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Early detection of damage in the support structure (submerged part) of an ofshore wind turbine is crucial as it can help to prevent
emergency shutdowns and extend the lifespan of the turbine. To this end, a promising proof-of-concept is stated, based on
a transformer network, for the detection and localization of damage at the jacket-type support of an ofshore wind turbine. To the
best of the authors’ knowledge, this is the frst time transformer-based models have been used for ofshore wind turbine structural
health monitoring. Te proposed strategy employs a transformer-based framework for learning multivariate time series rep-
resentation. Te framework is based on the transformer architecture, which is a neural network architecture that has been shown
to be highly efective for natural language processing tasks. A down-scaled laboratory model of an ofshore wind turbine that
simulates the diferent regions of operation of the wind turbine is employed to develop and validate the proposed methodology.
Te vibration signals collected from 8 accelerometers are used to analyze the dynamic behavior of the structure. Te results
obtained show a signifcant improvement compared to other approaches previously proposed in the literature. In particular, the
stated methodology achieves an accuracy of 99.96% with an average training time of only 6.13minutes due to the high par-
allelizability of the transformer network. In fact, as it is computationally highly efcient, it has the potential to be a useful tool for
implementation in real-time monitoring systems.

1. Introduction

In recent years, the use of renewable energy has become
a global necessity due to growing concern about climate
change and the depletion of fossil fuels [1]. According to [2],
in 2021, investment in renewable energy and fuels increased
for the fourth consecutive year, reaching USD 366 billion,
achieving for the frst time in history that solar and wind
energy provide more than 10% of world electricity.

Due to its low operating cost, reduced environmental
impact and the possibility of generating electricity in remote

areas and without access to the conventional electrical grid,
wind energy has become an important and promising way of
generating clean and sustainable energy [3]. In 2021, wind
electricity generation increased by a record 273 TWh, which
was 55% higher growth than that achieved in 2020 and
became the highest among all renewable energy technologies
[4]. However, despite the signifcant growth that is taking
place, GWEC market intelligence forecasts that by 2030 less
than two-thirds of the wind power capacity required for the
1.5°C net-zero pathway established by the International
Renewable Energy Agency (IRENA) in its 2050 roadmap [5].
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Terefore, to achieve the proposed objectives, greater eforts
must be made to accelerate the growth of energy generation
using this resource.

With technological development and the ongoing search
for improvements that allow increased electrical generation
capacities and reduced installation and operating costs, the
ofshore wind industry has been gaining strength and apogee
in the sector. Its great capacity to generate large amounts of
energy, due to the strong wind speeds and availability at sea
[6], has generated greater growth in recent years in this type
of ofshore wind farms compared to onshore. Making 2021
the best year in the history of ofshore wind power, bringing
21.1GW of capacity into service, three times more than in
2020 [7].

Despite the many advantages of ofshore wind farms, the
installation and operation of these farms pose particular
challenges compared to onshore wind farms, due to several
factors such as the extreme environmental conditions to
which they are exposed (wind, waves, and currents) [8],
restrictions or difculties in access, and a larger size and
weight of the structures, making maintenance difcult. One
of the most complex and critical components of ofshore
WTs is the base structure, as its installation and design
entails greater technical challenges that allow the structure to
be resistant to the prolonged impact of large loads generated
in the marine environment [9]. However, maintenance
management is a critical task in the ofshore wind energy
industry, with a direct impact on the proftability of wind
projects and constitutes an important part of operating and
maintenance costs [10]. One of the best known alternatives
to facilitate this type of management is the use of structural
health monitoring (SHM) strategies.

A predictive maintenance strategy allows monitoring of
the integrity of structural components by means of specifc
sensors to prevent catastrophic failures, with serious con-
sequences for the safety of personnel and the environment
[11]. Currently, this strategy is already widely used in large
civil infrastructures [12, 13] and aerospace structures
[14, 15]. In addition, its use is expanding to other felds such
as energy sectors [16, 17], among which wind farms stand
out, where early detection of damage can prevent or reduce
long downtime, emergency shutdowns, and costly mainte-
nance in wind turbines (WTs), helping to prolong its useful
life [18].

Te vibration of the machine is a key element for the
analysis of the state of a piece of equipment or an element
subjected to great loads or extreme conditions, so its
analysis is an efective and reliable technique, with a non-
destructive nature, which allows maintaining a sustainable
monitoring without interfering in the processes [19]. Tis
allows determining the existence of structural damage,
evaluating the safety of the base structure of a WT, pre-
dicting useful life and making decisions about maintenance
strategy if necessary [20]. Tat is why the development of
vibration-based SHM methodologies has been gaining
relevance and covering large felds because of its great
advantage of real-time monitoring of dynamic character-
istics. For this reason, vibration-based SHM strategies are
used in this work.

