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Computer vision is becoming one of the most popular remote-sensing techniques and has been used widely in displacement
monitoring and damage identifcation of in-service bridges. Nevertheless, several obstacles, including limited sampling rate,
insufcient resolution for remote measurement, and error induced by camera tilting, restrict the application of vision-based
approaches in structural health monitoring (SHM). Te combination of a traditional SHM system and a modern remote-sensing
technique can signifcantly improve the accuracy and reliability of the monitoring system. To make full use of data collected in the
traditional SHM system and computer vision technique and overcome their shortcomings, we presented an improved bridge
displacement estimation approach for SHM purposes by fusing camera-based and acceleration measurements. First, we estimated
the scaling factor, which transfers pixel displacement to real displacement under tilt photogrammetry, by the acceleration
reconstructed and camera-based displacements in the same frequency band without the actual size of the structure or the
measurement parameters. Ten, we extracted the low-frequency displacement from the vision-based measurement, and we fused
the high-frequency displacement that was reconstructed from the acceleration measurement to achieve high-accuracy dis-
placement estimation.Te efciency of this method was validated through dynamic load tests on a suspensionmodel bridge in the
laboratory and feld tests on a highway and subway cable-stayed bridge.

1. Introduction

Displacement response under external loads is vital for civil
infrastructures such as bridges in structural health moni-
toring (SHM) and structural condition assessments. Tra-
ditional displacement monitoring systems are based on
networks of wired or wireless contact sensors, such as linear
variable diferential transformers (LVDTs) and dial in-
dicators [1]. Tese contact sensor-based displacement
monitoring systems are inconvenient because a platform
under the bridges is needed as the benchmark. Furthermore,
the cost of the maintenance of these sensors is comparatively
expensive because of the harsh environment they are
exposed to.

In recent years, computer vision-based methods have
emerged as an urgent requirement for remote and

noncontact monitoring. With the advantages of remote
sensing, cost-efectiveness, easy installation, and multipoint
synchronous measurements, vision-based techniques have
been studied widely in lab-scale experiments and feld ap-
plications. In these methods, the cameras are installed far
away from the target structures to track the deformation
associated with the manually attached targets or the natural
targets [2]. For example, Feng and Feng [3] validated the
cost-efectiveness of the vision-based method according to
laboratory experiments on simply supported beams and feld
tests of the Manhattan Bridge. Yu and Zhang [4] improved
the feature tracing algorithm using a simplifed fast-Hessian
detector and a prepurifcation-based RANdom sampling
consistency (RANSAC), which was applied to feld testing of
an arch bridge with a 100m main girder. Luo et al. [5]
developed a robust vision sensor through a gradient-based
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template matching algorithm and conducted a series of
experiments and feld tests to validate the efciency. Jiang
et al. [6, 7] developed a robust vision-based algorithm for
tracking line-like structures in a noisy background. Tese
examples have confrmed the potential for computer vision
in structural displacement monitoring.

To obtain accurate displacement, a necessary step before
conducting measurement is camera calibration to identify
the projection relation between three-dimensional (3D)
world coordinates and two-dimensional (2D) image co-
ordinates as well as to eliminate image distortion. Te
general method for camera calibration is called perspective
transformation, in which the intrinsic parameters such as
focal length and external parameters such as camera pose
can be obtained. Te most commonly used camera cali-
bration method was proposed by Zhang [8], in which
multiple images are taken from a black-and-white chess-
board at various locations and orientations. Furthermore,
Kim et al. [9] proposed the use of a side-view camera for
cable displacement monitoring. Te information related to
the pose of the camera was obtained by the estimation of
camera projection. In displacement measurement of civil
infrastructures, the standard camera calibration method can
be simplifed according to the properties of the camera, lens,
andmotion of the target. Whenmotion occurs in a 2D plane,
the calibration can be realized by solving the homography
matrix. For example, Xu et al. [10] calibrated a consumer-
grade camera by solving the homography matrix and
measured the displacement of a cable-stayed footbridge. Wu
et al. [11] developed a vision-based displacement sensing
system for 2D displacement monitoring of the experimental
structures and employed the homography matrix to re-
construct the space coordinates from the image coordinates.
Te camera calibration procedure could be further simpli-
fed by limiting the displacement in one direction, such as
the vertical displacement of bridges. A parameter called the
scaling factor (SF) was introduced for images to physical
displacement transformation. SF can be established based on
the relationship between image size and corresponding
physical size. If the optical axis of the camera is perpen-
dicular to the object surface, SF can be estimated accurately
when the focal length, measurement distance, pixel or image
size, and corresponding physical size are known. If the
optical axis is not perpendicular to the object surface, and the
optical axis has a tilt angle to the normal line of the object
plane, this angle should be considered in the estimation. A
formula for angle correction was proposed by Dong et al.
[12]. Feng et al. [13] discussed the infuence of tilt angle on
the measurement accuracy and noted that the error in-
creased with an increase in the tilt angle, and they proposed
a simplifed expression. Another SF estimation method was
proposed by Khuc and Catbas [14, 15], in which the
checkerboard was employed to calibrate the camera before
tests, and the displacement could be measured without using
a physical target on structures.

Te efciency of computer vision technology has been
widely validated both in experimental and feld tests.
Nevertheless, several practical drawbacks are still associated
with applying vision-based sensors in monitoring

displacement in the feld [5, 16]. First, measurement ac-
curacy depended signifcantly on measurement distance and
light conditions. For a camera with a fxed setting, the targets
of high-resolution and large feld-of-view (FOV) measure-
ments were mutually conficting. Simultaneous spatial dense
displacement monitoring of a large-scale structure with
a single camera may not be practical unless the resolution of
the video is decreased, which may cause inaccurate moni-
toring outcomes [17]. Second, the framerates of the main-
stream consumer-grade cameras in the market are limited to
20-60Hz, which might prohibit the ability to record the
high-frequency dynamic motion of the civil engineering
structures and could cause aliasing issues according to the
sampling theorem. Finally, the optical axis of the camera
should be perpendicular to the object plane; otherwise, an
error would be introduced when pixel-to-physical co-
ordinate conversion is performed. Te ideal placement of
a camera is difcult to identify in the feld, and thus, the
target structure must be monitored at a large pitch angle.
Furthermore, it is inconvenient to measure the distance
from the camera to the target structure as well as the
structural size corresponding to the image size, both of
which are essential to complete traditional SF
calculations [13].

