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In structural health monitoring (SHM), variations of structural dynamic properties are paramount to indicate the health status of
structures. Structural dynamic properties are time variant due to various long-term efects (e.g., structural deterioration) and
periodic efects (e.g., periodic variations of temperature, humidity, and trafc). Sometimes periodic efects will interfere with the
quantifcation of long-term efects. Tough important, there are still limited research studies aiming to distinguish these two
efects. Given the amount of SHM data, it is possible to solve the issue from a data-driven perspective. Tis article proposes a time
series decomposition methodology to divide the time series of structural dynamic properties into long-term parts, multiscale
periodic parts, holiday parts, and error parts. We extract the 10-year dynamic properties of a long-span bridge using the fast
Bayesian FFT identifcation algorithm and choose two dynamic modes of that bridge as examples to explain how our proposed
methodology works. We use the long-term parts to extract the rules of structural deterioration. Te multiscale periodic parts are
utilized to fnd the relationships with the periodically varying ambient conditions (i.e., temperature and humidity) in diferent
time scales (i.e., yearly, weekly, and daily).Ten, the long-term and periodic efects can be distinguished. For the long-term efects,
the modal frequencies tend to decrease but the damping ratios seem to increase. For the periodic efects, we fnd that the increment
of temperature will lead to the decrease of both modal frequencies and damping ratios. Te variations of modal frequencies
induced by deterioration and temperature are of the same amplitudes. Te variations of both modal frequencies and damping
ratios are not signifcantly related with humidity. Tis article could provide references for damage detection and safety assessment
for similar bridges.

1. Introduction

Te structural health monitoring (SHM) system of critical
infrastructures is very important, which makes it possible for
researchers to identify and analyze the structural dynamic
properties continuously. Operational modal analysis is
prevailing these years because it can analyze SHM data
without disturbing the normal service of structures. Tere
are multiple operational modal identifcation technologies
that have been investigated for output-only systems, such as
frequency-domain decomposition (FDD) [1], wavelet [2, 3],
and stochastic subspace identifcation (SSI) [4]. Recently,
Bayesian system identifcation [5] has made signifcant

development, which viewed the modal identifcation as
inference with plausible system models. For parameters that
need to be inferred, Bayesian system identifcation can give
both the most probable values (MPVs) and corresponding
posterior uncertainty. Katafygiotis and Yuen [6] proposed
a Bayesian spectral density approach for modal updating,
where the power spectral density (PSD) of measured signals
was used. Yuen and Katafygiotis [7] and Au [8, 9] developed
the Bayesian FFT approach for modal updating, which di-
rectly utilized the statistical characteristics of the Fourier
transform of measured signals. Both Bayesian spectral
density approach and FFT approach have been successfully
applied on issues of system identifcation [10–12]. In this
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article, we will use the Bayesian FFT approach to extract 10-
year dynamic properties of the Xihoumen Bridge in China.

Modal frequencies and damping ratios are important for
structural integrity and safety. For example, the abnormal
reduction of modal frequency is often regarded as an in-
dicator of the loss of structural integrity, and Salawu [13]
concluded that 5% reduction of modal frequency was a re-
liable sign for structural damage. As for damping ratio, it is
the key parameter of long-span bridge’s wind-resistant ca-
pacity, especially for the performance of vortex-induced
vibration [14–16]. Te reduction of damping ratio may
lead to large-amplitu devortex-induced vibration [14]. In
addition, in current engineering practices, the designed
service life for critical infrastructures (e.g., long-span
bridges) is over hundred years. Considering all reasons
listed above, it is paramount for researchers to investigate
how dynamic properties will change with time. Nevertheless,
recent studies revealed that the fuctuating environmental
conditions could also induce the signifcant changes of
dynamic properties, which are not caused by structural
damage. For example, Yuen and Kuok [17] monitored a 22-
story reinforced concrete building for one year and found
that with the increase of ambient temperature, the modal
frequency of buildings would increase. For long-span
bridges, however, Li et al. [18], Mao et al. [3], Anastaso-
poulos et al. [19], and Hwang et al. [20] found that the
increase of ambient temperature would decrease the modal
frequency, which was opposite to the varying rule of
buildings. In conclusion, both long-term deterioration (due
to structural damage) and varying ambient conditions can
infuence the modal frequencies and damping ratios. It is
important to distinguish the efects of structural de-
terioration from ambient interference, but few research
studies were found since the complicated inherent mecha-
nisms. Tanks to the accumulation of SHM data, however, it
is possible to distinguish them from a data-driven per-
spective. It should be stressed that damping ratio is fairly
complicated and related with many factors (not just varying
ambient temperature and humidity). For example, damping
ratio can also be infuenced by aerodynamic efects [18, 21],
soil-structure interaction [22], and man-made changes (e.g.,
maintenance of expansion joints and tuned mass damper
[23]). Due to the limitation of the length, this study only
focuses on the relationship between structural dynamic
properties (modal frequencies and damping ratios) and
ambient interference (temperature and humidity).