In recent years, the application of machine learning
techniques has become one of the most used tools to im-
prove the capacity of SHM systems, since, through data
analysis and processing, it allows the creation of more ac-
curate, cost-efective, and reliable models or algorithms [21].
Currently, many models oriented to the detection, classif-
cation, and even localization of diferent types of damage in
WTs, have been developed, based on the analysis of vibration
signals, such as in [22, 23], where methodologies based on
a Siamese convolutional neural network and autoencoder
are developed, respectively, for the detection of damage to
the WT jacket structure, or on [24] where regression models
are developed based on the identifcation of the modal
properties of the most important modes of vibration
through the analysis of three common damage scenarios:
onshore foundation damage; damage by scour on an of-
shore foundation; and blade damage. Other related studies
are shown in [25–27] where damage to the blades, gearbox,
and bearings of WTs are analyzed.

In the aforementioned works, despite the presentation of
efective solutions using traditional neural networks, they
present some disadvantages, such as high computing cost
(that does not allow real-time on-line monitoring) and
difculty in capturing long-term time-series dependencies.
However, in 2017, Google researchers, led by Ashish Vas-
wani presented a new type of model called transformers in
their paper called “Attention is all you need” [28]. Tis new
model solves the abovementioned problems.

Initially, the transformer deep learning model focused
on improving the quality of language translation, proposing
an architecture that left aside the use of recurrent neural
networks (RNNs) and relied solely on attention mecha-
nisms, achieving greater efciency and accuracy compared
to traditional models. Due to their high performance, their
ease of modeling long dependencies between input sequence
elements and their ability to process data in parallel [29],
these deep learning models have been extended to other
felds such as natural language processing (NLP), computer
vision (CV), and audio processing [30].

One of its new applications is focused on the analysis of
multivariate time series, as shown in [31–33], where it has
shown great performance, since it allows analyzing long time
series of data and detecting complex patterns in time series
more accurately and efciently than conventional models
such as those based on RNN and convolutional neural
networks (CNNs).

In this study, for the frst time, an SHM methodology
based on a transformer model is presented for the detection
and localization of diferent types of structural damage at
diferent levels in the jacket structure of an ofshoreWT.Te
objective of this work is to improve the efciency and safety
in the operation and maintenance of WTs, reducing oper-
ational and maintenance costs.

While vibration-based SHM and machine learning have
been applied to detect various forms of damage in wind
turbines, these prior studies have predominantly focused on
the blades and tower damage. Tere has been comparatively
far less research on using these techniques to detect crack or
missing bolts in ofshore wind turbine support structures. In
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fact, these types of damage may exhibit subtler vibration
patterns that conventional neural networks may not efec-
tively capture. In addition, multivariate sensor data require
efcient modeling of long-term temporal dynamics. To date,
no study has used transformer neural network models,
designed specifcally for sequential data, for detecting
damage in ofshore wind turbine jackets. Tis represents
a key research gap that the current work addresses.

Terefore, the objective of this study is to develop and
evaluate a transformer neural network model for detecting
and localizing damage in an ofshore wind turbine jacket
support structure.

Tis document is organized as follows. In Section 2, the
experimental setup is presented. To address the proposed
research gap, experimental vibration data are needed from
an ofshore wind turbine jacket structure exhibiting various
structural states (healthy and diferent types of damage). Te
data acquisition process is presented in Section 3. Te
preprocessing of the data and the development of the
damage detection methodology are explained in detail in
Section 4. Te results are presented and discussed in Section
5. Finally, the conclusions are detailed in Section 6.