Te measurement of acceleration is simpler and more
convenient than displacement monitoring because no ref-
erence is required. Terefore, accelerometers are essential
sensors in SHM systems. Studies about displacements that
have been reconstructed bymeasured accelerations also have
been reported [18, 19]. For example, Lee et al. [18] proposed
a type of fnite impulse response (FIR) flter in the time
domain to reconstruct dynamic displacements from the
measured accelerations. Te reliability of the ultra-low-
frequency response of the accelerometers is poor, however,
and thus the reconstructed displacements in ultra-low-
frequency are inaccurate [20, 21]. Nevertheless, for bridges,
the quasistatic displacements caused by the moving load are
a vital parameter for SHM. Terefore, it is generally con-
sidered that the high-frequency displacement estimated by
the measured acceleration is more reliable than the low-
frequency displacement. To make full use of the advantages
of acceleration-based measurement, data fusion of the high-
frequency displacement estimated by acceleration and low-
frequency displacement measured by other sensors has been
proposed to obtain an accurate displacement [22–30]. Ma
et al. [22] estimated displacement using measured strains
and proposed an FIR-based displacement estimation tech-
nique by fusing strain and acceleration measurements.Ten,
Ma et al. [23, 24] used an adaptive multirate Kalman flter to
fuse an asynchronous acceleration and take computer vision
measurements. Park et al. proposed the use of a pair of
complementary flters and a time synchronizationmethod to
fuse vision-based displacement and acceleration [27]. Xu
et al. [28, 29] fused the GPS-based and vision-based dis-
placements with the acceleration measurements using
a multirate Kalman flter, and the efciencies were validated
on a railway bridge. Wu et al. [30] estimated the full-feld
displacements of beam structures by data fusion of vision-
based displacement and accelerations and modal expansion.
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Tese data fusion instances as well as other vision-based
displacement measurement technologies have been con-
ducted on the condition that the optical axis of the camera is
perpendicular to the object plane or that the tilt angle is
small, which has restricted these applications.

In this study, to overcome the previous drawbacks and
realize tilt camera-based monitoring, we proposed to in-
troduce accelerations to improve the accuracy of vision-
based displacements. First, we estimated the SF associated
with pixel-physical displacement transformation under tilt
photogrammetry using the camera and acceleration-based
measurements under the same frequency band without the
actual size of the structure or the measurement parameters.
Ten, the low-frequency displacement estimated from the
vision-based measurements was fused with the high-
frequency acceleration-based displacement using the com-
plementary flters. Finally, the feasibility of the proposed
approach was validated on a lab-scale suspension bridge
model in the laboratory and a highway and subway cable-
stayed bridge in the feld.

2. Data Fusion of Tilt Camera-Based and
Acceleration Measurements

An overview of the proposed displacement estimation ap-
proach is shown in Figure 1. Te proposed approach had
four main steps: frst, we analyzed the raw videos acquired
from the tilt camera and extracted the pixel displacements of
the features. Second, we estimated the dynamic displace-
ments of target points from the measured accelerations by
double-numerical integration. Tird, we estimated the SF
associated with pixel-physical displacement transformation
using the vision-based and acceleration-based displacements
in the same frequency band. Finally, we obtained the high-
fdelity displacement by data fusion of the low-frequency
vision-based displacement and the high-frequency
acceleration-based displacement.

2.1. Pixel Displacement Extraction from the Camera. As
shown in Figure 2, the camera was fxed outside the bridge,
facing the bridge deck at a tilt angle. A natural target (i.e.,
holes on the concrete surface, rivets, and bolts on the steel
structure surface) of the deck was involved in the camera’s
FOV. We used the feature tracking algorithm to extract the
pixel displacement of the target. Tis method had four
main steps.

First, we selected a region of interest (ROI) containing
the target in the initial frame of the video. Te location and
size of the ROI were based on that of the target, and the
approximate deformation range of the target should be
considered as well to ensure that the size of the ROI was
slightly larger than the motion range of the target. We
conducted feature points detecting and tracking in the se-
lected ROI so that the computational efciency could be
greatly reduced. We also selected ROI because the stationary
points with robust features in the background could be
prefltered out to ensure that the tracked points were mo-
tional ones. We detected feature points p1

1, p2
1, . . . , pM

1 in the

frst frame through the speed-up robust features (SURFs)
[31] and described these points using the binary robust
invariant scalable key point (BRISK) [32]. Ten, we applied
the feature matching between the frst and ith frames and
matched the features p1

1, p2
1, . . . , pM

1 in the ith frames with
p1

i , p2
i , . . . , pM

i , respectively, through the k-nearest neighbor
(KNN) algorithm. Te total number of M matches is shown
in Figure 2. Next, we adopted RANSAC [33] to flter out the
incorrect matching results. Finally, we calculated the vertical
pixel displacement of the target in the ith frame through the
valid matches, which can be expressed as follows [14]:

u
i
pi �

1
M

􏽘

M

j�1
u

i
j, (1)

where ui
pi is the vertical pixel displacement of the target in

the ith frame;M is the number of valid matches; and ui
j is the

vertical pixel displacement of the jth match.

2.2.DynamicDisplacementReconstruction fromtheMeasured
Acceleration. Provided that the measured acceleration is
available, we used the acceleration-based displacement es-
timation method proposed by Lee et al. [18] to solve the
following optimization problem in a time window
[(k − N)∆t, (k + N)∆t]:

min
ua
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where a and ua are the vectors of the measured acceleration
and the displacement estimated by the measured accelera-
tion, respectively; L � LaLc, where La and Lc are diagonal
weighting matrices of order (2k+ 1) with all diagonal entries
equal to 1 except the frst and the last entries, which are equal
to 1/

�
2

√
and a second-order diferential operator. ‖‖2 denotes

the 2-norm of a vector; ∆t is the time interval; and μ is the
optimal regularization parameter to adjust the degree of the
regularization in the minimization problem and can be
defned as follows:

μ � 46.81(2N + 1)
− 1.95

. (3)

Te vector of displacement ua estimated by the accel-
eration can be obtained by solving equation (2) as follows:

ua � LTL + μ2I􏼐 􏼑
− 1
LTLaa(∆t)

2
� Ca(∆t)

2
, (4)

where I is the identity matrix of order (2k+ 3) and C �

(LTL + μ2I)− 1LTLa is the coefcient matrix. Because the
accuracy is highest at the center data point of the time
window, we applied a moving overlapping time-window
technique whose length was (2N+ 1) and retained only the
displacement estimated at the center of each time window
while others were discarded.

To realize real-time reconstruction, the time window is
suggested to be as short as possible. However, a short time
window cannot ensure the reconstruction error has damped
out sufciently at the center point. According to Lee et al.
[18], the time window length should be set as the shortest
length that does not afect the reconstruction accuracy.
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Moreover, the optimal window size lies in the range of 2.22
to 3 times of the longest period of interest. To obtain the
optimal window size, a detail discussion is given in Section 3
through the numerical simulations.

