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Tis paper presents a two-step vibration-based strategy for damage identifcation of framed structures using ensemble bagged
trees known as a well-known supervised machine learning (ML) paradigm in conjunction with evolutionary optimization al-
gorithms. Te proposed model incorporates the actual response, wavelet coefcients, and wavelet energy to extract damage-
sensitive features from the time-domain of the measured and simulated signals. Unlike available studies in this scope, the key
objective of this research is to identify damage with a localization precision down to a single structural member, rather than
limiting the evaluation to the group of elements. In order to increase the training performance in contributing to extremely large
datasets with numerous class labels, the proposed strategy involves the artifcial generation of features. Additionally, a modifed
genetic algorithm is proposed for fast damage localization. It is deduced that the damage locations are confdently detected within
a fast computational time. Subsequently, damage identifcation is followed by the application of evolutionary optimization
algorithms. For comparison purpose, the employment of the water cycle optimization algorithm (WCA) is comparatively in-
vestigated with the other three state-of-the-art optimizers, i.e., particle swarm optimization (PSO), imperialist competitive
algorithm (ICA), and diferential evolution algorithm (DE). Te numerical and experimental validation studies evidence sat-
isfactorily reliable identifcation results with no false detection in dealing with multiple damage scenarios in large-scale and real-
world applications. It is concluded that developing the most damage-sensitive features and using the proposed data fusion strategy
lead to informative features with a reasonably small size and signifcantly improve the ML performance.

1. Introduction

Due to damages, the structural performance deteriorates
during its service life. Basically, structures are damaged as
a result of deterioration, fatigue, overloading, or environ-
mental efects. Damage involves changes in structural ma-
terial or geometric characteristics. In order to ensure
a desirable safety, maintainability, and reliability of struc-
tures, it is essential to localize and determine the early stages
of damage. In other words, for long-time integrity assess-
ment and maintenance of structures and infrastructures, it is
of crucial signifcance to confdently localize damages as
soon as they occur in order to prevent progressive failures
and increase safety levels. Over the past two decades,

vibration-based structural damage quantifcation strategies
have been rapidly expanded to a variety of structural en-
gineering problems. In general, vibration-based damage
identifcation procedures fall into two main categories. Te
former category involves time-domain approaches dealing
with the abnormal detection of changes in the measured
time-history of structural responses compared to those of
simulation, while the later one lies on the frequency-domain
schemes contributing to the abnormal detection of changes
in modal parameters and structural frequencies [1]. For
many reasons, the former category seems more reliable than
the later one. For instance, the information obtained for
higher structural modes is not sufciently reliable in
frequency-domain methods. Another shortcoming of the
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frequency-domain procedures is that the modal parameters
are calculated based on the linear superposition rule, thus
they are limited only to linear systems. In addition, modal
parameters are obtained from the governing eigenvalue
problem taking into consideration the entire stifness and
mass matrix of the structure, therefore they are not very
sensitive to the small changes (damages) in stifness of
structural members. In contrast, time-domain approaches
do not require the measurement of modal parameters and
frequencies, and instead they directly utilize time-history
information composed of all structurally modelled
modes [2].

Te inverse problem governing structural damage de-
tection has been evaluated with diferent optimization
strategies [3–5]. With the increasing dissimilarity and
complexity of data acquired from various sensors, for the
assessment of structural condition and the diagnosis of
structural damage, an extremely large amount of compu-
tational time is required for the use of optimization-based
algorithms [6]. Tus, one of the underlying drawbacks of
such strategies is revealed, so that they are mostly im-
practical for online or near real-time condition assessment.
In contrast, with the astronomical increase in computer
processing power, the broad branch of machine learning
algorithms (ML) is utilized for structural damage detection
[7, 8]. Despite the fact that the simulation of various damage
extents is mostly a computationally intensive task, the im-
proved ML classifers may be efectively employed and will
result in a well-trained model. Once a well-trained model is
prepared, structural damage detection can be simply
achieved with less computational cost whenever the con-
dition assessment takes place.

Several research streams have been pursued to con-
tribute to time-domain and frequency-domain structural
damage detection using the ML paradigm. For instance, the
acceleration time-histories are utilized to train an artifcial
neural network (ANN) for reduction detection of steel
members in a bridge [9]. Analogously, an unsupervised
scheme is improved to directly process raw sensor data in
real-time in order to elaborate abnormal changes and
structural novelties [10]. A frequency-domain and un-
supervised deep Boltzmann learning algorithm is developed
for condition assessment of high-rise buildings based on
ambient vibration data [11]. Te feature selection is de-
livered by the implementation of synchrosqueezed wavelet
transforms and fast Fourier transforms. Moreover, the ap-
plicability of a decision tree ensemble for frequency-domain
damage identifcation problems is investigated [12]. It is
observed that the accuracy of the decision tree ensemble as
a well-known ML classifer is far better than the other
existing learning schemes. Tis leads to the simulation of
a huge dataset originated from frequency-domain features
regarding diferent damage states of the structures.

Committee-based or ensemble algorithms considerably
enhance the performance of multiclass ML problems, in
which the outcome from multiple trainers is efciently
inferred to gain the best model predictions. Li et al. [13]
developed an element-level damage identifcation system
using random forest, known as an ensemble-based ML. Te

acceleration responses from the measured degrees-of-
freedom (DOFs) are concatenated, and principle component
analysis (PCA) is implemented to reduce the uncorrelated
feature size. Besides, they compared the results with neural
network training and deep learning models. From the
computational cost point of view, their proposed approach
competes with other available ensemble-based classifers.
Moreover, PCA is widely implemented for the aim of data
compression and feature size reduction. Practically, it has
been more popular to reduce the dimension of time-domain
features by taking into account the efect of uncertainties and
measurement noise, especially in cases where a long dura-
tion of responses is measured [14]. A review of the available
literature in this context reveals the popularity of the random
forest in dealing with damage detection problems [15–17].
However, the conceptual idea and the key algorithm vary
from diferent ensemble classifers, and therefore the ran-
dom forest is more likely to be interpreted as a class of
boosted tree classifers rather than bagged trees [18–20].
Furthermore, structural vibration characteristics have been
evaluated through deep learning approaches [21, 22] in
constructing efcient damage detection frameworks. For
instance, modal parameters, i.e., mode shapes and natural
frequencies, have been extracted to constitute the core of
a damage quantifcation strategy in parallel with a deep
learning strategy [23]. However, referring back to the main
drawback of frequency-domain schemes, one may conclude
that more DOF numbers (denoting more sensor locations)
are to be measured in order to achieve a precise modal
feature extraction.

In addition, a thorough review of the literature discloses
that a promising strategy of assessing the safety of framed
structures is the application of vibration-based monitoring
systems. Taking into account the complexity in structural
geometry of large-scale framed structures, these allow ob-
servation of the global response for a structure, including
damage detection at the local level, classifcation, and
progressive development. In fact, dynamic monitoring
systems have proven to be particularly suited for systems
whose structural behaviors are strongly infuenced by their
geometric complexity or the inhomogeneity of their con-
stituent materials. Moreover, because of its nondestructive
and noninvasive nature, vibration-based monitoring can be
safely applied to damaged structures, which are potentially
dangerous under other test conditions. Terefore, the
analysis of the time-domain responses can expose local
damages or defciencies amplifed or induced by unforeseen
events. In other words, the monitoring of a set of appro-
priately chosen features jointly with identifcation of the
local and global structural weaknesses may reveal the ef-
fectiveness of any progression of structural damage. On the
other hand, wavelet analysis has attracted tremendous at-
tention in a broad scope of structural health monitoring
(SHM) problems. Keeping in mind the signifcant impor-
tance of feature extraction as the core of ML-based methods,
the application of wavelet multiresolution analysis dem-
onstrates the appropriateness of this powerful technique in
dealing with damage detection problems [24, 25]. In fact, it is
deduced that the essence of wavelet analysis lies in time-
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frequency-scale analysis, and it operates in the time domain
without losing the informative features of frequency con-
tents. Tis characteristic of wavelet operators provides
a comprehensive feature extraction approach towards
reaching the most damage-sensitive features with the least
environmental noise efect [26, 27]. For instance, a two-step
approach is proposed for time-domain input load identif-
cation in framed structures using wavelet-based operators to
evaluate the third derivation of displacement time-histories
as the objective function for metaheuristic optimization
strategies. It is observed that the optimization algorithm
utilizes the model-based data for impact load localization
and then sufers from high computational costs [26]. As
a consequence, implementation of a data-driven technique
using a powerful machine learning-based classifer for
damage localization in large-scale and real-world structures
will provide promising results with extremely low compu-
tational time involved.

