conversion uses the actual dis-
tance between two shooting positions because it is easier to
achieve than placing a ruler in the feld of view.

Furthermore, the images of a bridge bottom for dis-
placement calculation are often degraded by light spots
refected from the water surface, reducing the matching
reliability of the region of interest (ROI). Terefore, it is
necessary to frst restore the image. Te light spot problem
encountered in this task is similar to the shadow phe-
nomenon [6–8] in text image processing. In addition to
traditional image optimization methods [9–12], deep
learning (DL) has received immense attention in the past
few years. As one of the most popular models in deep
learning, generative adversarial network (GAN)-based
models [13, 14] have been widely used in image restora-
tion. Recently, a shadow mask-based semantic-aware
network (S2Net) [15] was proposed and showed a better
restoration efect [16, 17]. For instance, nonshadow re-
gions were kept unchanged when fltering shadows. More
importantly, much attention was paid to artifacts around
the shadow edge. Accordingly, S2Net was also used for spot
removal in this study. However, to achieve equilibrium in
the training process of GAN, although the quality of the
restored image is signifcantly improved, the gradient is
smooth, and detail clarity is lost. Inspired by the idea in
DeepSemanticfaceNet [18], it is proposed to take the edge
image of the original image as input and redesign the loss
function.

Using the restored images, both the accuracy and speed
of the target location need to be addressed. Widely used
template-matching (TM) techniques [19, 20] cannot meet
real-time requirements and will fail when features on the
structure surface are sparse. Feature-based methods
[21, 22] have fewer demands regarding the texture and take
less time. By contrast, the sparse representation (SR)-based
target tracking method [23] shows higher efciency and
robustness when image quality is afected. However, when
the scene is complex or the real-time map is very small,
there are usually many similar areas. In such cases, the
mapping position of nonzero items is very scattered, which
can easily lead to inaccurate positioning. To mitigate this
issue, a distance-weighted sparse representation algorithm
[24] was developed. In addition, the larger the dictionary
size, the faster the sparse representation and the lower the
positioning accuracy. Terefore, a coarse-to-fne matching
strategy was designed to guarantee both speed and
accuracy.

Te remainder of this paper is structured as follows: Te
research framework and the algorithmic innovations, which
cover three blocks for bridge displacement measurements,
are introduced in Section 2. Te efectiveness of the im-
proved algorithm is evaluated in Section 3. Ten, the en-
gineering application to a concrete bridge is introduced in
Section 4. Finally, this research work is summarized in
Section 5.

2. Proposed Method

A convenient and robust camera-based method for bridge
displacement measurement was proposed. Te framework
is shown in Figure 1. First, the distance from the target to
the camera needs to be measured; then, SF is determined
[4] and used to convert the pixel displacement into physical
displacement. Ten, image sequences are collected before
and after deformation, and the target region is continu-
ously positioned in these sequences to get the pixel dis-
placement. As the efect of the light spot is considered,
image preprocessing is required. In addition, to balance
positioning speed and accuracy, a coarse-to-fne matching
method based on sparse image representation was pro-
posed. As the camera can continuously capture the image
of the whole bridge, the displacements at multiple control
sections of the whole bridge can be extracted synchro-
nously. Object distance measurement, image preprocess-
ing, and target location are the three key steps that afect the
accuracy of measurement results. Corresponding in-
novative works were carried out, and the principles were
introduced as follows.

2.1. Principle of Stereovision-Based Ranging Using Only One
Camera. Conventional binocular stereovision requires
two fxed cameras. However, to minimize hardware costs,
only one camera was used in this study. As shown in
Figure 2(a), the internal parameter matrix K of the camera
is kept constant and can be calibrated in advance [25].
After focusing, the lens was locked, and then, two images
of the same scene were shot at diferent stations.
Te coordinates of the matching point pair are obtained
based on the feature point-matching algorithm SURF-
BRISK [26]. Here, l/r in the parameter’s subscript in-
dicates that the parameter is for the left/right camera. Te
projection equation corresponding to two images can be
written as

slpl � MlXw � Ml1 ml( 􏼁Xw,

srpr � MrXw � Mr1 mr( 􏼁Xw,

⎧⎪⎨

⎪⎩
(1)

where Xw � (xw yw zw)
T is the world coordinate of the target

point, sl and sr are the scale parameters of the left and right
cameras, pl and pr are the coordinates of the projection
points in the left and right images, and Ml and Mr are the
projection matrices of two cameras.