2.3. Scaling Factor Estimation. Te extracted pixel dis-
placement should be converted to real displacement before
data fusion with the acceleration-based dynamic

displacement. Because the displacement of bridges is mainly
vertical, we used a simplifed camera calibration method
(i.e., the SF method) to realize the conversion from pixel to
physical displacements.

Te traditional approaches to determine the SFs are
based on the establishment of the relationship between the
pixel coordinate and the physical coordinate (e.g., with units
of mm/pixel), as follows [12, 13]:
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ROI

FOV

Tilt camera
(out of bridge)

p1
1 p1

i

p2
i pM

i

p2
1

pM
1

Figure 2: Displacement monitoring by the tilt cameras.
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Figure 1: Te overview of the proposed displacement estimation approach.

4 Structural Control and Health Monitoring



SF �
D

d
, (5)

SF1 �
F

f
dpixel, (6)

SF2 �
F

f cos2 θ
dpixel, (7)

where D and d are the known physical dimension on the
object plane and the corresponding pixel numbers in the
image plane, respectively; F and f are the distance between
the camera and the object and the focal length, respectively;
dpixel is the pixel size; and θ is the tilt angle of the camera.

Te SFs can be calculated once F, f, and θ are determined
both in the perpendicular and nonperpendicular scenarios
according to equations (5)–(7), and it is the same for all the
pixels in the vertical direction. Nevertheless, according to
Reference [13], the measurement error of vision-based
displacements through the traditional estimated SF in-
creased as the tilt angle increased. Terefore, the traditional
SFs calculated by equations (6) and (7) may have introduced
large errors in the displacement estimation by the tilt
camera.

To explore the variability law of the SFs in the vertical
direction, as shown in Figure 3, we assumed the following:
tilt angle is θ; the perpendicular of the object plane passing
through the camera focus, O, intersects at point P; and the
camera optical axis intersects the object surface at point Q.
Each edge pixel is connected with O and is extended,
intersecting with the object plane at points
Q1, Q2, · · · , Qi− 1, Qi, · · · , Qn− 1, Qn, respectively. Line PQ and
Qi− 1Qi are known as ∆λ and λi, respectively, and
∠Qi− 1OQi � αi. Ten, the following equations can be ob-
tained according to the geometric relationship [34]:

(i − 1)

f
dpixel � tan αi + α2 + · · · + αi− 1( 􏼁, (8)

i

f
dpixel � tan αi + α2 + · · · + αi− 1 + αi( 􏼁. (9)

Subtracting the inverse function of equation (8) from the
inverse function of equation (9), αi can be obtained as
follows:

αi � tan− 1 i

f
dpixel􏼠 􏼡 − tan− 1 i − 1

f
dpixel􏼠 􏼡. (10)

Ten, according to the triangular geometric relationship
of the object plane, the following equations can be obtained:

tan θ + αi + α2 + · · · + αi− 1( 􏼁

�
∆λ + λ1 + λ2 + · · · + λi− 1

F
,

tan θ + αi + α2 + · · · + αi− 1 + αi( 􏼁

�
∆λ + λ1 + λ2 + · · · + λi− 1 + λi

F
.

(11)

Te actual size of the arbitrary pixel can be expressed as
follows:

λi � F · tan θ + α1 + α2 + · · · αi− 1 + αi( 􏼁􏼂

− tan θ + α1 + α2 + · · · αi− 1( 􏼁􏼃.
(12)

When the internal and external parameters of the camera
were constant, the SF of an arbitrary pixel could be calcu-
lated by equation (12). For example, assume that F and f are
500mm and 50mm, respectively; and dpixel is determined as
0.0081mm/pixel when the image sensor size and corre-
sponding resolution are 1.0 inch and 1920×1080 pixels,
respectively. Te SFs from the center pixel to the edge pixel
are shown in Figure 4. Te scatter points are the corre-
sponding SFs calculated through equation (7). As shown in
Figure 4, the closer the pixel was to the edge of the object
plane, the greater the SF was. Moreover, when the camera tilt
angle was larger, the change of SF was more intense. Te SF
is calculated through equation (7), however, remained un-
changed for the same tilt angle, which was approximately
equal to that calculated by equation (12) at the center pixel,
but the diferences between the two increased with the closer
to the edge pixel. Consequently, the same SF for all the
targets in the vertical direction was not applicable to the case
of a large camera tilt angle because it introduced large errors.
Additionally, the SF calculations through equations (6) and
(7) were based on the condition that the actual size of the
target structure was known or that the measurement pa-
rameters were given. In in-service bridge monitoring,
however, it is difcult and inaccurate to measure the
structural size or the distance between the camera and the
structure.

To make full use of the acceleration and vision-based
displacements, we proposed a novel SF estimation method.
Te main procedure was as follows: frst, we estimated the
pixel displacement uim(tim) and the acceleration-based
displacement ua(t) through the target tracing and FIR fl-
ter in the time domain, respectively. Ten, we upsampled
uim(tim) through the Hermite function to keep the time
interval equal to ua(t), as follows:

u3(t) � u0 1 + 2
t − t0

t1 − t0
􏼠 􏼡

t − t1

t0 − t1
􏼠 􏼡

2

+ u1 1 + 2
t − t1

t0 − t1
􏼠 􏼡

t − t0

t1 − t0
􏼠 􏼡

2

+ v0 t − t0( 􏼁
t − t1

t0 − t1
􏼠 􏼡

2

+ v1 t − t1( 􏼁
t − t0

t1 − t0
􏼠 􏼡

2

,

(13)

where u0 and u1 are the displacements at time t0 and t1,
respectively; and v0 and v1 are the derivative displacements
at time t0 and t1, respectively. Because the vision and ac-
celerations were recorded by diferent data acquisition
systems, it led to a time lag between the two measurements.
Tus, we had to eliminate the time diference before SF es-
timation and data fusion. We realized time synchronization
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by calculating the cross-correlation coefcient of the two
signals. For continuous signal, the cross-correlation co-
efcient can be calculated as follows [35, 36]:

Rxy(τ) � lim
T⟶∞

􏽚
T

0
x(t)y(t + τ)dτ, (14)

where Rxy(τ) is the cross-correlation coefcient of the two
signals, T is the measurement time of signals x(t) and y(t),
and τ is the time diference between x(t) and y(t). When
Rxy(τ) reaches the peak value, the corresponding τ is the
time diference between the two signals. For discrete signals
whose time interval is ∆t, the cross-correlation coefcient
can be calculated as follows:

Rxy(n) � 􏽘
N

i�1

x(i)y(i + n)

N
, (15)

where Rxy(n) is the cross-correlation coefcient of the two
signals, N is the half number of data points in x(t) and y(t),
and n is the time lag numbers between x(t) and y(t). When
Rxy(n) reaches the peak value, the corresponding n is the
time lag number between the two signals. Te time difer-
ence τ can be calculated as τ � n × ∆t.