Despite the extensive eforts conveyed for frequency-
domain structural damage detection, this paper proposes an
efcient strategy for time-domain damage localization and
identifcation using an ensemble bagged tree classifer,
considering the structural responses for efcient feature
extraction. In that regard, a novel ftness evaluation and data
fusion approach are presented based on wavelet operations
to extract the wavelet coefcients of the responses as well as
response wavelet energies at high detail levels results in the
most damage-sensitive features. Unlike available reports, the
key fnding of this research lies in the identifcation of
damage with a localization precision down to a single
structural member, rather than limiting the evaluation to
the group of elements. Notwithstanding the sparse liter-
ature available for time-domain damage detection in large-
scale problems and to be more practical in fast damage
localization of large-scaled structures, the idea of gener-
ating artifcial features based on the structural subdivisions
is proposed in order to achieve high-performance data
training through machine learning paradigms. Ten, the
modifcation of a synthesis optimization-based algorithm
originating from the application of a multispecies genetic
algorithm for fast damage localization with the resulting
accuracy down to a single element level and the water cycle
optimization algorithm (WCA) for reliable damage se-
verity identifcation are presented. Subsequently, the nu-
merical and experimental validity and applicability of the
proposed strategy are evaluated.

2. Bagged Trees as the Decision Tree Ensemble

In general, a decision tree is a non-parametric supervised
machine learning (ML) strategy. It can be employed to
predict the class of output response by learning simple rules
obtained for diverse predictors (features). Te privilege of
decision tree-based classifers over other classifcation par-
adigms in ML is their robustness in dealing with large data
sets for the classifcation of binary as well as multiclass
problems. In addition, ensemble methods aim at modifying
the predictive performance of given statistical learning or
model ftting techniques [27]. Te general principle of

ensemble approaches is to model a linear combination of
some classifcation methods instead of the implementation
of a single ft of the method. Ensemble strategies have be-
come popular since highly accurate classifers could be
obtained by combining the eforts of less accurate learners.
As a group of learners is appropriate at some specifc tasks,
their cooperation will complement each other, resulting in
a better performance. Te original ensemble method relied
on the Bayesian averaging scheme, however, more recent
strategies comprise error-correcting output coding, bagging,
and boosting algorithms. In other words, bagging and
boosting are schemes that generate a diverse ensemble of
classifers by manipulating the training data given to a base
learning algorithm. Bagging methods turn out to be variance
reduction schemes, whereas boosting methods are primarily
reducing the model bias of the base classifer [18, 19]. Some
details on the description of such ensemble approaches in
the much broader context of other modern statistical
strategies may be found in Ref. [27].

It is to be noted that random forest, known as a super-
vised ML classifer which uses homogenous ensemble
techniques, is a very diferent ensemble method than bag-
ging or boosting. However, from the perspective of pre-
diction, the random forest strategy is about as good as the
boosting method [21].Te comparison of diferent ensemble
methods of decision trees is provided in Table 1 [28]. In the
present study, due to the essence of the considered problem
in dealing with large-scaled structures (known as a multi-
label classifcation problem), the bagged tree classifer is
utilized as the family of decision tree ensemble approaches.
In fact, each decision tree in the ensemble bagged tree
classifer is trained on a diferent dataset with a replacement
from the actual dataset. Tis strategy is called bagging or
bootstrapping. Bagging combines the predictions of various
models while their predictions are not correlated with each
other. Each tree randomly chooses a set of features from the
whole feature set in the training model [13]. Furthermore, in
order to prevent overftting, a crossvalidation strategy is
utilized and the dataset is partitioned into k folds (k takes 10)
and the accuracy of the trained model is estimated on each
fold. Te maximum number of splits is taken from the
maximum number of samples, which difers from case
to case.

In this paper, an efcient data fusion technique is
proposed to obtain the most sensitive features to the
structural damage in the time-domain, and due to the small
size of the feature set, the principle component analysis
(PCA) is not considered.Te dataset to be trained consists of
N samples (including multi-class labels and the associated
feature array) and 10 features corresponding to each sample
data, which will be elaborated in subsequent sections. As
a consequence, each sample of data constitutes an input
array of class label, feature set. Te number of samples N
depends on the scale of the considered application and
damage states in model generation. As will be discussed
later, in order to enhance the accuracy of the ensemble
bagged trees classifer and relatively reduce the number of
multiclass labels, an artifcial feature selection strategy is
implemented.
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3. Improved Feature Selection

Fundamentally, the process of feature selection plays an
underlying role in data generation prior to any classifcation
strategy. In this study, in order to develop a robust time-
domain damage identifcation strategy, features that have
the most sensitivity to the damage during vibration testing
and those features with the least efect on the uncertain
sources (such as signal-to-noise ratio and sensor placement)
are selected for feeding the bagged tree-based data training
model. For this aim, an efcient data fusion technique is
proposed to extract the most damage-sensitive features with
a relatively small dimension. Accordingly, the ftness of the
extracted features corresponding to the measured sensors
(on an intact structure) over those of the simulated ones is
evaluated and the main components of each feature array are
constructed.

3.1. Acceleration Time-Histories. Practically, for a specifc
structural fnite element (FE) model, the data generation
phase aims to simulate a broad set of multiple damage
scenarios, recording the ftness of the simulated dynamic
response over the actual structural response corresponding
to the intact structure. Te proposed methodology herein
consists of two main stages. Te former step contributes to
the acceleration measurement of intact structure on em-
bedded sensors related to the selected degrees-of-freedoms
(DOFs). As a result, a set of acquired signals will be available
based on the deployed sensor confguration (designated to
Acc_meas). In addition, diverse damage scenarios are im-
posed on the structural elements, and the simulated dynamic
responses will be obtained on the FE model to generate
a multiclass dataset related to the multiple damage states. As
a consequence, for each sample of data, a set of simulated
acceleration time-histories (designated to Acc_simul) is
produced based on the original sensor placement. In this
research, assuming the governing linear behavior, the
damage severity array is constructed as ds ∈ [undamaged
(0), damaged (3 : 3 : 30)]%. Accordingly, diferent damage
states are imposed at the element level by reducing the
theoretical stifness of each element (it is assumed that the
element mass is not altered by damage). Te updated FE
model for dataset generation is formed based on the reduced
stifness values (K) as Ki � (1 − dsj)×Ki; i� 1: number of
elements; j� 1 : 3 : 30 (the components of the damage se-
verity array).

With an emphasis on time-domain considerations, the
latter step is to evaluate how well the measured acceleration

time-histories to those of simulated for considered class
labels related to multiple damage scenarios. In order to
enhance the performance of ML-based model training, in
referring to feature size reduction, measured and simulated
acceleration time-histories are frst converted into gray and
2D images with an intensity between 0 (black) and 1 (white).
Afterwards, the ftness evaluation contains a comparison of
four statistical criteria for evaluating the correlation of the
resulting images as follows:

(i) Fitness 1: Mean-squared error between two images
(MSE). Tis criterion measures the error index
between two images. It takes larger values for
nonsimilar images. Tus, ftness is formed as fol-
lows: Fitness� 1/(0.001 +MSE/NSen). NSen is the
number of measured DOFs, and 0.001 is a small
value to prevent computational complexity.

(ii) Fitness 2: Peak signal-to-noise ratio for one image
with another image as the reference (PSNR). Tis
criterion takes larger values as the similarity of two
images increases.

(iii) Fitness 3: Te structural similarity index for one
grayscale image compared to another one as the
reference (SSIM). Tis criterion takes a number
between 0 and 1, for nonsimilar images and similar
images, respectively.

(iv) Fitness 4: Root mean-squared values of Fitness 1–3.

Subsequently, in order to obtain a fairly uniform feature
set, the abovementioned ftness values are normalized to the
prescribed values by multiplying in appropriate coefcients,
which are decided based on preliminary tests. For instance,
1, 50, 1000, and 1 have been chosen in multiplying ftness
values 1 to 4, respectively. Te overall representation of each
feature array corresponding to each sample of data is
depicted in Figure 1. As can be seen in Figure 1, each original
feature array is composed of 10 features, and the four
components (1 to 4) shown in the fgure are referred to as the
abovementioned ftness values.