Let the 3× 3 part of the projection matrix coordinates be
Ml1 and Mr1, and the remaining 3×1 part be ml and mr.
Setting X� (xw yw zw), equation (1) can be rewritten as

slpl � Ml1X + ml,

srpr � Mr1X + mr.

⎧⎨

⎩ (2)

By eliminating X from the above equation,
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srpr − slMr1M
−1
l1 pl � mr − Mr1M

−1
l1 ml. (3)

As both sides of the above equation are three-
dimensional vectors, sl and sr can be eliminated to obtain
the relationship between pl and pr, which are just the polar
constraint. Let the left side of equation (3) be m, and then,
equation (3) can be transformed into

m � mr − Mr1M
−1
l1 ml. (4)

Te antisymmetric matrix of m is denoted as [m]×.
Asm× [m]× � 0, equation (5) can be derived:

[m] × srpr − slMr1M
−1
l1 pl􏼐 􏼑 � 0. (5)

Multiplying pT
r by the left side, srp

T
r [m] ×

pr − slp
T
r Mr1M−1

l1 pl � 0 can be obtained. As [m] × pr is
perpendicular to pT

r , srp
T
r [m] × pr � 0. Ten, the linear

relationship between pl and pr can be described as

p
T
r [m] × Mr1M

−1
l1 pl � 0. (6)

Let F� [m]×Mr1M−1
l1 ; then,

p
T
r Fpl � 0, (7)
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Figure 1: Overview of the proposed bridge displacement measurement method.
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where F is the fundamental matrix. Te eight-point method
was adopted to solve F. Te intrinsic matrix E refects the
relation of the space points in diferent coordinate systems
(equation (8)) which can be obtained through K and F
(equation (9)):

p
T
r Epl � 0, (8)

E � KT
r FKl, (9)

where E is only related to the camera motion, and in the
sense of a nonzero factor diference, it can be expressed as

E � R RT t􏽨 􏽩. (10)

Te rotation matrix R and the translation vector t� (tx ty
tz) can be recovered by performing SVD decomposition of E,
and then, the two camera matrices Ml and Mr are obtained.
Finally, the spatial coordinates are reconstructed through the
triangulation method using the projection matrix. However,
due to the lack of real-scale information, the three-
dimensional result here is dimensionless. Te conven-
tional method is to place a measuring scale of known length
in the feld of view. But this is suitable for the test scenario
focused in this study. Terefore, it is proposed to realize the
scale conversion by the distance between two shooting
stations, which is easier to measure. Te specifc instructions
are as follows.

According to the principle of relative orientation, the
distance T (mm) between the optical centers (Figure 2(b)) is

T �

�����������

T
2
x + T

2
y + T

2
z

􏽱

, (11)

where Tx, Ty, and Tz are the components of T in three di-
rections. Te relationship between them and the elements of
t is Tx : Ty : Tz � tx : ty : tz. As T can be measured in

advance, then the relative orientation relationship and 3D
coordinates with a real scale will be obtained. zw is just OD
used for calculating the displacement conversion factor [4].

2.2. Proposed GAN-Based Light Spot Removal Method con-
sidering Edge Priors. Te architecture of the GAN-based
light spot removal method is shown in Figure 3. It con-
sists of two parts, the frst network is for light detection and
the second is for light spot removal. Te purpose of
multitask learning is achieved by taking the output of the
frst network as the input of the second network. To im-
press the interference of the light spot on target posi-
tioning, an end-to-end spot mask-based semantic-aware
network (S2Net) [15] for light spot removal was adopted in
this study. Using the guidance of semantic prior from the
spot masks, spot-mask-based semantic transformation
(SST) transfers statistical information from nonspot fea-
tures to spot features, and the nonspot features were kept
intact.