Te pixel displacement and acceleration-based dis-
placement had the same frequency band displacement
component; therefore, we applied a bandpass flter to the two
signals to obtain u

f
im(t) and u

f
a (t). We set the lower cutof

frequency fl
c to eliminate the low-frequency drift in ua(t),

which is depended on the specifcation of the employed
accelerometers. Moreover, in this study, we set the lower
cutof as the natural frequency of the tested structure. We set
the upper cutof frequency fh

c to one-tenth of the sampling
frequency of the camera to minimize the waveform dis-
tortion of the fltered vision-based displacement and obtain
accurate SF estimation [23, 37]. Ten, the SF can be cal-
culated by minimizing the least squares error as follows:

min
SF

􏽘

n

t�1
u

f
a (t) − SF × u

f
im(t)

�����

�����
2

2
, (16)

where u
f
im(t) and u

f
a (t) are the pixel displacement and

acceleration-based displacement after bandpass fltering,
respectively.

2.4. Data Fusion to Obtain High-Fidelity Displacement.
Te dynamic displacements refecting the dynamic in-
formation can be accurately reconstructed by the measured
accelerations through the FIR flter in the time domain. Te
total displacements of the structures, however, contain the
pseudo-static displacement, which is induced by a moving
load on a structure without dynamic efect. Te pseudo-
static displacement has ultralow frequencies that cannot be
measured by the accelerometer. Terefore, the computer
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vision technique is considered to acquire the pseudo-static
displacement owing to its advantages. Moreover, the two
displacements are integrated to obtain accurate displace-
ments. To achieve this, Park et al. [27] proposed the use of
a pair of complementary flters for data fusion of the vision-
based and acceleration-based displacements. Te comple-
mentary flters consisted of a low-pass (HL) and a high-pass
flter (HH) whose sum has a magnitude of 1 and phase of
0 over the defned frequency range, in which HL is used to
extract the pseudo-static from the vision-based displace-
ment, whereas HH is used to extract the dynamic dis-
placement from the acceleration-based displacement. Te
cutof frequency of the flters is set as fc, so that the
bandwidth of the pseudo-static and dynamic displacements
are [0, fc] and [fc, fsa/2], respectively, and fsa is the
sampling frequency of the accelerations. Te displacement
by data fusion from the vision-based and acceleration-based
measurements can be expressed as follows:

u(t) � CLupseudo− static(t) + CHa(t), (17)

where CL is the flter coefcient for HL and CH is the flter
coefcient for HH with double integration. Moreover, they
can be obtained by the inverse DFT, where upseudo− static(t)

and a(t) are the vision-based displacement and acceleration
measurements with the same time interval. Te cutof fre-
quency of the complementary flters is selected to achieve the
lowest noise level for the fused displacements and can be
expressed as the intersection of the noisy power spectral
density (PSD) of vision-based and acceleration recon-
structed displacements as follows:

fc �
1
2π

����
Nacc

Nd

􏽳

, (18)

where Nacc and Nd are the noise density of acceleration
m/(s2

���
Hz

√
) and vision-based displacement (m/

���
Hz

√
). Note

that upseudo− static(t) is converted from the pixel displacement
uim
pseudo− static(t) by the proposed SF estimation and can be

written as follows:

upseudo− static(t) � SF × u
im
pseudo− static(t). (19)

3. Numerical Simulations

3.1. Model Description. As indicated in Section 2.2, the
dynamic displacement reconstruction from the measured
accelerations is greatly infuence by the length of the time
window, and according to Lee et al. [18], the optimal length
of the time window lies in the range of 2.22 to 3 times of the
frst period of the structure. To explore the optimal length of
the time window, a Euler–Bernoulli beam model with dif-
ferent boundary conditions was established.Te total length,
elastic modulus, density, and moment of inertia of the
section are set as 3.84m, 206GPa, 7850 kg/m3, and
8.97e4mm4. Te description of the beam model is depicted
in Figure 5. Te boundary conditions, frst natural fre-
quencies, and the frst periods of the beam were listed in
Table 1. An impact load with a mass of 5 kg was acted

on the midspan of the model. Te dynamic displacements of
the midspan were reconstructed with diferent time
window sizes.

Furthermore, according to Section 2.3, the vision-based
displacement is greatly infuenced by the SF estimation. Te
selection of the cutof frequencies would infuence the SF
estimation.Te higher cutof frequency is suggested to be set
as less than one-tenth of the camera’s framerate. For
structures with large stifness, however, the frst natural
frequencies are greater than one-tenth of the camera’s fre-
quency. To investigate the infuence of the higher cutof
frequency of the proposed bandpass flter, a moving load
with a mass of 10 kg is moved from the left to right ends of
the simply supported beam at a speed of 0.6m/s. Te dis-
placements and accelerations of the midspan were used to ft
the SFs with diferent higher cutof frequencies.

3.2. Infuence of the Time Window Size. Te displacements
and accelerations of the midspan section under impact load
were calculated at a frequency of 1000Hz. Te ratio of the
time window size to the frst period of the beam was denoted
as Nd, and the accelerations were used to reconstruct the
dynamic displacements with Nd changes from 2.22 to 3. Te
reconstructed displacements of diferent boundary condi-
tions are plotted in Figures 6–8, respectively. Overall, the
reconstructed displacements were consistent with the sim-
ulated displacements at most data points. Taking the sim-
ulated displacements as references, a global index called the
normalized root mean squared error (NRMSE) [22] was
used to evaluate the overall error of the reconstructed dis-
placements, which were calculated as follows:

NRMSE �

�����������������

(1/n)􏽐
n
i�1 Xi − Yi( 􏼁

2
􏽱

Ymax − Ymin
× 100%, (20)

where Xi and Yi are the ith reconstructed displacements and
references, respectively. Te NRMSEs of diferent bound-
aries are scattered in Figure 9. For all three conditions, the
NRMSEs decreased with the increasing of Nd frstly, and
reached the smallest value when Nd is around 2.74, then the
NRMSEs increased with the increasing of Nd. According to
the previous analysis, the time window size is suggested to be
set as about 2.74 times of the frst period of the structure.