Tere have been multiple applications of time series
methods on the monitoring of civil infrastructures, mainly
focusing on the detection of structural damage. For example,
Omenzetter and Brownjohn [24] formulated a vector sea-
sonal autoregressive integrated moving average (ARIMA)
model to obtain information from the recorded strain sig-
nals and found that the changes in the ARIMA coefcients
meant potential structural change and damage. Many re-
search studies using the statistical characteristics of SHM
data to classify and locate the damage are also investigated
[25–28]. Explainable component analysis (i.e., long-term
deterioration, seasonal fuctuation, and efects of special
events) remains to be a formidable task either for researchers

or bridge maintainers. With the proliferation of SHM data,
however, it is possible to quantify diferent components. Te
Prophet model developed by Facebook [29] is a good tool
with interpretable parameters that can be intuitively ad-
justed by analysts with domain knowledge. Te Prophet
model used a decomposable time series model [30] with
three main components: trend (i.e., structural deterioration
in SHM), seasonality (which can be used for the analysis of
ambient interference), and holidays (which can be used for
explaining the anomaly in special events). In this paper, we
used the Prophet model to distinguish and quantify the
structural deterioration and ambient interference (temper-
ature and relative humidity [31]) of Xihoumen Bridge, where
the recorded acceleration data from 2012 ∼ 2021 were
employed.

Te contents of this paper are organized as follows: In
section 2, we briefy introduce the theoretical background of
the fast Bayesian FFT identifcation algorithm and the layout
of Xihoumen Bridge including the SHM systems; then, 10-
year identifed structural dynamic properties (modal fre-
quencies and damping ratios) are presented. In section 3, we
propose a multiscale time series decomposition methodol-
ogy to distinguish the long-term part and periodic part of
structural dynamic properties. In section 4 and section 5, we
decompose the time series so that the efects of structural
deterioration and ambient interference (relationships with
temperature and relative humidity) are investigated. Te
amplitudes of the variations caused by structural de-
terioration and ambient interference are also investigated. In
conclusion (section 7), this article employs a data-driven
methodology to distinguish the efects of structural de-
terioration (i.e., structural damage) from ambient in-
terference, which gives insights for future engineering
practices.

2. Fast Bayesian FFT Identification Algorithm

2.1. Teoretical Background. If the acceleration time history
measured at n DOFs of a structure is noted as
􏽢€xj ∈ Rn: j � 1, . . . , N􏽮 􏽯 and abbreviated as {􏽢€xj}, where N is
the number of samples per channel, the FFTof {􏽢€xj} is defned
as

Fk � Fk + iGk

�

�����
(2∆t)

N

􏽲

􏽘
N

j�1

􏽢€xj exp − 2πi
(k − 1)(j − 1)

N
􏼢 􏼣􏼨 􏼩, (k � 1, . . . , N),

(1)

where i2 � − 1, ∆t is the sampling interval, and Fk � ReFk

and Gk � ImFk denote the real and imaginary part of the
FFT, respectively. For k � 2, 3, . . . , Nq, the FFT corresponds
to frequency fk � (k − 1)/N∆t. Here, Nq � int[N/2] + 1 (int
[·] denotes the integer part) corresponds to the FFTordinate
at the Nyquist frequency. For modal identifcation, only
these (Nq − 1) FFT values are utilized.