3.2. Wavelet Coefcients of Accelerations. As it was men-
tioned earlier, in order to accomplish an efcient feature
selection strategy, especially for damage-sensitive features,
the wavelet coefcients of acceleration time-histories are
considered to generate complimentary features. Basically,
wavelets are very sensitive to the changes along a signal with
the less efect of noise. Essentially, time-history data can be
decomposed into scaled and delayed wavelets (referring to

Table 1: Te comparison of diferent ensemble classifers of decision trees.

Classifer/ensemble Description

Decision trees A decision tree with many leaves that make many fne distinctions between classes is
suitable for a maximum number of 100 splits

Bagged trees A bootstrap-aggregated ensemble of fne decision trees is often very accurate, but
can be slow and memory intensive for large data sets

Boosted trees
Te model creates an ensemble of medium decision trees using the AdaBoost

algorithm. Compared to bagging, boosting algorithms use relatively less CPU time
or memory but might need more ensemble members
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the local wavelet collocations) on its global time intervals. In
this regard, the idea of segmentation method (SM) and
adaptive collocation points (2M) is discussed in Reference
[29] for the use of diferent wavelet functions. In this study,
the application of the frst kind of Chebyshev wavelet (FCW)
is considered to obtain wavelet coefcients of measured and
simulated accelerations (designated to WCoef. of
Acc_meas/simul). Te detailed conceptual notations and
defnitions of adaptive wavelets, i.e., wavelet functions and
coefcients, product matrix of integration P, etc., are
comprehensively addressed in Reference [29, 30]. Mathe-
matically, the signal S(t) can be decomposed by the trun-
cated series of a wavelet’s family as follows:

S(t) � 
2kt− 1

n�1


M− 1

m�0
cn,mψn,m(t) � CTΨ(t), (1)

where n, m, and kt represent the wavelet scale, relative order
of the Chebyshev polynomial, and transition parameter (in
this study, kt= 2 is utilized), respectively. C denotes the
coefcients vector of the relevant wavelets, i.e., FCW herein,
and the corresponding wavelet function vector is designated
byΨ(t) [29, 30]. It is to be pointed out that FCWwith 2M= 4
collocation points is considered as the wavelet basis function
with respect to a signifcantly small sampling rate of 20
samples/s to evaluate WCoef. of Acc_meas as well as
WCoef. of Acc_simul. Eventually, the same strategy is
employed as described in Section 3.1 for fusing time-domain
data into new wavelet-based features. Similarly, the
explained ftness values 1 to 4 (described in Section 3.1) are
investigated for comparison with relevant 2D images and
will result in new features 5 to 8 depicted in Figure 1.

3.3. Wavelet Energy of Acceleration Signals. Te subsequent
damage-sensitive feature used in this research lies on the
wavelet energy of acceleration time-histories, both measured

and simulated ones. In general, wavelet energy distribution
with respect to time and frequency is utilized to recognize
the local characteristic variations at various levels and lo-
cations [31]. Once the wavelet packet transforms have been
implemented on acceleration signals (i.e., S(t) presented in
equation (1)), the energies of decomposed signals at diferent
decomposition levels (DL) are used for feature extraction. By
the application of orthogonal or semiorthogonal mother
wavelets, the signal energy (ES) will be the summation of the
j-level (referring to the DL of interest) component energies
as follows [31, 32]:

ES&9; � 
+∞

− ∞
S
2
(t)dt � 

2j

i�1
E

i
j, (2)

where i and j indicate the modulation and scale parameters,
respectively. To be more practical for damage identifcation
in real-world applications in which an insufcient number of
sensors and relatively incomplete measured data are avail-
able, in this study a simple data fusion strategy is proposed.
Accordingly, by implementing two-dimensional wavelet
decomposition on the Acc_meas and Acc_simul, the per-
centage of energy corresponding to the approximation and
horizontal, vertical, and diagonal details will be obtained. In
this research, the application of both Daubechies wavelets
(db6) and Symlet wavelets (sym6) at decomposition level 6 is
considered to obtain the wavelet energy (designated as
WEnergy) of details [31]. Subsequently, the ftness evalua-
tion is proceeded comparing the diference in wavelet energy
of measured and simulated acceleration data and will form
new informative feature components 9 and 10 (shown in
Figure 1) for sym6 and db6, respectively. Te detailed
formulation of wavelet energy extraction using wavelet
packet decomposition and more conceptual background on
wavelet decomposition and multiresolution can be found in
References [25, 31–33].
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Figure 1: Te overall representation of each feature array corresponds to each sample data generation (WCoef. of Acc., simul., and meas.
denote the wavelet coefcients of acceleration, simulated signals for damaged structures, and measured ones for an intact system).
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3.4. Generating the Artifcial Features. Te demanding task
after the most damage-sensitive features have been extracted
(composed of a fairly small size of 10 components for each
sample) is implementing the ensemble bagged trees for
model training. Te main objective herein is the employ-
ment of bagged tree learners in contributing to a multilabel
classifcation problem corresponding to themultiple damage
detection strategy in large scale structures. Accordingly, the
overall procedure of data generation and data training is
tabulated in Table 2.

As a rule of thumb, the complexity of model training
dramatically increases as the size of themodel to be trained is
enlarged. In other words, in dealing with multiple damage
scenarios in such structures, the number of samples and
relatively multiclass labels are extensively increased due to
taking the consequences of damaged states into consider-
ation when generating the sample data.

Te proposed method in this study lies in the gen-
eration of artifcial features in order to circumvent the
dimension disaster by decreasing the correlation of
extracted features corresponding to diferent class labels.
As a consequence, by defning subclass labels instead of
considering original features with numerous class labels
governing a multiple damage detection problem, the
training processes are performed on artifcially generated
features with a signifcantly less number of class labels.
Figure 2 schematically shows the proposed method for
generating artifcial features from original ones. As it is
apparent from this fgure, the strategy involves the dis-
cretization of the large-scale structure into several sub-
divisions. Afterwards, the original feature array is
computed based on the data fusion strategy explained
before for the structural responses obtained from the
structural dynamic simulation corresponding to damage
scenarios imposed on the structure. Te numbers of
damaged elements fall into the corresponding sub-
division number set. In order to efciently convert the
damaged element numbers into a unique class label,
a binary representation is utilized based on the global
location of the damaged element as well as the local el-
ement number. Later, the binary set is converted into
a decimal value, forming an updated class label. On the
other hand, the original feature array is multiplied by
a unique coefcient (α) to generate the most distin-
guishable features of considered class label. As it can be
seen in this fgure, α is obtained based on the damaged
element number as well as the updated class label. Te
practical program code development is provided in
Figure 2, with the emphasize on the proposed algorithm
involving both generating artifcial features as well as the
reduction of multi-class labels.

For better illustration, the results of the ensemble-bagged
tree-based model training for a large-scale problem are
depicted in Figure 3. Assuming the 3D truss structure shown
in Figure 2 with the existence of two damaged elements,
a dataset of size 65014×11 (1 class label plus 10 features for
each sample) is originally generated. Te number of original
class labels considering diferent sequences of the probable
damage states is 8128. In addition, the scatter plots of 4

original features are shown in this fgure. As it is evident
from this fgure, ensemble-bagged tree learners could not
gain the predefned convergence, and the ML strategy failed
for the original dataset. On the contrary, for artifcially
generated features, due to the considerably less number of
class labels as 55, taking into account the generated unique
features based on the proposed strategy, a fnal precision of
99.8% is achieved on a 10-fold cross validation check. More
interestingly, this high performance is accomplished with
a desirable CPU computational time involved (about
5mins).

4. Application of EOAs

Considering the damage detection problem, on one hand,
a well-trained model is available for the initial measurement
of an intact structure as well as simulated responses for
diferent damage scenarios. On the other hand, a set of
original features is obtained for the new measurement of the
damaged structure. Taking into account that model training
has been performed on artifcial features, the proposed
strategy in this study involves the application of evolutionary
optimization algorithms in conjunction with ensemble
bagged trees ML at two essential steps. Te former step
contributes to a confdent damage localization approach
(denoting discrete unknown variables) using modifed ge-
netic algorithms (GAs), whereas the latter stage aims to
accurately identify the damage severities (denoting con-
tinuous unknown variables) using WCA based on damage
locations, which are already localized on the structure of
interest.