3.3. Infuence of the Higher Cutof Frequency. Te displace-
ments and accelerations of the midspan section under
moving load were calculated at a frequency of 1000Hz. Te
frst three natural frequencies of the model can be identifed
through the fast Fourier transform (FFT) of the responses as
f1 � 4.54Hz, f2 �18.12Hz, and f3 � 40.65Hz. First, the dis-
placements were low-pass fltered and resampled at 100Hz,
i.e., 1/10 of the accelerations’ sampling frequency. Moreover,
the vision-based displacements were low-pass fltered and
resampled at 25Hz, i.e., the same as the framerate of most
network surveillance cameras. Te resampled displacements
were treated as vision-based displacements in the following
analysis. Te vision-based and acceleration reconstructed
displacements are plotted in Figure 10.Ten, three bandpass

Structural Control and Health Monitoring 7
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Figure 5: Te beam model.

Table 1: Te boundary conditions and frst natural frequencies of the beam model.

Scenario Boundary condition First
natural frequency (Hz)

Length of the
frst period (s)

SSB Simply supported 4.54 0.220
SFB Partially fxed 7.08 0.141
FFB Completely fxed 10.26 0.097
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Figure 6: Displacements comparison of the SSB: (a) overall view and (b) detail view.
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Figure 7: Displacements comparison of the SFB: (a) overall view and (b) detail view.
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flters with diferent higher cutof frequencies were designed,
and the parameters of the flters are listed in Table 2.

Ten, the vision-based and acceleration reconstructed
displacements were fltered by Filters 1-3, respectively.
Moreover, note that the vision-based displacements sampled
at 25Hz were only bandpass fltered through Filter 3. Te
bandpass fltered displacements and corresponding SF es-
timations were plotted in Figures 11–14. Te two dis-
placements after bandpass fltered were consistent with each
other at most points for all scenarios overall, and there is an
obvious linear relationship between them. Because the
displacements and accelerations are calculated by a nu-
merical simulation, the true value of SF should be 1.
Terefore, the proposed method can obtain SFs with relative
errors of less than 3.5%, as listed in Table 2.

Te SF estimation results indicate that when the higher
cutof frequency was set as less than one-tenth of the dis-
placements sampling frequency, the SF estimation is more
accurate than those of the higher cutof frequencies that were
greater than one-tenth of the displacements sampling fre-
quency. Moreover, the accuracy is decreased with the in-
creasing of the higher cutof frequency. Meanwhile, when
the displacement sampling frequency is less than ten times of
the frst natural frequency of the structure, the higher cutof
frequency should not be set as one-tenth of the displacement
sampling frequency because no structural dynamic com-
ponent was retained after fltering. Te higher cutof fre-
quency is suggested to be set as greater than the frst natural
frequency of the structure to obtain an approximate SF
estimation on this occasion.

4. Displacement Monitoring of a Self-Anchored
Suspension Bridge Scale Model

4.1. Experimental Setup. We frst validated the applicability
of the proposed displacement monitoring approach by the
experimental studies on the scale model of a self-anchored
suspension bridge, as shown in Figure 15. Te suspension
bridge model, shown in Figure 16, had a main span of
5.3335 + 13.5330 + 5.3335� 24.2m, and its width was 1.2m.
Unlike previous displacement monitoring tests on this
structure [38–41], in which the cameras were perpendicular
to the target region, we used a network surveillance camera,
which was tilted at diferent angles in this study. To explore
the proposed SF estimation method, we selected a total of
three targets (LED lamps) located at the three-eighths of the
midspan as the tracing targets, as shown in Figure 17. Note
that the displacements of the three targets should have been
equal because they were located at the same section in the
longitudinal and transversal directions, and there was no
relative displacement in the vertical direction.

Te surveillance camera was fxed on a height-adjustable
tripod, and the tilt angle was changed through a ball joint on
the top of the tripod. To make the tilt angle as large as
possible, the distance from the camera to the bridge was
0.5m. Meanwhile, the height of the camera was changed
with the tilt angle to keep the target T2 in the center of the
FOV of the camera. We used a DAHUA camera, which is
conventionally used as a surveillance camera in the market.

To simulate the real-world conditions, the resolution, focal
length, and framerate were set as 1920×1080 pixels, 24mm,
and 25 fps, respectively, which were similar to those of
ordinary surveillance cameras. To increase the discrimina-
tion between the tracking targets and the surrounding en-
vironment and improve the accuracy and robustness, we
used the LED lamps as the tracking target in the lab test and
adjusted the camera exposure to ft in with the brightness of
the LED lamps.

In addition to the camera, we attached a uniaxial ac-
celerometer (Model #1A202E, Donghua Testing Technology
Co. Ltd., Jiangsu, China) and an LVDT (Model #LVDTC20,
Donghua Testing Technology Co. Ltd., Jiangsu, China) to the
bottom surface of the main girder, as shown in Figure 18.
Te uniaxial accelerometer measurement was used for data
fusion with the vision-based response and SF estimation,
and the LVDT measurement was used as the reference for
the proposed displacement monitoring approach. Both the
accelerometers and LVDTs were sampled at 500Hz. To
confrm the reliability of the proposed approach, we created
a total of six scenarios by altering load types and weights as
well as the tilt angle of the camera, as detailed in Table 3. We
simulated the impact load and moving load by pedestrians
jumping at the midspan and running across the bridge,
respectively. Before the tests, we calibrated the camera
according to Zhang’s method [8] to eliminate lens distortion.
During the test, we controlled the camera using the com-
puter and changed the tilt angle only after all of the scenarios
with the same tilt angle were completed to compare the
results of diferent load types. We measured the tilt angle
with a digital inclinometer, as shown in Figure 19.

4.2. Dynamic Displacement Reconstruction by Measured
Accelerations. We used vision-based displacements and
acceleration-reconstructed displacements as the source data
for data fusion. We had to validate whether the displace-
ments reconstructed from the measured accelerations were
sufciently accurate. In scenarios 1-1-1-3, the model bridge
was impacted by a pedestrian jumping at the midspan.
Because this was the only dynamic displacement, these
scenarios did not experience any quasistatic displacement.
Because the only diference among these three scenarios was
the tilt angle of the camera, we conducted displacements
comparison only for scenarios 1-2.

We took the LVDTmeasurements as references, plotted
the comparison of the two displacements in Figure 20(a) and
plotted the displacements diferences in Figure 20(b). Tese
fgures indicated that the two measurements had very good
consistency at most data points, and the maximum difer-
ence was approximately 0.2mm. To quantify the errors of
the proposed method, we implemented error analysis in
terms of the NRMSE and the absolute peak value error
(APVE), which were calculated as follows:

APVE �
|X|max − |Y|max

|Y|max

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
× 100%, (21)

where |X|max and |Y|max are the maximum absolute values of
estimated displacements and references, respectively. Te
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Table 2: Te parameters of the bandpass flter and corresponding SF estimations.