In the context of Bayesian inference, the measured ac-
celeration is modeled as 􏽢x

..

j � x
..

j(θ) + ϵj, where x
..

j(θ) is the
acceleration response of the structural model defned by the
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set of model parameters θ, the subject to be identifed, and ϵj
is the prediction error that accounts for the deviation be-
tween the model response and measured data, possibly
owing to measurement noise and modeling error. Yuen and
Katafygiotis [7] derived the joint PDF for the augmented
FFT vectors {Zk � [FT

k ,GT
k ]T ∈ R2n: k � 2, . . . , Nq} and ap-

plied it to Bayesianmodal identifcation. For a high sampling
rate and long duration of data, Zk is a zero-mean Gaussian
vector with covariance matrix given by

Ck �
1
2

Φ ReHk( 􏼁ΦT
− Φ ImHk( 􏼁ΦT

Φ ImHk( 􏼁ΦT Φ ReHk( 􏼁ΦT

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦ +

σ2

2
􏼠 􏼡I2n, (2)

where Φ ∈ Rn×m is the mode shape matrix confned to the
measured DOFs (the i th column gives the i th mode shape),
σ2 is the (constant) spectral density level of the prediction
error, I2n denotes the 2n × 2n identity matrix, and Hk is the

spectral density matrix of the model response and its (i, j)

entry is given by

Hk(i, j) � Sij β2ik − 1􏼐 􏼑 + i 2ζ iβik( 􏼁􏽨 􏽩
− 1

β2jk − 1􏼐 􏼑 − i 2ζjβjk􏼐 􏼑􏽨 􏽩
− 1

,

(3)

where βik � f(i)/fk � frequency ratio, f(i) and ζ i � natural
frequency and damping ratio of the i th mode, respectively,
and Sij � cross-spectral density between the i th and j th
modal excitation.

Te set of modal parameters θ consists of modal fre-
quencies, damping ratios, mode shapes, entries {Sij} of the
spectral density matrix of modal excitations, and spectral
density σ2 of the prediction error. Assuming a non-
informative prior distribution, the posterior PDF of θ has
given that FFT data are proportional to the likelihood
function p( Zk􏼈 􏼉|θ)

p θ Zk􏼈 􏼉
􏼌􏼌􏼌􏼌􏼐 􏼑∝p Zk􏼈 􏼉|θ( 􏼁 � (2π)

− Nq− 1( 􏼁/2
􏽙

k

detCk(θ)⎤⎦
− (1/2)

×exp −
1
2

􏼒 􏼓 􏽘
k

ZT
kCk(θ)

− 1Zk
⎡⎣ ⎤⎦,⎡⎢⎣ (4)

where the dependence of Ck on θ has been emphasized [32].
It is convenient to write with the negative log-likelihood
function L(θ) form

p θ Zk􏼈 􏼉
􏼌􏼌􏼌􏼌􏼐 􏼑∝ exp [− L(θ)], (5)

where

L(θ) �
1
2

􏽘
k

ln det Ck(θ) + ZT
kCk(θ)

− 1Zk􏽨 􏽩. (6)

Ten, the most probable value (MPV) 􏽢θ is
􏽢θ � argmaxθ p θ Zk􏼈 􏼉

􏼌􏼌􏼌􏼌􏼐 􏼑􏽨 􏽩

� argminθ[L(θ)].
(7)

People can use simulated annealing [33], MCMC [34], or
some other minimum-value searching methods to obtain 􏽢θ.
Simulated annealing is employed in this paper. Te posterior
covariance of 􏽢θ can also be quantifed byHessianmatrix [32, 35],
which is not the main focus of this paper and is not discussed
here. Diferent from the traditional frequency-domain identi-
fcation methods, the signifcant digits of the identifed pa-
rameters here have no concern with the sampling duration. For
example, the resolution of frequency in FFT analysis will be
higher when the sampling duration is longer. In the Bayesian
method, however, all parameters are obtained by optimization,
where the probability serves as the metrics but not the sampling
duration. So, the signifcant digits of dynamic properties in this
paper can be more than the traditional methods’.

2.2. Bridge and Its Layout of SHM Systems. As shown in
Figure 1, Xihoumen Bridge is a long-span suspension bridge
with a 1650-meter central main span located at Zhoushan
City, linking Jintang Island and Cezi Island.