2. Experimental Setup

To test the hypothesis that a transformer model can efec-
tively detect damage, vibration data are collected from
a down-scaled experimental setup under controlled condi-
tions. For this study, a scale replica of an ofshore jacket-type
WT is used, which has a height of 2.7m and is composed of
three main parts. Te frst part, called the nacelle, is the
upper component of the WT, and consists of a 1m long and
0.6m wide bar, and at its left end an inertial shaker model
Data Physics GW-IV47 fed by various excitation signals.
Tese signals are sent from a function generator (GW
INSTEK AF-2005) that provides diferent white noise am-
plitudes (factors of 0.5, 1, 2, and 3) to mimic the wind speeds
of diferent WT operating regions. Te second part is the
tower that has been divided into three pieces, which are
joined by fanges. Te tower has a length of 1.67m and
a diameter of 0.239m. Te third part corresponds to the
jacket, located in the lower part and composed of 32 steel
bars of S275JR steel, and DC01 LFR steel plates, bolts, and
nuts adjusted to a torque equal to 12Nm. In particular, the
S275JR steel is a structural steel grade specifed in the EN
10025-2 standard for fat and hot-rolled products. Te “S”
denotes it is a structural steel, the “275” indicates the
minimum yield strength of 275MPa, and the “JR” signifes it
undergoes an impact test at room temperature. For struc-
tural applications like ofshore wind turbine supports, the
S275JR grade provides a cost-efective option with sufcient
corrosion resistance. Te strength allows supporting sig-
nifcant dynamic loads while the ductility provides damage
tolerance. Te DC01 LFR grade corresponds to a low carbon
steel specifed in the EN 10130 standard for cold-rolled steel.
Te “DC01” indicates it is an uncoated deep drawing steel
with a minimum yield strength of 140MPa.Te “L” signifes

it has a low carbon content (< 0.12%). Te DC01 LFR grade
combines the easy processing of mild steels with increased
strength from cold forming. For the jacket structure, the
DC01 LFR plates serve as connection joints, where the
ductility is benefcial to withstand cyclic loading and envi-
ronmental factors.

Te jacket structure has four levels, where at each level
the length of the bars varies, taking into account that level 4
contains the shortest bars and level 1 the longest bars, as
shown in Figure 1.

To perform an analysis of the dynamic behavior of the
structure based on the measurement of vibrations at diferent
frequencies or amplitudes, eight triaxial accelerometers (PCB R
Piezotronic, model 356A17) are used, distributed throughout
the WT structure, as illustrated in Figure 2. Te optimal lo-
cation of the sensors is determined according to the sensor
elimination by modal assurance criterion (SEAMAC) as
comprehensively stated, for this particular down-scaled replica,
in Zugasti’s PhD thesis [34] (Chapter 3.7, page 53). Tis is
a sensor removal algorithm based on eliminating iteratively,
one by one, the degrees of freedom that show a lower impact on
the modal assurance criterion (MAC) [35] matrix values. Te
SEAMAC iterative process stops when you get a default MAC
matrix with high values in the diagonal terms and low values in
of-diagonal terms. Since the sensors are triaxial, a total of 24
vibration signals are obtained. For the acquisition and pro-
cessing of the signals measured by each of the accelerometers,
six input modules NI 9234 model National Instruments are
used, located in a chassis (cDAQmodel). Formore information
on the experiment setup, see [36].

Tis work seeks to develop a strategy capable of detecting
diferent types of damage and their location at the jacket
support. Tus, the cases studied include diferent types of
damage at diferent locations (levels) of theWT jacket (levels
1, 2, 3, and 4). Te diferent damage scenarios are the
following:

(i) Original bar in healthy state.
(ii) Bar with a 5mm crack.
(iii) Bar with a missing bolt.
(iv) A pristine replica bar is also considered.

Controlled damage is introduced by machining cracks of
5mm length into selected bars to simulate fatigue cracking.
Missing bolts are simulated by removing the bolt at specifed
joints. Tese scenarios aimed to replicate common fatigue
and joint defects that can develop in ofshore structures due
to cyclic loading and inadequate maintenance. Cracks and
loose connections are prevalent damage modes in jacket
joints that must be detected. In Figure 3, it can be observed
the three diferent bar states used in this work. Figure 3(a)
shows the bar with the crack, where L is the length of the bar,
X � L/3 is the distance the crack is from the left end of the
bar, and d is the size of the fssure. Figure 3(b) shows the bar
detailing the position of the missing bolt, and fnally
Figure 3(c) shows the replica with a bar of similar charac-
teristics of the original.
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3. Data Acquisition

Tis section presents the data acquisition process of the
diferent experiments carried out by simulating diferent
conditions and structural states.

A total of 1140 experiments are performed, of which 180
are with the completely healthy structure and the rest
simulating the diferent damage structural states. Table 1
shows in more detail the diferent structural states analyzed
and the distribution of the experiments carried out
according to the white noise amplitude factors. It is im-
portant to emphasize that each structure state is simulated at
four diferent levels of the jacket.