As the importance of edge information to image res-
toration has been proved [27], the author proposed to use
the edge image of the degraded image as additional network
input for deep training. Te Canny() function of OpenCV in
Python was called for edge extraction to construct a new
dataset, called GOPRO Gauss edge. Te restored clear image
can then be expressed as

L � B + G(B, E(B)), (12)

where B is the degraded image and E(B) is the edge image of
B. Trough the edge constraint, more prior information is
provided, and more attention is paid to the key features of
the structure. Te image gradient will be clearer and more
detailed. Te loss function of the constructed network
consists of four parts.
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Figure 2: Stereovision-based object distance calibration: (a) feld operation diagram; (b) stereovision model.
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2.2.1. Edge Loss Ledg. With the introduction of E(B) in the
training stage, to ensure that E(B) can be adequately con-
sidered and to avoid the possible ringing phenomenon, the
edge loss was designed as

Ledg � 􏽘
i�k

i�1
E(B)⊙ Li − Si( 􏼁

����
����1, (13)

where ⊙ represents the dot product. Si, Li, and B are the input
clear image, the restored clear image, and the blurred image
corresponding to the input clear image, respectively. Te
generator based on GAN is shown in Figure 3.

2.2.2. Scale Loss Lsca. Tree scales (256× 256, 128×128,
and 64× 64) were set in this network, and the low-scale
output was fused to the larger scale by upsampling. Te loss
of each scale is L1 actually, corresponding to the pixel
diference between the restored clear image L and the real
clear image S:

Lsca � 􏽘
i�k

i�1

1
ciwihi

Li − Si

����
����1, (14)

where k represents multiple scales and k� 3 in this method
and ci, wi, and hi are the channel number, width, and height
of the input image, respectively.

2.2.3. Adversarial Loss Ladv. To solve the problem that the
GAN network training does not easily converge, deep
convolution is used to generate the optimized formula of the
adversarial network DCGAN [28]. Te adversarial loss is
only applied to the output of the last scale:

Ladv � −logD(G(B, E(B))), (15)

where G stands for the generator and D represents the
discriminator.

Furthermore, because of the existence of the skip con-
nection, Ladv can be written as

Ladv � −logD(L). (16)

2.2.4. Perceptual Loss Lper. Perceptual loss [29] helps en-
hance the detail of the image and is also used only for the last
output:

Lper � 􏽘 ϕ1(L) − ϕ1(S)
����

����
2
2, (17)

where ϕl(x) is the frst layer of a characteristic pattern. Te
perceptual loss layer used in this study is the same as that in
the study by Shen et al. [27]. Te perceptual loss was then
calculated through the pooling layers, i.e., Pool2 and Pool5.

To sum up, the loss function of DeepEdgeGAN is

L � Lsca + λadvLadv + λedgLedg + λperLper, (18)

where the weight values are λadv � 1 × 10− 4, λedg � 10, and
λper � 5 × 10− 5, respectively [27].

GAN-based methods are prone to generate artifacts, and
optimization is underconstrained due to unstable data ac-
quisition. Since large-scale high-quality datasets [15] are
publicly available, we adopt the strategy of training on paired
data. Large and diverse training datasets can give the trained
model better generalizability. Te input image is resized to
256× 256, and the minibatch size is set to 8 for training. Te
initial learning rate is 0.0001. Te learning rate is reduced by
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Figure 3: Light spot removal method considering edge priors.
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the “poly” policy [30], with a power of 0.9. We trained 600
epochs for each network.