In Xihoumen Bridge’s SHM system shown in Figure 2,
AC10 ∼ AC18 are the servo accelerometers (ACs). Te
sampling rate of ACs is 50Hz. ACs can record accelerations
of vertical and lateral directions of the bridge’s cross section.
AC12, AC15, and AC18 are for lateral accelerations. Te
other ACs are for vertical accelerations. Vertical and tor-
sional modes are of primary interests here. As a result, we
only utilize the vertical acceleration data but abandon the
lateral ones. In this study, we use 6 synchronously measured
acceleration data in vertical directions (i.e., AC10, AC11,
AC13, AC14, AC16, and AC17) to infer structural dynamic
properties. Due to the huge amount of data, we divide the
time history of acceleration hour by hour and then modal
frequencies and damping ratios are identifed hour by hour.

2.3. Details of Identifcation Processing. In this article, the
long-term and continuous structural dynamic properties are
identifed from 2012 to 2021 by hour. Due to the limit of the
article length, we only display the results of two dynamic
modes to explain the methodology in this study: frst, frst-
order symmetric torsional mode; second, fourth-order
symmetric torsional mode [36]. Similar conclusions can
also be found in other dynamic modes. Comparing the
results of modal frequencies and damping ratios (as shown
in section 3.5), we can notice that the damping ratios are
much more discrete than modal frequencies. It is also found
that the damping ratios from approximately September 2019
to May 2020 are anomalously higher than the others. Te
anomaly might be caused by some man-made actions (e.g.,
maintenance of expansion joints). Te reason is out of the
scope of this study and will not be discussed. For the analysis
in section 3, the time series in the anomalous part are not
utilized.

Structural Control and Health Monitoring 3



3. Multiscale Time Series Decomposition for
Structural Dynamic Properties

Te Prophet model was developed by Facebook team [29],
which was an easily interpretable tool for time series
analysis. For the real-world application, it is believed that
the time series are periodically fuctuating due to the
periodic ambient interference [30]. Te Prophet model
utilizes a decomposable and interpretable time series
model with three main model components: trend, sea-
sonality, and holidays. Tese three components are
combined as follows:

y(t) � g(t) + s(t) + h(t) + ϵt, (8)

where g(t) is the trend term which describes nonperiodic
changes, s(t) models periodic changes (e.g., daily, weekly,
and yearly seasonality), h(t) represents the efects of holi-
days that occur on specifc days, and the error term ϵt means
any idiosyncratic changes which are not properly accom-
modated by the model.

3.1. Te Trend Model. Usually, there are two kinds of trend
models that cover many real-world applications [29]: the
saturating growth model and the piecewise linear model. For
the application of a saturating growth model on SHM, it
requires the domain knowledge for the rules of de-
terioration, which is usually case-specifc and not general. As
a result, a piecewise linear model is utilized in this study for
convenience.

Because the growth rate of the trend model is not
constant, there should be changepoints to incorporate
a varying rate while ftting the historical data. Given S

changepoints at times sj, j � 1, . . . , S, a vector of rate ad-
justments δ ∈ RS is defned, where δj is the change in rate
that occurs at time sj. Te rate at time t is the base rate k plus
all of the adjustments up to that point: k + 􏽐j: t> sj

δj. Al-
ternatively, we can defne a vector a(t) ∈ 0, 1{ }S for the sake
of concision:

aj(t) �
1, if   t≥ sj,

0, otherwise.
􏼨 (9)
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Ten, the rate at time t is k + a(t)Tδ. Te ofset pa-
rameter m will be adjusted accordingly with varying k in
order to connect the endpoints of the segments. Te correct
adjustment at changepoint j can be given as follows:

cj � sj − m − 􏽘
l<j

cl
⎛⎝ ⎞⎠ 1 −

k + 􏽐l<jδl

k + 􏽐l≤jδl

􏼠 􏼡. (10)

Lastly, the trend model with linear trend is obtained as
follows:

g(t) � k + a(t)
Tδ􏼐 􏼑t + m + a(t)

Tγ􏼐 􏼑, (11)

where k is the growth rate, δ has the rate adjustments, m is
the ofset parameter, and cj is set to − sjδj to make the
function continuous.