Te duration of each experiment is 60 seconds at a sam-
pling frequency of 330Hz, so in each experiment 330Hz×

60 s� 19800 measurements are obtained for each sensor. Since
8 triaxial accelerometers are used, the number of signals re-
ceived during each experiment is equal to 8 × 3� 24 signals. A
sampling frequency of 330Hz is selected for the accelerometers,
as this rate falls within the typical range employed in ofshore
structural monitoring. Sampling rates between 50Hz [37] and
1000Hz [38] are generally employed on ofshore supports.
Although lower sampling rates of around 100Hz may be
sufcient for monitoring the primary platform vibration
modes, a rate of 330Hz is chosen to allow the detection of
abnormal high-frequency motions that could indicate de-
veloping faults or damage. Tis higher rate provides broader

frequency coverage without excessive data volumes. Finally, the
experiments are conducted for a duration of 60 seconds, ad-
hering to standard practice in the Condition Monitoring (CM)
system of wind turbines, where it is customary to acquire data
for a limited time frame of minutes. Finally, the data associated
to the k-th experiment are stored in matrix S(k) with co-
efcients s(k)

n,m(n �1, . . . , N, m � 1, . . . , M) that reads as

S(k)
�

s
(k)
1,1 s

(k)
1,2 . . . s

(k)
1,M

s
(k)
2,1 s

(k)
2,2 . . . s

(k)
2,M

⋮ ⋮ ⋱ ⋮

s
(k)
N,1 s

(k)
N,2 . . . s

(k)
N,M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

considering k ∈ [1, K], where K is 1140. Te two subindices,
in the matrix coefcients, are related to the time instant
(row) and sensor (column), respectively. More precisely,

(i) n � 1, . . . , N identifes the time stamp, while N is the
number of time stamps per experiment, equal to
19800;

(ii) m � 1, . . . , M represents the measuring sensor,
while M is the total number of sensors, equal to 24.

As a result, each experiment matrix S(k)
N,M ∈ M19800×24(R).

Level 1

Level 2

Level 3

Level 4

Figure 1: Te diferent levels of the jacket support.

Sensor 1 Sensor 2

Sensor 3

Sensor 5

Sensor 7

Sensor 6

Sensor 4

Sensor 8

Figure 2: Location of the sensors (accelerometers) in the structure.
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4. Methodology for Damage Detection
and Localization

First, this section details the preprocessing of the data, where
emphasis is placed on the feature engineering, the division of
data into training, validation, and test sets, and data nor-
malization. Subsequently, the background and architecture
of the transformer’s model based on multivariate time series
for the detection and localization of damage is described.

4.1. Data Preprocessing. Data preprocessing is composed of
a series of data analysis techniques that improve the quality
of a data set in order to obtain the most relevant information
[39], helping to facilitate training and improve the accuracy
of a model.

4.1.1. Feature Engineering: Data Reshape. Feature engi-
neering refers to the process of constructing valuable fea-
tures as input to the model. Some of the most commonly

used techniques in feature engineering for machine learning
are identifcation of new data sources, application of new
business rules, or data reshaping [40].

In this work, the raw data consist of individual time-
stamps for each sensor, which provide limited contextual
information to the model. Using individual data points
rather than sequences removes important temporal re-
lationships in the signals. Reshaping the data into multi-
variate time series allows the model to analyze patterns and
dynamics over a sequence length relevant for damage de-
tection. A multivariate sequence structure allows the
transformer model to efectively capture long-term de-
pendencies and interactions between the multiple sensor
channels. In particular, when examining the initial obtained
matrices from the data acquisition system (see (1)), it can be
observed that, in each sample (row), there is only one data
(time stamp) per sensor, which may be scarce or insufcient
for model development. Terefore, to increase the in-
formation of each sensor in each sample (row), a data
reshaping is applied. Considering a detection time of

d
X L

(a) (b)

(c)

Figure 3: Diferent structural states used to perform the experiments. (a) Bar with a 5mm crack. (b) Bar with missing bolt. (c) Replica bar.

Table 1: Number of experiments distributed according to the structural state of the bar and the white noise (WN) amplitude.

(Label) structural state
Number of experiments

0.5 WN 1 WN 2 WN 3 WN Total
(1) Crack level 1 20 20 20 20 80
(2) Crack level 2 20 20 20 20 80
(3) Crack level 3 20 20 20 20 80
(4) Crack level 4 20 20 20 20 80
(5) Bolt level 1 20 20 20 20 80
(6) Bolt level 2 20 20 20 20 80
(7) Bolt level 3 20 20 20 20 80
(8) Bolt level 4 20 20 20 20 80
(9) Replica level 1 20 20 20 20 80
(10) Replica level 2 20 20 20 20 80
(11) Replica level 3 20 20 20 20 80
(12) Replica level 4 20 20 20 20 80
(13) Healthy 45 45 45 45 180
Total 285 285 285 285 1140
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0.5 seconds, since the sampling frequency is 330Hz, a total of
ω� 165 time stamps per sensor (multivariate sequences) is
selected to describe a sample that meets the desired detection

time. Data reshape is taken on each matrix S(k), and the new
reshaped matrix is denoted as X(k) and reads as follows:

X(k)
�

s
(k)
1,1 . . . s

(k)
165,1􏽨 􏽩 s

(k)
1,2 . . . s

(k)
165,2􏽨 􏽩 . . . s

(k)
1,24 . . . s

(k)
165,24􏽨 􏽩

s
(k)
166,1 . . . s

(k)
330,1􏽨 􏽩 s

(k)
166,2 . . . s

(k)
330,2􏽨 􏽩 . . . s

(k)
166,24 . . . s

(k)
330,24􏽨 􏽩

⋮ ⋮ ⋱ ⋮

s
(k)
19636,1 . . . s

(k)
19800,1􏽨 􏽩 s

(k)
19636,2 . . . s

(k)
19800,2􏽨 􏽩 . . . s

(k)
19636,24 . . . s

(k)
19800,24􏽨 􏽩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

Tus, it can be written as

X(k)
�

x
(k)
1,1 x

(k)
1,2 . . . x

(k)
1,R

x
(k)
2,1 x

(k)
2,2 . . . x

(k)
2,R

⋮ ⋮ ⋱ ⋮

x
(k)
Q,1 x

(k)
Q,2 . . . x

(k)
Q,R

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3)

where Q � 19800/165 � 120 is the total number of rows and
R � 24 × 165 � 3960 is the total number of columns. Tat is,
the resulting matrix has size X(k)

Q,R ∈ M120×3960(R).
Figure 4 shows the fowchart of the data acquisition and

reshaping.

4.1.2. Data Split and Unfolding. To develop the model, the
data are divided into three diferent sets, which are training,
validation, and test set. Tese sets allow to train parameters,
tune hyperparameters, and fnally test the accuracy of the
model, respectively.

For this study, the strategy adopted is to divide the data
set into 65% for training, 20% for validation, and 15% for
testing. Terefore, each matrix X(k) is partitioned in three
matrices: X(k)

train, X(k)
val , and X(k)

test, whose dimensions are
MQtrain×R,MQval×R and MQtest×R, respectively. Note that
Qtrain � Q × 0.65 � 78, Qval � Q × 0.20 � 24, and Qtest �

Q × 0.15 � 18.
Finally, unfolding is performed [41] by a vertical con-

catenation of the diferent experiments, obtaining the ma-
trices Xtrain, Xval, and Xtest, as illustrated in Figure 5. Te
dimensions of the new matrices are MPtrain×R,MPval×R, and
MPtest×R, respectively. Note that Ptrain � Qtrain × K � 88920,
Pval � Qval × K � 27360, and Ptest � Qtest × K � 20520.

Figure 5 shows the fowchart for the data splitting and
unfolding process. Te X(k)

train, X
(k)
val , and X(k)

test matrices have
the same structure of the X(k) matrix plotted in Figure 4;
however, for a better understanding of the unfolding, each
experiment is assigned a unique color.

For more details, Table 2 shows the distribution of
multivariate (MV) sequences for each data set according to
the structural state. Furthermore, since MV sequences are

also classifed by the amplitude of the signal, a distribution
based on the amplitude of the white noise is also considered,
as summarized in Table 3.

4.1.3. Feature Scaling: Data Normalization. Data scaling is
a key step applied during data preparation, the main goal of
which is to change the numeric data into a common scale.
Especially when the features have diferent ranges, this
approach accelerates the network training [42]. In general,
several techniques can be applied; however, in this work,
z-score normalization is implemented [43]. Tis technique
scales the values to a center around the mean, with a value of
zero and a unit standard deviation. It is expected z-score
normalization to enable more efective integration of mul-
timodal sensor data in our model compared to techniques
like min–max that do not normalize around a mean.
Mapping the signals to a common relative scale around
0 rather than an absolute scale between 0 and 1 (as min–max
does) helps prevent scale mismatches during integration that
could have imbalanced infuence of certain modalities over
others. However, further study could systematically compare
normalization techniques to confrm the most appropriate
method for this application.

In this paper, the z-score normalization is employed,
which is calculated as

xr′ �
xr − μr

σr

, r � 1, . . . , R, (4)

where μr and σr are the mean and standard deviation of the
measurements in column r including only training and
validation datasets to compute them. Note that xr is the
feature vector at column r, and xr′ is its normalized value.
Obviously, normalization is applied to training, validation,
and testing datasets.