4.1. Damage Localization. Basically, the proposed synthesis
approach herein involves the application of an ensemble
bagged tree classifer in conjunction with a discrete opti-
mization scheme to confdently localize (quantify) multiple
damage scenarios very fast at the initial stage. Later,
damage severities are precisely identifed using the
implementation of real-coded evolutionary optimization
algorithms. Te damage localization approach proposed in
this research lies in the evaluation of possible damage
sequences and the generation of corresponding artifcial
features to achieve the most ftted results obtained from the
initially trained model. Te construction of the improved
GA strategy herein is presented in Figure 4(a). Practically,
a multispecies binary GA coding system (BGA) is utilized
to formulate the design variables of the damage quantif-
cation problem. As shown in Figure 4(a), each population is
divided into four species. In addition, each individual size is
1 to the number of elements. Each string is regarded to as
an element number, which is already fallen into its cor-
responding subdivision and may take 0 or 1 regarding the
associated element number from each subdivision. In this
regard, based on the possibility of a damage state on each
element, 0 or 1 are assigned to represent these values.
Furthermore, random exploration on probable damaged
elements and random exploration in the condensed do-
main are achieved using the second and third species,
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respectively. Notably, the local optima search is accom-
plished using the fourth species by focusing on only end-
to-end elements in the stifness matrix.

Te general layout of such a multispecies BGA coding
procedure is presented to localize impact load locations in
Reference [26, 34]. It is observed that, the proposed BGA
coding system involves multi-species with enhanced oper-
ations to overcome the local optima search capability, which
is the main drawback of GA-based algorithms in dealing
with such discrete variable problems.

In this study, by selecting the end-to-end elements after
the prescribed number of runs, the feasible search domain is
reduced to perform the proposed search domain reduction

(SDR) technique applicable in the proposed BGA coding.
For this aim, the damaged elements designated as the op-
timal results at each generation are considered, and the
connected elements attained from the connectivity matrix of
structural confguration are utilized to form the new possible
search domain through the proposed SDR approach. Based
on each formulated binary individual, prescribed sub-
divisions and element numbers are decided. Accordingly,
the extracted features (i.e., features 1 to 10) obtained from
the data fusion of new measured responses could be arti-
fcially generated. Eventually, the class label of the current
feature array is predicted using the initially trained model.
Te ftness value to be maximized comprises two underlying

Te whole structure (128 members) is 
divided into 10 subdivisions:

Top members: NW, NE, SW, SE
Diagonal members: NW, NE, SW, SE
Bottom members: W, E

EW

N

S
Class label

Damaged element No.:

Decimal value Binary representation

Original feature array

Artifcially generated feature array

×

Updated 
class 
label

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

NW NE SW SE NW NE SW SE W E
0 0 1 0 1 0 0 0 1 0

Bot. 
members

Diag. 
members

Top. 
members

∝

Figure 2: Te schematic view of the proposed methodology to generate the artifcial class labels and features based on the original dataset.

Table 2: Te overall procedure for training the artifcial dataset using bagged tree learners.

Implementation of the ensemble bagged trees for large dataset model training:
(i) Te structural input/output data (i.e., externally applied loading and nodal Acc_meas) of the intact structure are measured based on the
deployed sensor and force transducer confguration
(ii) Data fusion is applied to obtain grayscale images. ∗mat2gray (Acc_meas)
(iii) FE dynamic simulation is performed to obtain Acc_simul and relative images
(iv) WCoef. of Acc data (measured and simulated one) is computed to simulate relative images
(v) WEnergy of signals is obtained at wavelet decomposition of level 6 of sym6 and db6
∗[wavelet decomposition vector C, bookkeeping matrix S]�wavedec2 (Acc_meas, 6, “sym6”)
∗[percentage of wavelet energy for approximation, wavelet energy of details]�wenergy2 (C, S)
(vi) Construct the 1× 10 array of features for each sample data by evaluating ftness 1 to 4:
∗immse (image of the Acc_meas, image of the Acc_simul)
∗psnr (image of the Acc_meas, image of the Acc_simul)
∗ssim (image of the Acc_meas, image of the Acc_simul)
(vii) Assign the relative class label for each sample data based on the sequence of damaged elements
(viii) Based on the considered subdivisions in target structure, generate the artifcial features
(ix) Train the dataset using the ensemble bagged trees classifer to get the predicted model
∗template� templateTree (“MaxNumSplits,” 65014)
∗classifcationEnsemle� ftcensemble (features, class labels, “Method,” “Bag,” . . . “NumLearningCycles,” 30, “Learners,” template,
“ClassNames,” [1: updated class labels])
(x) Compute the trained model accuracy on 10 fold cross-validation
∗partitionedModel� crossval (trainedClassifer. ClassifcatioEnsemble, “KFold,” 10)
∗[validation prediction, validation Scores]� kfoldPredict (partitionedModel)
∗validation accuracy� 1 − kfoldLoss (partitionedModel, “LossFun,” “ClassifError”)
(xi) Store the predicted model to be utilized iteratively in damage localization step
∗ Note. Te as-built functions available in MATLAB software.
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criteria. Te frst involves producing the prescribed number
of test data from the recently predicted class label and
evaluating the resulting performance from the confusion
matrix of the main trained model on artifcial features. Tis
ftness evaluation guarantees damage localization at the
subdivision level, referring to the exploitation phase of BGA.
Furthermore, the second ftness evaluation deals with the
comparison of artifcial features attained for the measure-
ment of interest against those that were restored in the main
dataset denoting the exploration phase of BGA. One may
interpret the aforementioned evaluations as maximization of
the ftness value as follows:

Performance �
sum(diag(confusionmatrix))

sum(confusionmatrix(: ))
,

Fit 1 � Performance,

A � (ArtiDamage Features)meas

− (ArtiDamage Features)simul,

B � sum A.
2

 ; Fit 2 �
1

ε + B/10
; Fitness � Fit 1 × Fit 2,

(3)
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Figure 3: Te comparison of scatter plots for diferent feature selection and the resulted performance for the application of bagged tree
model training related to the original dataset and the artifcially generated dataset.
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where 10 is the number of extracted features. ArtDamage
Featuresmeas and ArtDamage Featuressimul denote the arti-
fcial damage features corresponding to measured and
simulated data, respectively. Te εmay have a small value of
0.001 to prevent computational difculties.

4.2. Damage Identifcation. Once damage locations have
been confdently detected at the element level, a real-coded
water cycle algorithm (WCA), known as a metaheuristic and
evolutionary optimization algorithm, is adopted to precisely
quantify the severity of damages. Te schematic construc-
tion of each population for the use of real-coded WCA is
presented in Figure 4(b). As it is illustrated in this fgure, the
set of variables shown for each individual contains real

values of damage severities associated with element numbers
predicted from BGA. Hence, the lower (LL) and upper limits
(UL) of each string form the box constraints according to the
broad threshold of damage severities. In this research, 3% to
30% of the damage index is treated as LL and UL, re-
spectively. Accordingly, the main idea ofWCA is thoroughly
addressed in Reference [25, 26, 35]. To be more concise, the
real-coded and population-basedWCA herein is inspired by
the water cycle process in nature and is modelled based on
the surface run-of of streams and rivers fowing into the sea.
Te operation of the raining process is utilized to generate
each individual, namely, stream of WCA [25, 26, 35]. Te
core of cost evaluation for the WCA approach lies in
a minimization problem and is formulated as follows:

Cost � (− 1) ×
1

ε +  (Damage Fuatures)m − (Damage Fuatures)s( 
2/DOFm

, (4)

where Damage Featuresm, Damage Featuress, and DOFm

represent the extraction of measured and simulated features
and the number of measured DOFs, respectively. Te minus
sign is utilized to invoke a minimization problem. Overtly,
the summation limit varies from 1 to the total number of 10
extracted features. In the present research, in order to well
examine the high performance of WCA in contributing with

damage identifcation problems, some of the other state-of-
the-art evolutionary optimization algorithms are compar-
atively investigated. Subsequently, the overall procedure of
the proposed damage quantifcation algorithm is clarifed in
Tables 2 and 3 for the data training and damage evaluation
stages, respectively. In addition, the schematic fowchart of
the proposed strategy is depicted in Figure 5 as the summary
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….