With sufcient domain knowledge, the changepoints sj

can be specifed by experts. Again, due to the limitation of
domain knowledge, automatic selection of changepoints sj is
more practical, which is accomplished by putting a sparse
prior on δ.

3.2. Seasonality. Time series that occur in the real-world
often have multiscale seasonality as a result of periodically
fuctuating ambient interference and the human behaviors.
For example, a 24-hour duration can be a period because of
the natural daily variation; one-year duration can also be
a period since the condition of natural environment (e.g.,
temperature and humidity) varies by year. Another example
of the human behaviors is that a 7-day work week can make
efects on the time series that repeat each week since people’s
periodic work often counts week by week. To ft and forecast
these efects, we usually specify seasonality models that are
periodic functions of t.

Fourier series are employed here to provide a fexible
model of periodic efects [37], which have both computa-
tional efciency and interpretability. Assume P is the regular
period we expect the time series to have (e.g., if the timescale
is defned by day, P � 365.25 for yearly data and P � 7 for
weekly data). For an arbitrary period P, its seasonal efects
are obtained by the following equation:

s(t) � 􏽘
N

n�1
an cos

2πnt

P
􏼒 􏼓 + bn sin

2πnt

P
􏼒 􏼓􏼒 􏼓. (12)

Fitting seasonality requires estimating the 2N parame-
ters β � [a1, b1, . . . , aN, bN]T. Tis is done by constructing
a matrix of seasonality vectors for each value of t in our
historical and future data, for example, with weekly sea-
sonality and N � 3:

X(t) � cos
2π(1)t

7
􏼠 􏼡, . . . , sin

2π(3)t

7
􏼠 􏼡􏼢 􏼣. (13)

Te seasonal component is then obtained as follows:

s(t) � X(t)β, (14)

where β can be obtained by putting a sparse prior.

3.3. Holidays and Events. Holidays and events may make
impacts on time series to some extent. For example, the
structural dynamic properties may vary on holidays due to
the heavier trafc condition [38]. In this study, we assume
the efects of holidays and events are observed each year on
New Year’s Day, Chinese New Year, Tomb-Sweeping Day,
Labor Day, Dragon Boat Festival, Mid-Autumn Festival, and
National Day, as shown in Table 1.

For each holiday i, let Di be the set of past and future
dates for that holiday. We add an indicator function rep-
resenting whether time t is during holiday i, and assign each
holiday a parameter κi which is the corresponding change in
the forecast. Tis is done in a similar way as seasonality by
generating a matrix of regressors

Z(t) � 1 t ∈ D1, . . . , 1 t ∈ DL( 􏼁( 􏼁􏼂 􏼃, (15)

and taking

h(t) � Z(t)κ, (16)

where κ can be obtained by putting a sparse prior.

3.4. Performance Metrics. We can evaluate the performance
of our model by comparing the similarity of the estimated
data with the historical data. In this study, we use the
correlation coefcient as the metric

M �

������������������������������������

n􏽐
n
i�1yi 􏽢yi − 􏽐

n
i�1yi( 􏼁 · 􏽐

n
i�1􏽢yt( 􏼁􏼂 􏼃

2

n􏽐
n
i�1􏽢y

2
i − 􏽐

n
i�1􏽢yt( 􏼁

2
􏽨 􏽩 n􏽐

n
i�1􏽢y

2
i − 􏽐

n
i�1􏽢yi( 􏼁

2
􏽨 􏽩

􏽶
􏽴

,

(17)

where n is the number of time series, yi is the real value (i.e.,
historical value), 􏽢yi is the estimated value, and M is the
performance metric. Te closer M is to 1, the better the
performance of the model is.

3.5. Identifed Results. In this subsection, we choose the
fourth-order symmetric torsional mode and the frst-order
torsional mode as examples to explain how the Prophet
model works and to present the results of diferent timescale
components. Modal frequency, damping ratio, and mode
shapes are identifed hour by hour. However, we do not fnd
any obvious varying patterns for mode shapes. We only
discuss modal frequencies and damping ratios here.

3.5.1. Decomposition for Modal Frequency. As shown in
Figure 3, the black points are the identifed time series of the
modal frequency from the SHM system. Te red points are
the estimated time series, which are reconstructed by the
Prophet model. Te modal frequency exhibits an obvious
yearly fuctuating phenomenon. Meanwhile, a general de-
creasing trend is also found.