Scenario
Te sampling frequency

of vision-based displacement
(Hz)

Filter order Lower
cutof frequency (Hz)

Higher
cutof frequency (Hz) R2 SF Error (%)

1 100 10 2 6 0.9929 0.9708 2.92
2 100 10 2 20 0.9921 0.9695 3.05
3 100 10 2 50 0.9914 0.9674 3.26
4 25 10 2 6 0.9919 0.9683 3.17
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Figure 11: Displacements and corresponding SF of scenario 1.
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Figure 12: Displacements and corresponding SF of scenario 2.

Structural Control and Health Monitoring 11



NRMSE and APVE of the reconstructed displacements were
0.24% and 2.32%, respectively. Furthermore, we analyzed
the power spectrum density (PSD) of the two displacements
to validate reliability in the frequency domain, as shown in
Figure 21. Te PSDs of the two displacements were in good
agreement. Ten, we obtained the frst fve natural fre-
quencies and corresponding damping rates by modal
analysis, as listed in Table 4.

4.3. Scaling Factor Estimation Results. We calculated the
vision-based displacements of all the targets by the feature
tracking algorithm. Moreover, the time lag between the
vision-based and acceleration-reconstructed displacements

was calculated using the previous method. Te displace-
ments of scenario 1-1 before time lag elimination are plotted,
as shown in Figure 22(a). We calculated and plotted the
cross-correlation coefcients between the two measure-
ments, as shown in Figure 23. Te results indicated that the
time lag between the two measurements was − 9.012 s. Tus,
we eliminated the time lag by deleting the data points before
9.012 s and shifting the remaining data points by 9.012 s.
Ten, we plotted the displacements after time lag elimina-
tion, as shown in Figure 22(b). We followed the same
procedures for all scenarios.

To obtain the acceleration-based and vision-based
displacements at the same frequency band, we imple-
mented bandpass fltering and set the lower and higher
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cutof frequencies as 1.7Hz and 2.5Hz, respectively. Te
displacement results after bandpass fltering of each scenario
are shown in Figures 24–29, which show that with the in-
crease in the tilt angle, the pixel displacement decreased
shapely. Meanwhile, the pixel displacements of the three
targets in scenarios 1-1 and 1-4, in which the tilt angles were
zero, were approximately consistent, although diferences
appeared as the tilt angle increased. Te pixel displacement
of T3 was the largest, followed by T2 and T1.

Accelerometer

LVDT

Target

Cable saddle Cable saddle

South main tower North main tower

Main cable
Suspender

T1

Impact load

Bridge elevation

5075 1692

Surveillance camera

5333.5 13533 5333.5

Moving load

T2
T3

Figure 15: Experimental setup (unit: mm).

Figure 16: Te bridge model.

Figure 17: Tree targets in the camera’s FOV.

Figure 18: Accelerometer and LVDT.

Table 3: Te test specifcations.

Load type Weight (kg) Tilt angle (°)
Scenario 1-1 Impact load 80 0.00
Scenario 1-2 Impact load 80 45.20
Scenario 1-3 Impact load 80 70.31
Scenario 1-4 Moving load 150 0.00
Scenario 1-5 Moving load 150 45.20
Scenario 1-6 Moving load 150 70.31

Figure 19: Tilted camera and angle measurement.
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Table 4: Structural parameters of the model bridge.

Mode order Frequency (Hz) Damping rate (%)
1 1.758 2.010
2 3.223 1.170
3 4.688 1.304
4 6.445 1.910
5 8.545 0.302
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Figure 22: Te displacements: (a) before time lag elimination and (b) after time lag elimination.
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We analyzed the relationships between the two
displacements, as shown in Figures 30–35. We obtained
the linear equations of the two displacements by least
square ftting. Te slope of the lines can be regarded
as SFs. We calculated SF1 and SF2 by equations (6) and
(7), respectively, and estimated the results according
to the proposed method. According to Table 5, the SFs in
scenarios 1-1 and 1-4, in which the tilt angles were
zero, which was the minimum, and the SFs of all the
targets were approximately equal to those calculated
through the traditional method, that is, calculated by

equations (6) and (7). Ten, the SFs increased as the tilt
angle increased. In the large tilt angle scenarios, the SFs
for three targets varied, of which T3 was the smallest,
followed by T2 and T1. Furthermore, we also found some
diferences between the SFs estimated by the three
methods, which indicated that the traditional methods
for SF estimation in a large tilt angle may introduce large
errors.

By comparing the impact load and moving load in the
same tilt angle, we found that the linear correlation of the
impact load scenarios was better than that of the moving
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Figure 23: Cross-correlation coefcients of the two displacements.
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Figure 24: Te acceleration-based and vision-based displacements after bandpass fltering of scenario 1-1.
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load scenarios, especially for the large tilt angle scenario.
Furthermore, for the same tilt angle, the SF of the impact
load was a little bigger than that of the moving load. Because
of the pseudostatic displacement caused by the moving load,
the equilibrium positions for the dynamic displacement
changed with the pseudostatic displacement, although the
equilibrium position for the impact load scenarios remained
unchanged. In addition, the average equilibrium position of
the moving load scenario was closer to the camera than that
of the impact load because of the moving load. Tus, the SFs
of themoving load scenario were a little smaller than those of
the impact load scenarios.

4.4. Displacement Estimation Results. For impact load sce-
narios, we obtained the displacement directly by the FIR
flter in the time domain and high-pass fltering of the ac-
celerations because no pseudo-static displacement occurred.
Terefore, we estimated only the displacements of the
moving load scenarios. Te procedures for displacement
estimation are shown in Figure 1. We selected the dis-
placements measured by LVDT as the reference and esti-
mated the displacements using the proposed method.
Meanwhile, the SFs calculated by equations (6) and (7) were
used to correct the vision-based displacements and then
fused with the acceleration reconstructed displacements,
labelled as “Method-1” and “Method-2,” respectively. Te

displacements obtained by the LVDT, the traditional
methods, and the proposed method are plotted in
Figures 36–38. Te LVDTmeasurements and the proposed
estimations showed great consistency for the three targets in
all the scenarios, and the traditional estimations showed
good consistency in scenario 1-1 as well. As the tilt angle
increased, however, the displacement diferences between
the traditional methods and LVDT measurements also in-
creased. Because the diference between the three methods
was the SF estimations, it can be inferred that the SFs es-
timated by the proposed method are the most accurate,
especially in large tilt angle scenarios.