(b) (a)

Figure 4: Employment of the evolutionary optimization algorithms: (a) multispecies BGA procedure for localization of damaged elements;
(b) WCA approach for damage severity identifcation.
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of Figure 4 Tables 2 and 3. As it is apparent from Tables 2 and
3, once the model is trained on artifcial features, damage
localizations are confdently detected at the element level by
using the predicted model iteratively through the proposed
multi-species BGA algorithm. Eventually, the application of
WCA will be performed on the predicted damage locations
to accurately identify damage severities.

5. Numerical and Experimental Validations

Te appropriateness of the proposed scheme for damage
localization and identifcation is investigated. For both
numerical and experimental verifcation studies, the New-
mark constant-average acceleration method at diferent
sampling rates is used to perform the numerical dynamic
simulations. Te associated lumped mass is utilized for the
numerical application. On the contrary, the lumped and

consistent masses are considered for damage localization
and identifcation stages of experimental application, re-
spectively. Damping ratios of 2% and 5% are taken into
account to perform Rayleigh damping parameters corre-
sponding to the frst two modes in the numerical and
experimental applications, respectively. A preliminary
study is performed to establish suitable values for pa-
rameters utilized in the multispecies BGA and WCA
strategies. For this aim, the BGA and WCA parameters
were reasonably varied to determine the range of values
that consistently provided desirable results. In this regard,
the BGA parameters utilized in the damage localization
stage of numerical application were; 4× 50 (species 1–4),
3 ×10, 0.8, 0.1, 0.05, 3, and 15 as the population size,
number of generations (Run� 3), crossover, mutation, and
migration rates, number of regenerations, and number of
times that reintroduction is taking place, respectively. For

Table 3: Te overall procedure of the proposed scheme for damage localization and identifcation.

Damage localization:
(i) Te input/output measurement is carried out on the damaged structure for initial sensor and actuator placement as set before
(ii) Compute the 1× 10 array of original features for acquired data. Te ftness value is evaluated for initially measured Acc data for intact
structure compared to those of measured on damaged structure
(iii) Run the proposed multispecies BGA code for each predicted individual as there is the possibility of elements being damaged. LL and
UL are sets 1 and the total number of elements, respectively. For this aim, based on the considered subdivisions and predicted damage
locations, the obtained array of original features is artifcially generated to be compared with the associated class labels in the updated
model
(iv) Generate test data of interest in order to formulate the resulted confusion matrix for the predicted class label associated with measured
features
(v) Evaluate the cost value as presented in equation (3)
(vi) Continue until the desired convergence is achieved and store the output results as damaged element numbers
Damage severity identifcation:
(i) Once the damage localization is confdently accomplished, WCA is performed to precisely quantify damage severities for previously
detected element locations. In this regard, LL and UL are set 0 and the maximum damage index (i.e., 30%), respectively
(ii) Evaluate the cost value as presented in equation (4) for originally measured features as well as those of simulated for predicted damage
severities
(iii) Stop if the desired convergence criterion is accomplished

Collect the I/O measurements

Compute the 1×10 array of original and artifcial 
features and train the resulted dataset using 

ensemble bagged trees classifer (on the 10th fold 
cross validation checks) as presented in Table 2

Run the multi-species BGA code (binary
coding for damage localization) to evaluate the 

proposed objective function presented in 
Equation 3 based on the assigned structural 

subdivisions.

Multiple damages are 
localized

Run real coding WCA algorithm to 
quantify damage severities for the 

detected structural elements. LL and 
UL are set as the box constraints for 

the optimization algorithm

Evaluate the presented time-domain 
cost function in Equation 4 based on the 

original features until the desired 
convergence rate is achieved

Damage severities are 
identifed

Damage LocalizationDamage Identifcation

Figure 5: Te schematic fowchart for the proposed algorithm of structural damage localization and identifcation (as presented in Figure 4
and Tables 2 and 3).
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experimental evaluation these parameters were set to 4 × 20
(species 1–4), 1× 10, 0.8, 0.1, 0.05, 1, and 5 as the pop-
ulation size, number of generations (Run � 1), crossover,
mutation, and migration rates, number of regenerations,
and number of times that reintroduction is taking place,
respectively. In addition, d_max � 1e − 8 andNSr is assumed
to be 4 as the number of streams in applying the WCA
strategy. Accordingly, the proposed BGA procedure at the
frst stage (i.e., damage localization) is performed using an
efcient parallel computing approach. Te results for each
anticipated array as the possibility of damage location are
simultaneously calculated using twenty CPU cores. Sub-
sequently, the required processing time consumption
(computational time involved) is presented for the use of
the same hardware environment (Intel i9-7900X CPU at
3.31 GHz, 64GB of RAM, Operation 64 bit) and a parallel
pool of connecting to 20 virtual cores.

5.1. Numerical Validation Study: A 3D Truss Structure.
Te layout of large-scale and double layered spatial structure
considered for the numerical verifcation study is shown in
Figure 6. As it is depicted in Figure 6(a), the considered
structural system is composed of 128 rod elements, 41
pinned joints, and 4 hinge supports, resulting in 111 tran-
sitional DOFs. Furthermore, the considered structural sys-
tem is constructed with aluminium pipes. In addition,
A� 11.66 cm2, E� 69GPa, m � 2600 kg/m3, and g � 9.81
m/sec2 are selected as the cross-sectional area for all
members, elastic modulus of elasticity, mass per volume, and
gravitational acceleration, respectively. Te deployed sensor
confguration SC1 is highlighted in Figure 6(b). Accordingly,
there are 13 sensors (accelerometers) embedded on high-
lighted truss nodes to measure acceleration (Acc) time-
histories along principle directions x, y, and z, resulting
in 39 transitional DOFs. Te governing eigen-value problem
associated to the fnite element model of the structure is
solved and yields the last two natural frequencies of 776.23
and 797.33Hz. Terefore, taking into account the Nyquist
rule in order to capture the entire structural response,
a random multi-sinusoidal wave of 40–800Hz with maxi-
mum amplitude of 1 kN is generated at 2000 sampling rate,
and later it is interpolated to match reduced sample rate of
200 Sample/s (S/s). Te considered signal on reduced
sampling rate comprises the broad-band frequency com-
ponents; however, it is far fatter than the original signal.

Te frst 5 sec of the generated signal are applied in the
vertical direction of nodes 29, 30, 32, and 33 as the externally
applied loading. Furthermore, only output signals are pol-
luted with 5% white Gaussian noise. Eventually, the dynamic
response of the intact system is simulated, and the measured
Acc_meas data are recorded as available reference data for
further evaluations in extracting informative features from
the entire sample data.

In general, for damage identifcations of such application
through ML paradigms, there are two scenarios that may be
taken into consideration. Te frst scenario as the most
popular one, is to assume the probability of a unique element
or group of elements being damaged or not (i.e., the

localization accuracy down to a group of elements).Tis idea
will result in a relatively small-scale model that can be
trained with any ML classifer. Te second scenario, which is
the case of interest in this research, is to assume the
probability of each structural element being damaged at
diferent sequences with any other element in referring to
multidamage scenarios (i.e., the localization accuracy down
to a single element). Consequently, it will result in a sig-
nifcantly large-scaled simulated model to be trained as
a multiresponse class problem with bagged trees ensemble
herein.

Accordingly, in the numerical evaluation, two damage
scenarios (DS) are assumed to be multiple damage cases. In
this regard, DS1 denotes 10% of the damage index as the
stifness reduction in element number 60, and DS2 involves
28% and 4% of the damage indexes as the stifness reduction
in element numbers 13 and 76, respectively. Based on the
proposed strategy in this study, the simulation of sample
data is carried out for various sequences of damaged ele-
ments, considering a damage index of ds ∈ [undamaged (0),
damaged (3 : 3 : 30)]% imposed to the theoretical value of
each element’s stifness. Tis step for dataset simulation may
interpret as the most computationally demanding task in
performing the proposed strategy. Taking into account
multiple-damage scenarios and considering imposed dam-
age severities on such a large scale structure will result in
a 65014 simulated sample data with 8128 associated mul-
ticlass labels related to 10 original features. Te computa-
tional time involved (CPU time) for the entire process of
dynamic simulation and original feature array generation is
recorded about 18.42 hours. As presented earlier, the pro-
posed approach lies on training the model originating from
the artifcial features in order to considerably reduce mul-
ticlass labels.

For instance, 55 class labels are the resultant of the
proposed scheme for artifcial feature generation assigned to
65014 sample data. Subsequently, various ML classifers are
employed for model training of the 65014×10 dataset
(including 55 class labels associated with artifcial features),
and the obtained accuracy and computational time involved
after each classifer are comparatively tabulated in Table 4.