As shown in Figure 4, the yearly fuctuation and general
decreasing trend are also found in the frst-order symmetric
torsional mode.

Structural Control and Health Monitoring 5
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Figure 3: Fourth-order symmetric torsional frequency: monitored time series and estimated time series (M � 0.7999).
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Figure 4: First-order symmetric torsional frequency: monitored time series and estimated time series (M � 0.5997).

Table 1: Examples of holidays in China.

Holiday Country Year Date
New Year’s Day Te whole world 2015 01.01–01.03
Chinese New Year China 2015 02.19–02.24
Tomb-Sweeping Day China 2015 04.04–04.06
Labor Day China 2015 05.01–05.03
Dragon Boat Festival China 2015 05.20–05.22
Mid-Autumn Festival China 2015 09.26–09.27
National Day China 2015 10.01–10.07
New Year’s Day Te whole world 2016 01.01–01.03
· · · · · · · · · · · ·
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As shown in Figure 5, we use the Savitzky–Golay
smoothing and diferentiation flter [39] to delineate the
trend of modal frequencies more prominent, where the data
of estimated time series are used.

Te Prophet model has the capacity to decompose the
time series. In Figure 6, we decompose the times series of the
modal frequency to multiple timescales. Te yearly season-
ality is prominent, where the modal frequency got to the
maximal value around February (winter) and to the minimal
value around August (summer) each year. It is strongly
believed that the yearly seasonality has something to do with
the yearly variation of ambient interference (variation of the
temperature is the reason, which is investigated in section 5).
Similarly, the daily seasonality can also be noticed due to the
daily variation of ambient interference, where the maximal
value is observed around 1 am and the minimal value is
observed around 15 pm (the reason is similar to the yearly
seasonality). Te weekly seasonality has no obvious rule,
which is related with the trafc condition on the bridge and
varies with each individual. For most cases, the holiday efects
seem to increase the modal frequencies. It is obvious that the
general trend of the modal frequency is continuously de-
creasing. In addition, compared with the yearly seasonality,
the amplitudes of the other type seasonality and holiday
efects are negligible. Te daily seasonality and the holiday
efects are of the same amplitudes (about 10− 4 Hz). Te
amplitude of the weekly seasonality is 10− 5 Hz. Te yearly
seasonality has the largest amplitude, which is 10− 3 Hz.

As shown in Figure 7, the similar rules for yearly and
daily seasonality are also found in the other mode. Te
general trend of the modal frequency is also decreasing.

3.5.2. Decomposition for Damping Ratio. As shown in
Figure 8, the black points are the identifed time series of the
damping ratio from the SHM system. Te red points are the
estimated time series reconstructed by the Prophet model. It
can be noticed that from July 2019 to April 2020, the

damping ratio increased abruptly (which are found in most
modes). Te latent reason might be that there were some
temporary measures to suppress the vibration (e.g., main-
tenance of expansion joints). Tis anomaly should be
confrmed with the bridge maintainers, which is out of the
scope of this paper. As a result, we only use the data from
January 2012 to June 2019 for the analysis of the damping
ratio. Compared with the modal frequency, the damping
ratio is much more discrete. Te damping ratio is also yearly
fuctuating but less obvious than the modal frequency. Te
general trend is not signifcant at the frst glance.

As shown in Figure 9, the similar regularity is also found
in the frst-order symmetric torsional mode.

Figure 10 shows the trend of damping ratios more
prominently with the data of estimated time series.