4.2. Transformers Based on Multivariate Data Series for the
Detection and Localization of Damage. First, this section
details the fundamentals of transformers, from their be-
ginnings to their current felds of application. Subsequently,
the architecture and modifcations made to the original
transformer model for its adaptation using multivariate time
data for sequence classifcation are explained.

6 Structural Control and Health Monitoring



4.2.1. Background. Te transformer models have demon-
strated high accuracy and efciency in NLP, becoming the
reference architecture in this area. Moreover, due to the
great capacity achieved in the modeling of dependencies and
long-range interactions in sequential data, it has become
a very attractive alternative for time-series modeling.

Te original transformer model used in NLP works with
sequences of text tokens; however, when working with time
series, it is necessary to adapt the model and overcome the

obstacles presented whenworking with this type of sequences.
Multiple variants in the original architecture have been
proposed. Tese variants have been successfully applied in
several tasks using time series [44], such as forecasting
[45, 46], classifcation [47, 48] and anomaly detection [32, 49].

In general, transformermodels have proven to be efective
in a wide variety of applications, so new applications and
approaches for these models are being discovered as more
advanced techniques are developed for their training and use.
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4.2.2. Model Architecture. Transformers are deep learning
models composed of several encoding and decoding blocks
that process data; all these blocks are identical to each other
[30] and are characterized by a multihead attention
mechanism, a position feedforward network, layer nor-
malization modules, and residual connectors [50].

For this work, because a classifcation of the diferent
structural states analyzed is required, it is not feasible to
work directly with the original architecture of the trans-
former model, since this architecture works sequence to
sequence. Terefore, based on [51], where a framework for
multivariate time series regression and classifcation is
presented that fts the type of data at hand, this proposed
transformer model is used. Tis model, unlike the original
architecture described in the original paper by [28], uses
only encoding blocks and omits the decoding blocks from
the architecture, in order to make the architecture com-
patible with multivariate time series classifcation problems.

Recall that each training sample is a multivariate time
series of length ω (recall that w � 165 is used, see (2)) andM
diferent variables (sensors). Ten, the input is linearly
projected onto a d-dimensional vector space, where d is the
dimension of the transformer model sequence element
representations (also called model dimension). Te linear
projection of the feature vector is given by

U � Wp X′􏼒 􏼓
T

+ bp, (5)

where (X′)T ∈ RR×w is the transposed matrix of the X′ and
Wp ∈ Rd×R and bp ∈ Rd are the learning parameters.

Figure 6 describes the network architecture used in this
work. Te left side of the fgure shows the diferent layers,
including the transformer encoder, and the right side de-
scribes in more detail the feedforward network.

To provide the model with information about the order
of the sequence, positional encodings are added to the input
embedding, which consists of a linear block. Te positional
encodings have the same dimension d in order to be
summed with the linear projection. As proposed in the [51]
framework, a learnable positional encoding is applied in this
architecture as it demonstrated better performance, in
contrast to the fxed sinusoidal encodings proposed in the
original network [28], described as Wpos ∈ Rd×w which is
added to the input vectors after the frst linear layer
U ∈ Rd×w, where U � [u1, u2, . . . ,uw], then U′ � U + Wpos.

Te architecture is composed of several linear layers,
dropout, encoding, and activation functions. Dropout is
a regularization technique [52] that randomly deactivates
a proportion of neurons during training to prevent over-
ftting. Te dropout rate parameter controls the proportion
of neurons that are randomly dropped out during training.
In this research, the dropout rate is set to 0.1 after testing
a range of values.Tis dropout rate of 0.1 allows the model to
generalize well to new data without overftting or losing too
much representational power. Recall that, in general, the
dropout rate parameter ranges from 0 to 1, where lower
values like 0.1 mean fewer neurons are randomly dropped
during training. In addition, the dimension of the linear
layer (dff) is adjusted in diferent tests, as explained in
Section 5.

Table 2: Distribution of MV sequences for training, validation, and testing based on the structural state.

Structural state Total of
experiments

Training MV
sequences (Ptrain)

Validation MV
sequences (Pval)

Testing MV
sequences (Ptest)

Total of
MV sequences

Crack level 1 80 6240 1920 1440 9600
Crack level 2 80 6240 1920 1440 9600
Crack level 3 80 6240 1920 1440 9600
Crack level 4 80 6240 1920 1440 9600
Bolt level 1 80 6240 1920 1440 9600
Bolt level 2 80 6240 1920 1440 9600
Bolt level 3 80 6240 1920 1440 9600
Bolt level 4 80 6240 1920 1440 9600
Replica level 1 80 6240 1920 1440 9600
Replica level 2 80 6240 1920 1440 9600
Replica level 3 80 6240 1920 1440 9600
Replica level 4 80 6240 1920 1440 9600
Healthy 180 14040 4320 3240 21600
Total 1140 88920 27360 20520 136800

Table 3: Distribution of MV sequences for training, validation, and testing for each white noise amplitude.