To quantify the errors of the proposed method, we
implemented the error analysis in terms of NRMSE. Te
error analysis results are shown in Figures 39–41 for sce-
narios 1-4, 1-5, and 1-6, respectively. As shown in Figure 39,
the NRMSEs of the traditional and proposed measurements
were less than 2% in general, in which the SF2-based vision
measurements were the largest, followed by the SF1-based
vision and proposed measurements. Te SF estimation re-
sults given in Table 5 indicated that the SFs estimated by the
three methods were approximately equal to 0.162mm/pixel
for target T2 when the tilt angle was zero. Furthermore,
when the tilt angle increased, the errors of the traditional
estimations increased signifcantly because of the inaccurate
SF estimations.
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Figure 25: Te acceleration-based and vision-based displacements after bandpass fltering of scenario 1-2.
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Tese experimental results indicated that the SFs ftted
from the vision-based and acceleration-based displace-
ments in the same frequency band could obtain high-
accuracy displacements, even in large tilt angle scenarios.
Te advantage of this method is that we did not have to
measure the structure size or determine the camera pa-
rameters, unlike the conventional SFs calculated by
equations (6) and (7).

5. Field Test on a Cable-Stayed Bridge

5.1. Experimental Setup. We further evaluated the per-
formance of the proposed method on the Dongshuimen
Yangtze River Bridge in Chongqing, China. Tis bridge is
a two-deck steel truss girder cable-stayed bridge with
a main span of 222.5 + 450 + 190.5m. Te upper deck
accommodates four-lane vehicle trafc with a design
speed of 40 km/h, and the lower layer encompasses two-
line subway trafc. We focused on the vertical displace-
ment of the midspan during the subway trains passing the
bridge. We attached an axial magnetoelectric acceler-
ometer (modeled DH 2D003V, Donghua Testing Tech-
nology Co. Ltd., China) at midspan, on the ground at the
sidewalk near the railing. Te frequency range and sen-
sitivity of the accelerometer were 0.125–80Hz and
0.287 V/(m/s2), respectively. We mounted a camera (Sony

FDR AX-700) at the riverside road under the bridge with
negligible ground vibration, approximately 300m away
from the midspan of the bridge. Te height diference
between the camera and the bridge deck was approxi-
mately 50m. Terefore, we applied a small elevation
(approximately 15°) to keep the main girder in the center
of the camera’s FOV. Te focal length and resolution of
the camera were set as 120mm and 3840 × 2160 pixels. Te
videos were sampled at 25 Hz, which was sufcient for this
fexible long-span bridge, and the acceleration was sam-
pled at 100 Hz. Te overview of the test is shown in
Figure 42.

5.2. Displacement Estimation. Te data acquisition lasted
approximately 30mins, and a total of nine subway trains
passed the bridge. A natural target and a stationary target
(Figure 43) were tracked to monitor the displacement of the
midspan section.Te bridge was in normal operation during
the data acquisition, and cars and pedestrians were traveling
on the upper deck. Te responses caused by heavy trucks
were refected in the vision-based displacement and accel-
erations, as shown in Figure 44. We eliminated the camera
motions in the vision-based displacement response by
subtracting the displacement of the stationary point in the
camera’s FOV from the displacement of the target [3]. Te
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Figure 26: Te acceleration-based and vision-based displacements after bandpass fltering of scenario 1-3.
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frst fve natural frequencies and damping rates are listed in
Table 6.

Because acceleration was more sensitive to structural
vibration than vision-based displacement, we used the
spectrum analysis of acceleration, as shown in Figure 45,
as the reference for data fltering. Te lower and higher
cutof frequencies were set at 0.35 Hz and 0.70 Hz, re-
spectively. Te vision-based and acceleration-based dis-
placements after bandpass fltering are shown in
Figure 46, and the relationships of the two signals are
scattered and ftted in Figure 47. Te slope of the
line indicated that the SF could be determined as
9.925 mm/pixel without the measurement distance, focal
length, and size of the image sensor. Te operating
bridges, especially such large, long-span bridges, were
subjected to various external loads, and the noise from
the environment had a signifcant infuence on the vision-
based displacement and acceleration, which could not be
ignored. Terefore, the linear relationship between the
two measurements was not as good as that of the ex-
perimental bridge.

We estimated displacement by fusing the low-pass fl-
tered vision-based and high-pass fltered acceleration-based
displacements. Te data fusion results are plotted in Fig-
ure 48, and we determined that the displacement caused by
subway trains was approximately 80mm. Compared with

the original vision-based displacement shown in
Figure 44(a), the fusion displacement had fewer fuctuations,
especially when no trains were passing. Tis was because the
part of the camera vibration was eliminated by low-pass
fltering. It is highly difcult to use conventional contact
sensors to monitor the displacement of such large-span
bridges. Terefore, we did not have any references to
evaluate the accuracy of the fusion displacement in the time
domain. We compared the PSD of the fusion displacement
with that of the acceleration-based displacement, as shown
in Figure 49, which indicated that the result of data fusion
was reliable.

6. Discussion

Te proposed displacement estimation approach was
characterized by several advantages compared with the
conventional vision-based and data fusion methods. First,
we used the camera with a large pitch angle for data fusion
with the acceleration for high-accuracy displacement esti-
mations. In traditional methods, it is usually suggested to fx
the camera in a suitable place away from the target structure
and to keep the optical axis perpendicular to the objective
plane. Sometimes it is difcult to locate an ideal position,
especially for bridges across valleys and rivers, and in these
cases, the camera must be tilted for a better view. Second, we
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Figure 27: Te acceleration-based and vision-based displacements after bandpass fltering of scenario 1-4.
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proposed a novel SF estimation method by ftting the vision-
and acceleration-based displacements in the same frequency
band without any prior knowledge about the structural size
or measurement distances. Furthermore, when the camera
was tilted at a large angle, the SF calculated by the traditional
method may have introduced an error, and this error could
be reduced by the ftting SF. Tird, the framerate of the
mainstream consumer-grade cameras in the market is
limited to 20–60Hz, which might have prohibited recording
high-frequency dynamic motion and might have caused
aliasing issues.We solved these problems by data fusion with
accelerations thanks to the high accuracy of the high-
frequency displacement estimated by the measured
acceleration.

Today, monitoring systems have been widely mounted
on civil infrastructures, in which surveillance cameras can
provide substantial data. Te data obtained by these sur-
veillance cameras, however, are used mostly for trafc fow
surveillance and accident disposing. By employing these
trafc surveillance cameras as sensors, not only the input of
the structures such as moving loads can be recorded [42, 43]
but also the cameras can work with other sensors to record
the responses of the structures.Terefore, trafc surveillance
cameras can be considered to be ready-made vision-based
sensors, which can be used to achieve multiple measure-
ments for one installation. Tese trafc surveillance cameras
have larger tilt angles and greater vibration than the general
cameras. Te trafc surveillance cameras are always
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Figure 28: Te acceleration-based and vision-based displacements after bandpass fltering of scenario 1-5.
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Figure 29: Te acceleration and vision-based displacements after bandpass fltering of scenario 1-6.
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Figure 31: Relationship between the two displacements of scenario 1-2.
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Figure 32: Relationship between the two displacements of scenario 1-3.
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Figure 33: Relationship between the two displacements of scenario 1-4.
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Figure 34: Relationship between the two displacements of scenario 1-5.
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Table 5: SF estimation results.