2.3. Coarse-to-Fine Location Algorithm Based on Sparse
Representation. At present, image restoration mainly fo-
cuses on target detection reliability, while positioning ac-
curacy is not given enough consideration, especially the
displacement measurement to be realized in this study. In
addition, existing image matching still sufers from issues of
low matching efciency, high time complexity, and com-
putation intensiveness. Combining with SR, a distance-
weighted image-matching method from coarse-to-fne was
proposed.

For an image x, it can be reexpressed as

x � Dα. s.t.‖α‖0 ≤ k, (19)

where D � d1, d2, ..., dn􏼈 􏼉 ∈ Rm∗n is the dictionary and α �

α1, α, ..., αn􏼈 􏼉 is the sparse vector matrix. Referring to the
conclusion in the research by Donoho [31], the solution of
equation (19) is

􏽢α � argmin
α

‖Dα − X‖
2
2 + λ‖α‖1, (20)

where λ≥ 0. For image matching, after obtaining the dic-
tionary D of a real-time image x, the sparse vector α can be
obtained using equation (20). arg min stands for the ar-
gument of the minimum. Te atom of D corresponding to
max(α) represents the position pp (m̂, n̂) of the real-time
reference x in S. max(α) is the largest element of α. Tis can
be expressed using the following formula:

pp � ( 􏽢m, 􏽢n)

� map(max(α)),
(21)

where map () is the position identity mapping function. Te
positioning error is

PD � |pt − pp|

� |m − 􏽢m| +|n − 􏽢n|,
(22)

where pt (m, n) is the real pixel location of x in S.
It is preferable to use as many identical atoms as possible

to express the real-time graph. Considering the spatial lo-
cation constraint between the real image and the reference
image, a distance constraint operator ω was introduced to
ensure that atoms near the real location were given more
emphasis during the sparse expression of real-time images.
Ten, the nonzero term of the sparse vector α is constrained
to be near the location pp as much as possible, that is, to
ensure that similar candidate positioning regions have
similar coefcient values.

Based on the above analysis, a sparse representation
algorithm based on distance weighting was developed.Ten,
the solution of equation (19) becomes

􏽢α � argmin
α

‖Dα − x‖
2
2 + λ‖ω ∘ α‖1, (23)

where ω is the distance constraint operator, representing
the Euclidean distance between x and D, “∘” denotes
the operation at the pixel level, and λ‖ω ∘ α‖1 is the dis-
tance constraint of SR. With the distance constraint ω,
the sparse expression is further sparse, while ensuring
that similar atoms have approximate sparse coefcient
values.

A small length t (or the size of the sliding window, unit:
pixel) can get higher localization accuracy but lower
matching efciency. Ten, a coarse-to-fne matching strat-
egy was designed, as shown in Figure 4. First, an initial step
length t1 was set to construct a dictionary for coarse
matching. Ten, a smaller step length, t2 �1 pixel, was set to
construct a new dictionary for fne localization.

3. Algorithm Tests for Image Restoration
and Localization

Te images of real bridges are used for algorithm tests
through two criteria.

3.1. Restoration Efects. In this study, the peak signal-to-
noise ratio (PSNR) and structural similarity (SSIM) [32]
were set to evaluate restoration efects.Ten, 500 images and
corresponding edge images were input into the proposed
restoration model considering the edge prior. Te values of
PSNR and SSIM were then calculated.

Reference image S Restored image x

Get the size of S Get the size of x

Set the operation step t of the sliding window and prepare 

Fine localization result

Reset the step size t 'and build a small-scale dictionary 

Coarse-to-fine localization

Coarse localization result

Obtain the dictionary D of reference image S

Solve the sparse vector α of x in D

Find the largest element of α for target positioning

Figure 4: Flowchart of the proposed target localization method
based on the weighted SR and coarse-to-fne matching strategy.
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For comparison, the above operations were also per-
formed in the training model without considering the
edge prior.