Dataset
Number of MV sequences

0.5 WN 1 WN 2 WN 3 WN Total
Training 22230 22230 22230 22230 88920
Validation 6840 6840 6840 6840 27360
Test 5130 5130 5130 5130 20520
Total 34200 34200 34200 34200 136800
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As stated in [53], activation functions can have a sig-
nifcant impact in reducing the topological complexity of the
input data and thus improve model performance. According
to [54], the most commonly used activation functions in
transformer model development are the Rectifed Linear
Unit (ReLU) and Gaussian Error Linear Unit (GeLU)
functions, which are graphed in Figure 7. In general, the
ReLU function is a linear mathematical function often used
as a default option in hidden layers of neural networks due to
its simplicity and efectiveness [56]; instead, the GeLU
function is a nonlinear function that approximates the ReLU
function in the positive region and is smooth in the negative
region, weighting its inputs by their value rather than by
their sign when setting a threshold [57]. Both functions are
often widely used because they allow avoiding the existence
of saturation, as well as allowing a computationally less
expensive implementation than exponential, sigmoidal, and
other functions. Currently, due to its fuidity and ability to
model more complex relationships in the data, the GeLU

function is usually recommended for output layers and very
deep neural networks [58]. In this paper, diferent confg-
urations are designed using these two functions, for further
comparison and selection of the best model.

Te most important block in the architecture of this
network is the transformer encoder, which is detailed below.

(1) Transformer Encoder. Te transformer encoder is com-
posed of a stack of identical blocks that are stacked con-
secutively. Where each block is composed of two sublayers,
the frst is a multihead attention mechanism, and the second
is a fully positionally connected feedforward network. Te
sublayers are described below:

Multihead attention: An attention function is described
as mapping a query and a set of key-value pairs to an
output vector, multihead attention consists of a linear
projection of a weight matrix WO and a concatenated
output of attention heads headi where i � 1, . . . , h
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Figure 6: Transformers network architecture.
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which is the linear projection between queries, keys,
and values h times (number of attention heads), each
head performs an attention function described as [28]

Multihead(Q, K, V) � Concat head1, . . . , headh( 􏼁W
O

,

headi � Attention QW
Q
i , KW

K
i , VW

V
i􏼐 􏼑,

(6)

where Q, K, and V are the matrix of queries, keys, and
values, respectively. Each headi is a result of a single
attention function characterized by its own learned
projection matrices WO ∈ Rhdv×dk , WQ

i ∈ R
d×dk , WK

i ∈
Rd×dk , and WV

i ∈ R
d×dv , in addition dk � dv � d/h. Te

input of the multihead attention layer is U′ as keys,
queries, and values which is the result of the sum of the
input embedding (linear layer) and the positional
encoding.
Feedforward network: Te right side of Figure 6 de-
scribes the fully connected feedforward network applied,
and this block consists of two linear transformations,
either ReLU or GeLU activation functions, and a regu-
larization dropout.

Around each of the two sublayersmultihead attention and
the feedforward network, a residual connection is considered
followed by a batch normalization (ϵ � 1 × 10− 5), it is im-
portant to highlight that batch normalization is considered
instead of layer normalization, as it mitigates the efect of
outliers in time series [51] and vanishing gradient [59]. To
reduce the complexity of the residual connections, all sub-
layers as embedded layers are linearly projected onto a vector
space (d)-dimensional.

On the one hand, the residual connections in the encoder
follow the standard formulation:

y � F(x) + x, (7)

where F(x) represents the transformer sublayers—multi-
head attention and feedforward network—x is the input and
y is the output fed to the next layer. Tis skips connections
and directly adds the sublayer outputs to the unmodifed

inputs before applying the batch norm. Some key benefts
are easing gradient fow during training and enabling very
deep networks. On the other hand, batch norm addresses
internal covariate shift and is applied after each sublayer.Te
formulation is

BN xi( 􏼁 � c
xi − μβ
σβ

􏼠 􏼡 + β, (8)

where xi is the input feature map, μβ and σβ are the mean
and standard deviation computed within each transformer
batch β across the channel for normalization, and c and β are
learnable scale/shift parameters. So in summary, residuals
connections propagate signals directly while batch norm
stabilizes layer-wise dynamics.