Figure 11 shows the decomposed time series of damping
ratios. Te yearly seasonality attains the maximal value
around January (winter) and the minimal value around
September (summer) each year, which might be caused by
the yearly fuctuating ambient interference. Te daily sea-
sonality attains the maximal value around 5 am and the
minimal value around 13 pm. Te weekly seasonality varies
with each individual, amplitude of which is negligible
compared with other types of seasonality. Te holiday efects
seem to decrease the damping ratio.Te general trend seems
to be increasing. But the damping ratio is more complicated
and can be changed by man-made actions. As a result, it is
hard to conclude that the natural process of damping ratio is
to increase with structural usage. For the damping ratio, the
amplitude of yearly seasonality is usually more signifcant.
But the holiday efects is often of the same amplitude as the
yearly seasonality. Te amplitude of daily seasonality is
ambiguous, which may be of the same amplitude (Figure 11)
or the lower amplitude (Figure 12) as the yearly seasonality.
Furthermore, the performance metric ((17)) of the damping
ratio is relatively lower than that of the modal frequency,
which means the daily seasonality may also be in numerical
errors.
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Figure 5: Filtered time series of modal frequencies: (a) Fourth-order symmetric torsional frequency. (b) First-order symmetric torsional
frequency.
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4. Long-Term Trend

According to the decomposed time series of dynamic prop-
erties, we get the long-term trend. In this section, we give the
evolving regularity of modal frequencies and damping ratios.

4.1. Modal Frequency. As shown in Figure 13, the modal
frequencies are prone to decrease in the long term. For the
frst-order symmetric torsional mode, the modal frequency
decreases 0.16% (from 0.2297 to 0.2293) in 10 years according
to the equation of linear regression. For the fourth-order
symmetric torsional mode, the deterioration of modal fre-
quency in 10 years is about 0.21% (from 0.3271 to 0.3264).

4.2. Damping Ratio. Figure 14 indicates that the damping
ratio is likely to increase in the long term. Again, because the
damping ratio can be changed by man-made action, the

extracted long-term trend is not necessary the natural
evolving regularity. For the frst-order symmetric torsional
mode, the damping ratio increases 14% (from 0.0026 to
0.0030). Te damping ratio of the fourth-order symmetric
torsional mode increases 5% (from 0.0028 to 0.0029).

5. Ambient Interference

Te ambient interference afects the dynamic properties
greatly. In this section, we conduct the correlation analysis
between the time-variant environmental conditions and the
yearly seasonality of the dynamic properties, where the
efects of long-term trend are excluded.Te temperature and
relative humidity at the 2 meter height above the sea surface
are chosen as the representative ambient interference. Te
database of the ambient interference that we employ is from
the ERA5 global reanalysis [31]. Due to the limit of spatial
resolution of the database, the location of the measured data
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Figure 6: Fourth-order symmetric torsional frequency: multitimescale component.
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is not the same as that of the bridge. As shown in Figure 1, we
choose the closest point (30°N, 121.9°E) to the bridge in the
database, which will not afect the results much.

5.1. Temperature. Figure 15 shows the varying temperature
at the 2-meter height above the sea surface from 2012 to 2022
at the location of 30°N, 121.9°E.

5.1.1. Modal Frequency. Figure 16 indicates that the
temperature and the yearly seasonality of the modal
frequency have a strong correlation. Te frequency will
decrease if the temperature increases. For the frst-order
symmetric torsional mode, the modal frequency will
approximately decrease by 0.82 × 10− 4 Hz if the temper-
ature increases by 1°C. For the fourth-order symmetric
torsional mode, the modal frequency will approximately
decrease by 1.49 × 10− 4 Hz if the temperature increases by

1°C. Te conclusions above are valid when the temper-
ature is 0 − 25°C. Recalling the general deterioration of
modal frequencies (Figure 13), it is found that the vari-
ations caused by natural deterioration and temperature
are of the same amplitude, both 10− 4.

5.1.2. Damping Ratio. Figure 17 shows that the damping
ratio will decrease with the increment of temperature in
general. Compared with the modal frequency, however, the
temperature and damping ratio are not one-to-one re-
lationship. For example, Figure 17(a) shows that both 3°C
and 10°C correspond the variation of the damping ratio by
2 × 10− 4.

5.2. Relative Humidity. Figure 18 shows the varying relative
humidity at the 2 meter height above the sea surface from
2012 to 2022 at the location of 30°N, 121.9°E.
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5.2.1. Modal Frequency. For the modal frequency, the
relative humidity seems to have nothing to do with the
yearly seasonality of the modal frequency, as shown in
Figure 19.

5.2.2. Damping Ratio. As shown in Figure 20, there is no
signifcant correlation between the relative humidity and the
yearly seasonality of the damping ratio as well.