Scenarios Tilt angle
(°) Target SF1 (mm/pixel) SF2 (mm/pixel) SF-proposed

(mm/pixel)

Scenario 1-1 0.00
1

0.162 0.163
0.168

2 0.162
3 0.160

Scenario 1-2 45.20
1

0.478 0.382
1.134

2 0.689
3 0.395

Scenario 1-3 70.31
1

1.287 1.436
1.394

2 0.998
3 0.730

Scenario 1-4 0.00
1

0.162 0.163
0.162

2 0.153
3 0.159

Scenario 1-5 45.20
1

0.487 0.382
1.125

2 0.659
3 0.382

Scenario 1-6 70.31
1

0.967 1.436
1.211

2 0.865
3 0.634
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mounted on the monitored structure and facing the
structure with large tilt angles would introduce a large error
if the trafc surveillance cameras were used for structural
displacement monitoring. Terefore, in this study, we ex-
plored the potential for structural displacement monitoring
using data fusion of a tilt camera and accelerometer mea-
surement, which could pave the way for SHM using trafc
surveillance cameras.

Te proposed approach showed potential for accurate
displacement estimation by data fusion of vision and ac-
celeration measurements, and its efciency was validated

both on experimental and feld tests. Furthermore, a study is
needed, however, to address several limitations. First, it was
difcult to eliminate the temporal aliasing in the recorded
video, which was one of the major issues in the vision-based
measurement system. Furthermore, the data fusion was
conducted only on accelerometer locations, whereas the
displacement of the acceleration unmeasured locations
could not be improved. Tirdly, the necessary condition for
applying the proposed SF estimation method is that the
bandpass fltered displacements retain the dynamic com-
ponents of the structure. For structures with large stifness,
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Figure 36: Displacement estimations of scenario 1-4.
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however, a major issue is that the suggested ideal higher
cutof frequency, i.e., one-tenth of the camera framerate,
would be smaller than the frst natural frequency of the
structure once the framerate of the camera is small. On this
condition, the proposed SF estimation method might be not
applicable. According to the investigation about the infu-
ence of the higher cutof frequency on the SF estimation in
Section 3, the upper cutof frequency can be increase to
greater than the frst natural frequency of the structure to
obtain approximate estimations, but it should not exceed 1/2
of the camera framerate.

Based on the previous limitations, our future studies
should focus on sparse accelerometer-aided computer
vision technique for full-feld displacement monitoring of
more structures. Specifcally, we expected to expand the
data fusion method from the accelerometer locations to
other locations where no accelerometer is installed.
Meanwhile, the temporal aliasing issue in vision-based
measurements should also be considered. Furthermore,
the proposed SF estimation method is expected to be used
in more structure types and realize adaptive and accurate
estimation through vision-based displacement sampled at
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Figure 37: Displacement estimations of scenario 1-5.
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Figure 38: Displacement estimations of scenario 1-6.
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Table 6: Structural parameters of the cable-stayed bridge.

Mode order Frequency (Hz) Damping rate (%)
1 0.391 2.319
2 0.684 1.457
3 0.952 1.291
4 1.221 0.616
5 1.590 3.006
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Figure 45: Acceleration spectrum.
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low frequencies and accelerations sampled at high
frequencies.

7. Conclusions

Vision-based structural displacement monitoring system for
SHMpurposes ofers advantages of noncontact, cost-efciency,
and remote sensing. In this study, we explored the potential of
using tilt cameras and accelerometers to make up for the
shortcomings of traditional vision-based systems to achieve
accurate structural displacement monitoring. Te proposed
displacement monitoring method was involved in extracting
the vision-based displacement from the camera, dynamic
displacement reconstruction from the measured acceleration,
SF estimation by the vision-based and acceleration-based
displacement in the same frequency band, and data fusion
of the low-frequency vision-based displacement and high-
frequency acceleration-based displacements.

We validated the proposed method with both labo-
ratory tests on a suspension bridge model and feld
tests on a highway and subway cable-stayed bridge. Te
experimental results indicated that the proposed data
fusion method could obtain displacements close to the
LVDT measurement compared with the traditional
vision-based displacements. In the feld test, we verifed
the performance of the proposed method by monitoring
the displacement of the target bridge during the trains
passing.

Data Availability

Te data used to support the fndings of this study are
available from the corresponding author upon reasonable
request.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis work was supported by the National Natural Science
Foundation of China (51708068 and 51778094) and
Shenzhen Science and Technology Program
(JCYJ20220818095608018).

References

[1] P. S. Harvey and G. Elisha, “Vision-based vibration moni-
toring using existing cameras installed within a building,”
Structural Control and Health Monitoring, vol. 25, no. 11,
p. 2235, 2018.

[2] A. Zare Hosseinzadeh, M. H. Tehrani, and P. S. Harvey,
“Modal identifcation of building structures using vision-
based measurements from multiple interior surveillance
cameras,” Engineering Structures, vol. 228, Article ID 111517,
2021.

0 200 400 600 800 1000 1200 1400 1600
Time (s)

D
isp

la
ce

m
en

t (
m

m
)

-40

-20

0

20

40

60

80

100

Figure 48: Displacement estimation by data fusion.

PS
D

 (d
B)

0 2 4 6 8 10
Frequency (Hz)

-100

-50

0

50

100

Proposed
Acceleration based

Figure 49: PSD results of data fusion and acceleration-based displacements.

28 Structural Control and Health Monitoring



[3] D. Feng and M. Q. Feng, “Experimental validation of cost-
efective vision-based structural health monitoring,” Me-
chanical Systems and Signal Processing, vol. 88, pp. 199–211,
2017.

[4] S. Yu and J. Zhang, “Fast bridge defection monitoring
through an improved feature tracing algorithm,” Computer-
Aided Civil and Infrastructure Engineering, vol. 35, no. 3,
pp. 292–302, 2019.

[5] L. Luo, M. Q. Feng, and Z. Y. Wu, “Robust vision sensor for
multi-point displacement monitoring of bridges in the feld,”
Engineering Structures, vol. 163, pp. 255–266, 2018.

[6] T. Jiang, G. T. Frøseth, A. Rønnquist, and E. Fagerholt, “A
robust line-tracking photogrammetry method for uplift
measurements of railway catenary systems in noisy back-
grounds,”Mechanical Systems and Signal Processing, vol. 144,
Article ID 106888, 2020.

[7] T. Jiang, A. Rønnquist, Y. Song, G. T. Frøseth, and P. Nåvik,
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