Te percentile accuracy presented in this table corre-
sponds to the evaluation of a 10-fold cross validation. It is to
be pointed out that none of theML classifers could deal with
such a large scale model of original features and it would be
rather inevitable to execute learning tasks on artifcial fea-
tures. Te notable observation on the data tabulated in
Table 4 lies on the superiority of the ensemble bagged trees
classifer in achieving the most precise predicted model in
the reasonably fast computational time involved. On the
contrary, the least accuracy is recorded for medium tree
learners after 16 sec. As it was anticipated, the family of SVM
classifers has produced inaccurate results with far longer
computational time involved, which makes the SVM clas-
sifers (in their general format) inapplicable in training such
a large scale model.

Once the trained model is provided, it is kept as the
reference model for further evaluations whenever SHM of
the structure takes place. In this regard, the new
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measurement may be carried out on the damaged structure,
and the original feature array of 1× 10 will be extracted. In the
damage localization step, the proposed multi-species BGA is
then performed to detect the damage locations. Taking into
account the stochastic characteristics of evolutionary optimi-
zation strategies, the damage localization and identifcation
code are run 5 times. Te history of ftness assessment for
damage localization of DS1 and DS2 corresponding to one of
the fnest results achieved is provided in Figure 7.

Te result of the damage localization stage is presented in
Table 5 corresponding to DS1 and DS2. It is observed that,
due to the comprehensive operations included in the pro-
posed multispecies BGA, the exploitation and exploration
phases are thoroughly proceeded. Several attempts have
been made for damage localization in such a large-scale
structure, and it is concluded that for all cases considered,
the damage locations are confdently detected (without false
detection). Furthermore, in conducting the evaluation study,

Side view; height=1.5 m3D view; all panels = 2×2 m
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Figure 6: Te considered 3D spatial structure: (a) top and side views, (b) sensor confguration (SC1, highlighted joints), joint numbering,
corner supports, and damage scenarios (element numbers 13, 34, and 76), and (c) the selected structural mode shapes (i.e., mode shapes 1 to
4).

Table 4: Te accuracy and CPU computation time involved for the application of diferent ML classifers in training the model of 65014
sample data with associated 55 multiclass labels.

ML classifer
Ense.
bagged
trees

Ense.
boosted
trees

Ense.
RB.
trees

Fine
trees

Medium
trees

Weighted
KNN

Fine
KNN

Kernel
naive
Bay.

Gaus.
naive
Bay.

Linear
SVM

Fine
Gaus.
SVM

Quadratic
SVM

Cubic
SVM

Accuracy (%) 99.8 47.3 42.6 26.6 21.3 90.2 89.8 25.6 22.1 22.9 34.3 NA NA
Time (s) 464 548 692 19 16 65 26 789 25 4203 3415 NA NA
Note.Te CPU time is rounded up in second. Ense., RB., KNN, Bay., Gaus., SVM, NA denote ensemble, RUSBoosted, K-nearest neighbors, Bayes, Gaussian,
support vector machine, and not available, respectively.
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two scenarios may be considered. Te former scenario is to
compare the time taken to reach a given convergence rate,
while the later one is to compare the best convergence rate
that can be achieved in a given time. In this study, the second
scenario is considered by setting the best convergence rate as
the reference for the sake of comparison. Data shown in
Table 5 and Figure 7 demonstrate the satisfactorily reliable
results obtained for damage localization of such large-scaled
structures using the proposed ftness evaluation of BGA,
where the time taken to reach the converged results for DS2
is only 2.6min. Considering such a large structural system
and to prevent progressive failures, it is of crucial signif-
cance to detect the existence of damage and its location after
an extreme loading event as soon as it occurs. Te recorded
time consumption reveals the main merit of the proposed
strategy in referring to fast damage localization in large-
scaled structures. Once damage locations have been conf-
dently detected for DS1 and DS2, the evolutionary opti-
mization algorithms, i.e., WCA, PSO, ICA, and DE, are
adopted to identify damage severities. Accordingly, the best
cost-history recorded for each optimization strategy (after
fve repeats) is illustrated in Figure 8 corresponding to DS1
and DS2.

In employing optimization strategies for DS1, 50 and
20 are taken as the population size and the maximum
number of generations (iterations), respectively, whereas
50 and 50 are taken as the population size and the
maximum number of iterations for DS2, respectively.
Damage index of each detected element from the previous
stage is treated as unknown variables of optimization. Te
LL and UL are set as [0, 30]%. In order to get the most
reliable results, the optimization codes have been run
5 times and the best results are plotted as the fnal results.

Te damage identifcation results are tabulated in Table 5.
Te percentile error values presented in this table compare
the actual and identifed damage indices for diferent
elements. For instance, in a worst situation 12.7% is
recorded as relative error in identifed damage index of
element 76 after the application of WCA (i.e., about 3.5%
as the identifed damage index compare to 4% as the actual
one). Basically, there are two criteria that should be taken
into consideration in comparing the cost-histories
attained for diferent optimization schemes shown in
Figure 8. Tese involve the exploration rate in reaching
the least cost value (best cost value) as well as the fast
convergence rate. As it is shown for DS1 and DS2 in
Figure 8, the less cost value is recorded for WCA yielding
the less percentile error for damage identifcation results
presented in Table 5. Comparing the results tabulated in
Table 5 and the cost-history plot in Figure 8, one may
include that the less performance is reported for ICA
algorithm. Taking into consideration the above-
mentioned 2 criteria, Figure 8 demonstrates the superi-
ority of WCA in dealing with damage identifcation of
such large structures.

In order to well evaluate the performance of diferent
optimization algorithms in dealing with damage identif-
cation problem, the comparison of statistical results i.e., the
best, mean, worst and standard deviation (SD) results ob-
tained for the relative error values (%) in identifed damages
corresponding to DS1 and DS2 after 5 repeats is provided in
Table 6 for the use of WCA, PSO, ICA, and DE optimization
strategies.

Data tabulated in Table 6 reveal the satisfactory rea-
sonable SD results recorded for WCA strategy compared to
those of computed for the other optimizers. Te less SD
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Figure 7: Te ftness histories of the proposed multispecies BGA approach for damage localization correspond to DS1 and DS2.

Table 5: Damage localization and identifcation results correspond to DS1 and DS2.

Element: Localization
Identifcation

WCA PSO ICA DE
60 13 76 60 13 76 60 13 76 60 13 76 60 13 76

DS1 Error (%) 0 — — 2.1 — — 9.8 — — 15.8 — — 11 — —
Time (min) 4.1 — — 16.7 — — 14.1 — — 10.5 — — 15 — —

DS2 Error (%) — 0 0 — 4.6 12.7 — 7.8 28.2 — 33 64.1 — 21.1 42.5
Time (min) — 4.1 — 39.5 — 37.2 — 26.3 — 38.5

Note. Error values are computed for actual versus identifed damage indices.
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values recorded for WCA guarantee the resulted high
performance and reliable results obtained using this algo-
rithm in dealing with damage identifcation problems.

5.2. Experimental Verifcation Study: A 2D Steel Pin-Jointed
Bridge. To be more practical, the experimental verifcation
of the proposed scheme for damage localization and
identifcation is evaluated in this section. For this purpose,
a 2D steel truss structural system is fabricated and tested
in the laboratory. It is composed of nine horizontal and
vertical elements (constructed with steel hollow sections)
and four diagonal members (provided with double steel
strips supported with internal stifeners to prevent
buckling phenomena). All truss elements are connected
with eight pin connections so that they are free to rotate.
Te schematic view of the test setup as well as the deployed
sensor confguration (denoting measured DOFs), the
location of force transducers, the structural subdivisions,
and structural characteristics are provided in Figure 9.Te
considered structure comprises 13 DOFs, indicated by red
arrows in this fgure. As it is shown in this fgure, nine ICP
accelerometers (KISTLER magnetic piezoelectric sensors)
are embedded in the structure to measure corresponding
DOFs at a sampling rate of 5128 Sample/s (as a case of
incomplete measurement). Furthermore, a 16-channel

digital analyzer (OROS 36) is utilized for acquiring data
at diferent sampling rates.