From Figure 5, it is obvious that the restored image
considering the edge has a higher image quality and clearer
details. As presented in Table 1, it can be seen that the
restoration efect is further improved after the introduction
of the edge prior. Tis shows that the introduction of the
edge prior plays a major role in promoting the restoration
efect.Tis is because edge information provides the network
with a clearer optimization direction in the learning process
and a better constraint on the image structure in the res-
toration process.

3.2. Matching Accuracy. Te original images disturbed by
light spots were used as reference images, whose size was
2048× 2048. Te real-time images were from the restoration
images, and the size was 50× 50. A total of 100 small images
were randomly selected from each restored large image as
real-time images. Te average matching localization results
of these 300 small images were counted as the fnal result.
Tematchingmethods include template matching (TM), the
original method, subsequently improved methods, and the

proposed method. Teir implementation details are shown
in Table 2. Te red word indicates that this step takes an
improved approach. For the proposed method, the step sizes
are t1 � 5 and t2 �1. Te positioning error was calculated
through equation (22).

In this study, the average of the positioning error was
used as the matching accuracy, and its unit is a percentage (%),
which represents the proportion of the real-time imagemeeting
the positioning error in the total test images under the current
setting of PD. For example, the positioning accuracy of TM is
43.27 when PD≤ 1, indicating that 43.27% of 300 real-time
images have pixel error less than or equal to 1 pixel.

Two conclusions can be drawn from Table 2. First, In
contrast to TM, the matching accuracy of the original
method has been noticeably improved. In the condition of
PD≤ 5, positioning accuracy is improved by 56.66%. Second,

Image with uneven illumination Without considering the edge prior Considering the edge prior

Figure 5: Comparison of image restoration results.

Table 1: Comparison of image restoration results considering edge
prior and without edge prior.

Methods PSNR (DB) SSIM
[15] 29.5274 0.8946
Ours 33.0936 0.9335

Structural Control and Health Monitoring 7



comparing a series of optimized methods with the original
method, it is found that with the introduction of the edge
information and distance weighting algorithm, positioning
accuracy can be improved to some extent. However, it is still
not enough for the subpixel measurement requirement. Te
coarse-to-fne search strategy makes the most signifcant
contribution to subpixel positioning accuracy. With the
improved method, matching accuracy was substantially
improved.

4. Real Bridge Application

As shown in Figure 6, the tested structure is a concrete
bridge with three consecutive spans. Te middle span with
a length of 85meters is the monitoring object. Te contact-
type deformation sensor, long-gauge fber Bragg (FBG), has

been installed on the bridge, which can be used as a refer-
ence. FBG can sense the minor change in external physical
quantities through the change in the wavelength of light.
Defection is inversed directly through the conjugate beam
method, and its principle is shown in Figure 7(b). Te
positive strain on the beam surface at section x is ε(x) when
defection is y(x). Te angular displacement is θ(x). Te
height of the neutral axis is hm.Q is the shearing force, andM
is the bending moment, respectively. When the boundary
(x� 0) conditions of the virtual beam satisfy Q0 � θ0 and
M0 � y0, the angular displacement distribution θ(x) of the
real beam is equal to the shear distribution Q(x) of the
virtual beam and the defection distribution y(x) of the real
beam is equal to the moment distribution M(x) of the
virtual beam. Tis can be expressed by the following
equation:

Table 2: Localization result of diferent methods.

Methods PD≤ 0.1 PD≤ 1 PD≤ 2 PD≤ 5
Template matching 27.83 43.27 35.00 35.17
Original method
[15] + parse expression + coarse matching 23.83 52.17 87.33 91.83
“[15] + edge prior” + sparse expression + coarse matching 24.07 53.91 89.85 92.96
[15] +weighted sparse expression + coarse matching 23.65 53.52 87.98 91.84
[15] + sparse expression + coarse-to-fne matching 70.44 86.27 90.16 92.58

Proposed method
“[15] + edge prior” +weighted sparse expression + coarse-to-fne matching 76.79 90.46 92.83 94.67

(a) (b) (c)

(d)

Figure 6: Survey of real bridge displacement measurement based on the image and FBG: (a) real bridge to be measured; (b) system layout;
(c) captured image; (d) layout of FBG.
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Q(x) � 􏽚
x

0
q(x)dx + Q0, M(x)

� 􏽚
x

0
􏽚

x

0
q(x)dx􏼒 􏼓dx + Q0x + M0,

θ(x) � 􏽚
x

0
q(x)dx + θ0, y(x)

� 􏽚
x

0
􏽚

x

0
q(x)dx􏼒 􏼓dx + θ0x + y0.