6. Distribution of Model Errors

Model errors are the residuals between the estimated values
and the measured values, which are mainly caused by im-
proper model assumptions.

For the modal frequency, the normal distribution is used
to ft model errors as shown in Figure 21 (Table 2).
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1
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���
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√ e
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Figure 8: Fourth-order symmetric torsional damping ratio: monitored time series and estimated time series (M � 0.1874).
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where σ is the standard variance, μ is the mean value, and
f(·) is the PDF.

For the damping ratio, we use the bimodal normal
distribution to ft model errors as shown in Figure 22
(Table 3).

f(x) �
pA

σ1
���
2π

√ exp −
1
2

x − μ1
σ1

􏼠 􏼡

2
⎡⎣ ⎤⎦ +

(1 − p)A

σ2
���
2π

√ exp −
1
2

x − μ2
σ2

􏼠 􏼡

2
⎡⎣ ⎤⎦, (19)

where μi and σi are the mean value and standard variation
(i � 1, 2); p and 1 − p are the weights of bimodal models;
and A is the normalized coefcient.
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Figure 20: Relationship between relative humidity and damping ratio’s yearly seasonality: (a) frst-order symmetric torsional mode;
(b) fourth-order symmetric torsional mode.
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7. Conclusions

In order to distinguish the long-term and periodic efects of
structural dynamic properties, this article proposes an in-
terpretable methodology to decompose the time series into
long-term parts, multiscale periodic parts, holiday parts, and
model errors. By analyzing the long-term parts, we can
conclude that the modal frequencies are decreasing with the
structural usage (about 0.20% each decade), which refect the
efects of structural deterioration. Te damping ratios seem
to increase in the long term. However, the damping ratios
can be infuenced by exterior conditions (e.g., structural
maintenance, tuned mass damper, and wind velocity). So,
the long-term varying rules of the structural damping still
need to be investigated in the future. By analyzing the re-
lationship between multiscale periodic parts and ambient
environmental conditions, we fnd that the increment of
temperature can decrease the modal frequencies and
damping ratios. Formodal frequencies, the variations caused
by natural deterioration and temperature are of the same
amplitudes (10− 4). Diferently, for buildings, the increment
of temperature can increase the modal frequencies, which
means the underlying mechanics between the modal fre-
quencies and temperatures can be complicated. For the
varying reasons of long-span bridges, a possible explanation

is that the higher temperature will loosen the cables and the
loose cables decrease the stifness (i.e., the modal frequen-
cies). For buildings, the varying phenomenon may be caused
by temperature-sensitive material properties. Due to the
limit of data acquisition, we did not discuss the relationship
among cable forces, cable temperatures, and modal fre-
quencies, which needs to be investigated further in future
researches. As for the humidity, this paper does not fnd its
reasonable relationship with structural dynamic properties.

In a nutshell, this article investigates to what extent the
structural deterioration and the ambient environmental
conditions can change the structural dynamic properties,
which provide a reference for damage detection and safety
assessment of similar long-span bridges.

Data Availability

Te data used to support the fndings of the study are available
from the corresponding author upon reasonable request.

Additional Points

10-year dynamic properties of a long-span bridge are in-
vestigated. A multiscale time series decomposition meth-
odology is used to distinguish long-term and periodic efects.

Table 2: Distribution parameters for modal frequencies.

Mode σ μ
4-ST 7.44 × 10− 4 − 2.38 × 10− 8

1-ST 6.74 × 10− 4 − 2.43 × 10− 8

Table 3: Distribution parameters for damping ratios.

Mode σ1 μ1 σ2 μ2 p A

4-ST − 1.99 × 10− 4 9.12 × 10− 5 1.65 × 10− 4 9.96 × 10− 5 0.4391 1.0053
1-ST − 1.96 × 10− 4 1.05 × 10− 4 1.62 × 10− 4 9.86 × 10− 5 0.4530 1.0160
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Figure 22: Histogram of model error for damping ratios. (a) Fourth-order symmetric torsional mode. (b) First-order symmetric
torsional mode.
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Frequencies will decrease in the long term but damping
ratios will increase. Te increment of temperature will lead
to the decrease for both frequencies and damping ratios.
Dynamic properties are not signifcantly related with
humidity.
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