As a preliminary study, a FEM of the considered
structure is modelled in ABAQUS software, assuming the
mass density of steel 7850 kg/m3 and the modulus of elas-
ticity of steel E� 209GPa (known as the theoretical values).
Te natural frequencies obtained from the FEM of 2D truss
vary from about 202 to 2120Hz corresponding to the frst
and thirteen modes of the structure. On the other hand,
impact tests are carried out on intact structure to extract the
natural frequencies related to the as-built structural ele-
ments. However, due to the complexity of the structure, the
extracted natural frequencies related to the higher modes
obtained from the application of the fast Fourier transform
(FFT) and the power spectrum of the response were not
reliable. Tis is most probably due to the local vibrations of
structural elements, whereby they produce signifcant energy
in the 1800–3000Hz range and diminish at the higher
structural frequencies. It is to be kept in mind that, in
planning the damage identifcation experiment, these fre-
quencies and relatively these modes are not excited.
Terefore, a random multisinusoidal loading of
150–1800Hz with a random magnitude of − 50, 50 N is
generated for 5 secs at sampling rate of 5128 samples/s in the
digital data analyzer (OROS36). Accordingly, the described
signal is passed through a power amplifer and then is
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Figure 8:Te best cost-histories obtained for diferent optimization strategies in the damage identifcation step correspond to DS1 and DS2.

Table 6: Te comparison of statistical results i.e., the best, mean, worst and standard deviation (SD) results obtained for the relative error
values (%) in identifed damages corresponding to DS1 and DS2 after 5 repeats using WCA, PSO, ICA and DE optimization strategies.

Element no.
Damage identifcation

WCA PSO ICA DE
60 13 76 60 13 76 60 13 76 60 13 76

DS1

Best (error %) 2.1 — — 9.8 — — 15.8 — — 11 — —
Mean (error %) 2.5 — — 10.2 — — 16.38 — — 12.1 — —
Worst (error %) 3.1 — — 11.6 — — 17.9 — — 14.1 — —

SD 0.36 — — 0.71 — — 0.78 — — 1.12 — —

DS2

Best (error %) — 4.6 12.7 — 7.8 28.2 — 33 64.1 — 21.1 42.5
Mean (error %) — 4.9 13.2 — 8.4 29.4 — 35.8 65.8 — 24.2 45.6
Worst (error %) — 5.7 13.9 — 8.9 31.1 — 38.1 66.9 — 27.4 49.1

SD — 0.4 0.46 — 0.5 1.14 — 2.03 1.04 — 2.24 2.53

14 Structural Control and Health Monitoring



applied by two electromagnetic shakers at prescribed ac-
tuator locations (downward at 4-y and right-to-left at 8-x).
In addition, the measured input and output data are then
reduced to 2048 samples/s by interpolating the initial
samples to reduced ones so that the numerical simulation
is performed for such reduced sampling rates.

Once the test is performed on intact structure, the
proposed data fusion technique, as described in Figure 1, is
employed to convert 3D responses into sets of related im-
ages, which are then kept as the reference data for intact
structure. Subsequently, damage scenarios DS1–DS3 with
diferent damage severities, as provided in Table 7, are
imposed on structural members, and corresponding data
measurements are carried out with respect to each scenario.
As it can be seen in Table 7, the large damage severity is
induced only for element 4 by cutting its cross section, while
the small and moderate damage severities are induced for
elements 12 and 5, respectively.

Te small and moderate severities are formed by re-
moving one and two internal stifeners in diagonal members
12 and 5, respectively. In order to well examine the proposed
damage identifcation strategy in estimating the expected
reduction in static stifness due to diverse damage severities,
the FE analysis is conducted using ABAQUS software. In this
regard, the whole element 4 (intact element) is modelled in
the software as a bar element (i.e., node 2 to node 4 shown in
Figure 9) under a ∓500N arbitrary axial force applied to
node 4. Te resulting model is considered the basis for intact

element, utilized in further evaluations. Ten, the reduced
cross section due to damage is modelled on element 4,
applying the same axial force, and the resulting displacement
is computed for the damaged element. As a consequence, the
damage index of 25.14% is obtained as the expected re-
duction in static stifness of member 4 due to the large
damage. Te same procedure is performed on diagonal
members to compute relative damage indices of 18.75% and
14.33% as moderate and small values, respectively.

Accordingly, the original dataset and an artifcial one are
generated in order to tackle the damage identifcation
problem. Notably, this step may be presumed as the most
computationally demanding step in recording about
6.23 hours for simulating 14916 samples of features, con-
sidering 2048 samples/s in dynamic simulation. However,
this computational task is carried out once during the entire
service life of the structure. For the sake of comparison, the
bagged trees model training is conducted on both original
and artifcial datasets. Te comparison of scatter plots for
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Figure 9: Te schematic view of the test setup: (a) the laboratory 2D truss, (b) sensor/actuator placement, (c) layout and dimensions (cm),
node and element numbering, and (d) sensor confguration (SC) and structural subdivisions.

Table 7: Damage scenarios and corresponding damage indices
imposed to the 2D truss.

Element no.
Damage scenarios (DS)

DS1 DS2 DS3 (%)
4 25.14% 25.14% 25.14
5 — — 18.75
12 — 14.33% 14.33
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diferent feature selections and the resulted performance for
the application of bagged trees model training is illustrated
in Figure 10. One of the remarkable observations on this
fgure lies on the robustness of the proposed algorithm in
generating artifcial features yielding the less number of
multiclass labels and relatively the highest precision for
implementation of bagged trees in the model training of
such a big dataset.

Afterwards, the proposed multispecies BGA is con-
ducted to localize damage locations. Te developed codif-
cation is repeated 5 times, and it is concluded that, for all
damage scenarios considered, damage locations are conf-
dently detected at element level without no false detections
corresponding to diferent runs. Regardless of diversity in
damage scenarios, the computational time involved at this
step is recorded at about 1.02min, corresponding to each
case considered. Taking into consideration the diference
between the actual (as-built) stifness of structural elements
compared to those of theoretical values in dataset simula-
tion, such outstanding results for damage localization evi-
dence the advantage of the proposed strategy in dealing with
real-world applications when the updated results for
structural characteristics are not available. Once damage
locations have been confdently detected, evolutionary op-
timization algorithms, i.e., WCA, PSO, DE, and ICA, are
comparatively employed to identify the damage severities
induced in the detected structural elements. Damage index is
treated as unknown variables of optimization. Te LL and
UL are set as [0, 30]% of theoretical values for stifness
reduction in each element. In this regard, the efective cross-
sectional area of each element (A) is considered in order to
form E×A as the resultant of each member’s stifness value.
In performing optimization algorithms, the population size
is set to 50 and the number of iterations is set to 10, 20, and
50 corresponding to DS1, DS2, and DS3, respectively (these
values are kept constant for all optimizers). In order to get
the most reliable results, the optimization codes have been
repeated 5 times and the best results are considered as the
fnal results. It is to be noted that, the reason for choosing the
best results (after 5 repeats) rather than the average, is that
an undesirable result may diversely afect the average results
so that making that unreliable. Furthermore, the best cost-
histories obtained for diferent optimization strategies in
damage identifcation step corresponding to DS1, DS2, and
DS3 are illustrated in Figure 11. As was mentioned earlier,
the prescribed convergence criterion is set as the reference
for comparison. In other words, the optimization process is
stopped when reaches to a predefned convergence rate.
Accordingly, the relative errors in identifcation results and
CPU time consumption as an indication for computational
cost after each optimization algorithm are tabulated in
Table 8.

Te satisfactorily high performance of WCA in dealing
with the diverse scenarios considered can be deduced from
the comparison of cost evaluation histories plotted in Fig-
ure 11. For instance, considering DS2, it can be overtly seen
that WCA converges at the fourth iteration while DE and
ICA have gotten stuck in the exploitation phase. In contrast,
the results after PSO have demonstrated an acceptable

convergence rate over ICA and DE. However, for a larger
optimization problem such as DS3, this optimizer also
cannot compete withWCA. Logically, based on the obtained
cost values after the implementation of each optimizer, the
resulting error values provided in Table 8 seem predictable.

Eventually, in order to achieve reliable results for the
experimental verifcation study, a well-known substructural
identifcation approach [3, 36, 37] is performed for time-
domain identifcation of the intact and 2D truss structure,
and the updated values of each member’s stifness are
precisely identifed [38]. Accordingly, the error measure-
ment for damage severities takes into account the updated
stifness values rather than theoretical ones. More in-
terestingly, it is observed that the identifcation is consis-
tently giving a larger stifness value for intact diagonal
members. Due to the fact that the axial rigidity of diagonals
was computed based on only double strips and the efect of
internal stifeners was ignored, the results were anticipatable
in the presence of such internal stifeners.