(24)

Here, q(x) � −ε(x)/hm “−” indicates that the parameter
belongs to the virtual beam. Based on the long-scale
sensor, the defection distribution is not dependent on
the load and stifness distribution of the beam; rather, it
only has an explicit linear relationship with the measured
long-scale strain distribution. In addition, qm in the
equation accounts for the change in neutral axis height, so
the method can also be applied to beams with variable
cross-sections.
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Figure 7: Defection inversion principle of the bridge based on long labeled FBG. (a) Schematic diagram of bending deformation of Euler
beam. (b) Schematic diagram of the conjugate beam method for calculating beam defection by long-gauge strain.
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Figure 9: Efect of image restoration and its improvement in the displacement accuracy: (a) display of the restoration efect; (b) comparison
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For easier comparison, the location of the focused target
of the camera was consistent with that of FBG. Two images
(Figure 8(a)) of the target from diferent perspectives were
used to obtain the 3D point cloud (Figure 8(b)). Ten, the
OD of each target was deduced for scale factor calculations,
as shown in Figure 8(c). Te lens used has a focal length of
100mm.Te acquisition frequency was 10Hz. As shown in
Figure 9(a), the captured images were afected by light
spots. Ten, with the light spot removal model, they were
restored. Compared to the original image without a light
spot at other times, it can be seen that the restored image is
qualifed. Te original method, “[15] + sparse expres-
sion + coarse matching,” was used to extract the dis-
placement from the original image, and the results are
drawn using the blue line in Figure 9(b). To contrast against
it, the improved method was applied to the restored images,
and the displacement measurement result was described
using the red line. Taking the results from FGB as a ref-
erence, it can be concluded that the abnormal data were
efectively reduced by performing image restoration, and
the noise level was controlled through the improved
matching strategy. Te displacement curves for several
sections are shown in Figure 10(a). By extracting the de-
fections of diferent measuring points at the same time, the
linearity of the defection of the bridge can be obtained, as
shown in Figure 10.

5. Conclusions

Two key problems, object distance measurement and light
spot interference, which are often encountered in the
process of camera-based structure displacement mea-
surement, were studied. Te main contributions of this
study are as follows:

(1) To overcome the limitations of the laser rangefnder,
a fast and accurate object distance measurement
method based on stereovision was suggested, which
has the advantage of full-feld multipoint synchro-
nous calibration.

(2) To protect the image quality from random light
spots, the edge information of the degraded image
was designed to be used for deep learning to achieve
a better restoration efect.

(3) To balance the matching speed and accuracy when
images are degraded, a distance-weighted coarse-
to-fne matching strategy was developed combining
sparse representation.

(4) Trough the algorithm test, it was found that the
introduction of edge priors causes the restored image
to have a higher signal-to-noise ratio and a higher
structural similarity with the original image. Com-
pared with the template-matching method without
considering image restoration, the sparse
representation-based matching method has higher
matching accuracy using the restored images, and
using the coarse-fne matching strategy, the accuracy
will be further improved.

(5) Te integrated algorithms above were applied to
a concrete bridge, and the vertical displacement
impacted by the normal trafc load was monitored.
Compared with the algorithms before improvement,
the results of the proposedmethod are closer to those
of the FGB sensor and the noise level is lower.

In conclusion, this study is benefcial in promoting
image-based displacement measurement technology to
adapt to the complex environment. Comprehensive atten-
tion will be given to other possible factors in the future.
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