It is to be emphasized that, theoretically, it is somehow
impossible to calculate the as-built stifness of diagonals due
to the internal stifeners. As a result, the identifed stifness,
value of intact diagonals, including the internal stifeners is
set as the basis for presenting the so-called damage index
value. Te relative error values in identifed damage indices
are updated in Table 9 corresponding to the employment of
diferent optimization strategies considering the updated
stifness values of intact structures. Comparing the cost-
histories shown in Figure 11 and tabulated data in Table 9,
one may deduce that the reliable damage identifcation
results are accomplished by WCA from both the error
measurement and computational cost points of view. Fi-
nally, taking into account the considered test setup as a real-
world application in the vicinity of various uncertain sources
(i.e., I/O signal-to-noise ratio, modeling errors, and so
forth), it is distinct that the reliable damage identifcation
results are achieved by the proposed strategy in two steps
involving the absolutely confdent and fast localization and
the accurate identifcation of damage states.

Eventually, the standard deviation (SD) results obtained
for the relative error values (%) in identifed damages
corresponding to DS1-3 after 5 repeats is tabulated in
Table 10 for the employment of WCA, PSO, ICA, and DE
optimization strategies.

Te notable consideration on this table lies in the high
values for the standard deviation of results recorded for the
DE optimization algorithm. Tis is due to the inherent
formulation of mutation operations in this algorithm, which
yields the highest values of errors for the worst results.

5.3. Discussion. Te capability and efectiveness of the
proposed strategy for structural damage identifcation were
validated numerically and experimentally. It is included that
damage locations are confdently detected using the im-
proved multispecies binary genetic algorithm in conjunction
with a supervised machine learning paradigm. To achieve
this goal, the ensemble bagged trees classifer is utilized for
model training and multilabel classifcation of large-scaled
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model training related to the original dataset and the artifcially generated dataset of the 2D truss experiment.
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datasets. In order to be more applicable in large scale
structural systems, an efcient artifcial data generation
technique is proposed, yielding a signifcant reduction in
multiclass labels corresponding to large datasets. Te most
efective and damage sensitive features are extracted using
a simple data fusion strategy. In this regard, 3D acceleration
signals and the resulting wavelet coefcients of signals,
which are obtained by the operation of the Chebyshev
wavelet on precise collocation points (to capture the entire
frequency contents of associated time-history signals), are
concatenated into relative 2D images. Accordingly, each
feature array is constructed based on the ftness of such time-
domain images attained for measured data compared to
those for simulated data, taking into account diferent
damage states. Furthermore, the wavelet-based energy of
signals is computed and will form the last two components
of each feature array. It is concluded that, not only the
extracted features have the less efect of signal-to-noise ratio
but also the application of the proposed data fusion method
dramatically reduces the feature size and will result in
a considerable improvement in the performance of data
training. In addition, a reasonably fast convergence is
achieved by employing bagged tree learners compared to the
other classifers.

On the other hand, the diverse operations of the
proposed multispecies genetic algorithm overcome the
main shortcoming regarding the local optimal solutions.
Terefore, damage locations are confdently detected
within an acceptable, fast computational time. Tis in-
troduces the proposed damage localization scheme as one
of the more practical ones for dealing with large-scale
problems. It is concluded that, for large-scale structures,
the computational performance of the proposed strategy
in the model training part is considerably better than that
of the other available classifers. Te later step involves the
application of evolutionary optimization strategies, i.e.,
WCA, PSO, ICA, and DE, for structural damage identi-
fcation. Due to the inherent formulation of WCA, the
exploitation and exploration phases are thoroughly pro-
ceeded and it is concluded that, even in the case of
multiple damage scenarios in large structures, WCA
consistently produces the best identifcation results. For
instance, in dealing with 128 unknown structural ele-
ments, an average accuracy of 91.4% is achieved by the
proposed method using WCA in the damage identifca-
tion of multiple scenarios with no false detection, com-
pared to 82%, 75.7%, and 68.9% obtained for the
application of PSO, DE, and ICA, respectively.

Table 8: Damage identifcation results corresponding to DS1, DS2, and DS3 related to the theoretical stifness values.

Element no.:
Identifcation

WCA PSO ICA DE
4 12 5 4 12 5 4 12 5 4 12 5

DS1 (10 iter.) Error (%) 16.9 — — 19.3 — — 24.3 — — 18.6 — —
Time (min) 3.60 — — 3.18 — — 2.61 — — 5.29 — —

DS2 (20 iter.) Error (%) 17.4 19.9 — 20.5 22.8 — 24.9 28.1 — 20.1 21.9 —
Time (min) 7.21 — 6.24 — 5.13 — 6.27 —

DS3 (50 iter.) Error (%) 17.9 21.3 25.6 21.0 23.8 26.1 26.8 29.9 31.0 20.9 24.1 25.9
Time (min) 18.02 15.81 13.00 16.43

Note. Error values are computed for actual versus identifed damage indices (theoretical stifness).

Table 9: Damage identifcation results corresponding to DS1, DS2, and DS3 related to the updated stifness values.

Element no.
Identifcation

WCA PSO ICA DE
4 12 5 4 12 5 4 12 5 4 12 5

DS1 Error (%) 1.2 — — 2.1 — — 3.8 — — 3.1 — —
DS2 Error (%) 1.6 3.3 — 3.2 4.1 — 13.6 16.3 — 13.1 15.7 —
DS3 Error (%) 1.7 3.6 3.6 7.7 9.4 9.2 17.5 19.7 20.8 17.2 18.3 18.0
Note. Error values are computed for actual versus identifed damage indices (updated stifness).

Table 10: Te comparison of standard deviation (SD) results obtained for the relative error values (%) in identifed damages corresponding
to DS1, DS2, and DS3 after 5 repeats using WCA, PSO, ICA, and DE optimization strategies.

Element no.
Damage identifcation

WCA PSO ICA DE
4 12 5 4 12 5 4 12 5 4 12 5

DS1 SD 0.1 — — 0.4 — — 0.4 — — 0.9 — —
DS2 SD 0.35 0.45 — 0.55 0.75 — 1.15 0.8 — 1.65 1.4 —
DS3 SD 1.03 1.07 0.94 1.34 1.22 1.25 1.4 1.5 1.5 2.2 2.4 2.3
Note. Error values are computed for actual versus identifed damage indices (updated stifness).
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Moreover, the proposed damage detection strategy may
be considered as a data-driven scheme. Taking into account
the necessity for early damage detection in large scale
structures, the underlying strength point lies in the re-
markably fast computational time involved and the less
efects of uncertain and unpredicted sources, i.e., environ-
mental noise, fnite element modeling errors, and so forth.

6. Conclusions

Tis paper introduces a synthesis approach for time-domain
damage localization and identifcation in structural systems.
Te main conclusions from the results of this study can be
drawn as follows:

(i) Employing the improved multispecies binary ge-
netic algorithm in conjunction with a supervised
machine learning-based classifcation strategy leads
to a data-driven technique and yields a cost-efective
and reliable damage localization approach with
localization accuracy down to a single structural
member in dealing with large-scale structures.

(ii) Te most damage-sensitive features are extracted
using wavelet coefcients and wavelet energies of
output signals (at diferent decomposition levels)
through an efcient data fusion technique. It is
noted that the extracted features have a lower signal-
to-noise ratio.

(iii) Te superiority of the proposed data fusion tech-
nique lies in its ability to reduce the size of large
time-domain features while capturing the entire
dynamic behavior of structures regardless of the
sensor confgurations. In addition, artifcial features
are generated based on the structural subdomains,
and the class labels are accordingly updated. As
a consequence, the performance and computational
cost of the model training stage are signifcantly
enhanced using ensemble bagged tree classifers.

(iv) Te structural damage identifcation is satisfactorily
accomplished using the water cycle optimization
algorithm compared to the other state-of-the-art
optimization strategies.

(v) Based on the results obtained for the numerical
verifcation as well as the experimental validation
studies, one may deduce the robustness of the
proposed approach for damage identifcation of
real-world structural systems. More importantly,
the proposed feature extraction and data fusion
strategies constitute the main merit of the pro-
posed procedure over the existing methods and
make it applicable for vision-based measured
data capable of being utilized by remote digital
clones in a variety of real-world structural
applications.
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