Additionally, since a classifcation task is necessary for the
detection of the structural state of the ofshore WT, the last
part includes a logarithmic softmax function that is applied to
the input to compute the distribution between classes. Te
cross-entropy loss is used to calculate the sampling error, in
contrast to the categorical feld-truth labels.

Te learning rate is a key hyperparameter in the training
of machine learning models because very high learning rates
can cause the gradient descent to be very fast and skip the
real local minimum to optimize time, while very small rates
can cause a very slow training or even never converge be-
cause it does not fnd the local minimum [60]. Tat is why,
for this paper, it is decided to use the RAdam optimizer
algorithm, which has an adaptive learning rate which is
automatically adjusted during the training process,
achieving greater stability in the training and reaching a fast
but safe convergence. Additionally, the RAdam optimizer
allows rectifying the variance of the adaptive learning rate
that was present with Adam’s optimizer [61], especially in
the initial stage of the model training, obtaining a consistent
variation that allows avoiding divergence problems.

For the selection of the batch size, two important points
are considered, the frst related to accessible computational
resources and the second to guarantee variability in each
batch, ensuring that at least one sample of each structural
state is taken in each batch.
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Figure 7: Comparison of the ReLU and GeLU activation functions [55].
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Finally, for the selection of the other hyperparameters
dff, d, h, and e, diferent values are studied, testing with
several confgurations in the model architecture, as detailed
in Section 5, where it is shown that there is no signifcant
variation in the model accuracy, therefore the analysis and
selection of the best architecture is performed according to
the metrics and the computing time.

A summary of all the hyperparameters used in the model
is described in Table 4.

5. Results

Tis section presents the results obtained with the multi-
variate time series based transformer model for the detection
and localization of diferent types of structural damage in the
jacket of an ofshore WT. It should be noted that, as detailed
in Table 1, that in total 13 diferent structural states are
analyzed.

A laptop computer with the macOS Monterey operating
system, with an Apple M1 chip and 16GB of RAM, was used
to train the model. No GPU was used during this process.

To select the best hyperparameters, 8 tests are carried out
by training the model with diferent architecture confgu-
rations, as summarized in Table 5. Te modifed hyper-
parameters are the activation function, feedforward
dimension (dff), model dimension (d), number of heads
(h), and number of transformer encoder blocks (e). Te
other unmentioned hyperparameters are kept as detailed in
Table 4.

Te activation function is an important component of the
architecture of neural network models. In the multivariate
time series-based transformer model, two diferent activation
functions are evaluated. Te comparative results in Table 5
show that the choice of activation function does not have
a major impact on model accuracy across the diferent
confgurations. Te ReLU and GeLU versions of each ar-
chitecture achieve highly similar accuracy, precision, recall,
and F1-scores. However, the GeLU activation confers a no-
ticeable increase in training time compared to the equivalent
ReLU model, requiring 13–19minutes on average instead of
6–17minutes. Tis is consistent with the higher computa-
tional complexity of the GeLU function. Based on these
validation and test results, the ReLU activation function is
selected for the fnal transformer model confguration.

In addition to the activation function, the other afore-
mentioned hyperparameters were also varied. Prior research
on developing transformer models for time series data has
commonly used between 4 and 8 attention heads [31]. Using
more heads increases model capacity but also increases
computational complexity. A moderate number balances
representational power and efciency. Te projection di-
mensions dk, dv are set equal to the model dimension d

divided by the number of heads h. Tis ensures each head
receives a proportional chunk of the feature dimensionality
for attention. Confgurations with 4 and 8 heads are eval-
uated on the data, with minimal gains from 8 heads but
substantially longer training times. Based on these experi-
ments, 4 heads with dk � dv � d/4 � 32/4 � 8 is deemed
optimal to balance accuracy and complexity.

To avoid overftting the model, the early stopping
technique is used to store the model with the best perfor-
mance, just when the evaluation metric on the validation set
stops improving during training. In this case, the evaluation
metric used is accuracy. Te model was trained for a total of
35 epochs, but the early stopping technique is used to store
the model at the best epoch, which was epoch number 14. At
that point, the accuracy of the validation set stopped im-
proving and began to decrease, indicating that the model
began to overft.

In all tests performed with diferent confgurations, the
model accuracy was above 99.9%, demonstrating that the
model is highly efective in detecting and locating the
structural states analyzed, regardless of the hyperparameters
used. To obtain a computationally simpler model, with
a shorter training time and high accuracy, confguration 1 is
chosen, detailed in the frst row of Table 5.

To ensure that the model is not overftting, a visual and
analytical analysis of the loss curves during training is per-
formed. Te chosen model does not present overftting be-
cause, as shown in Figure 8, the loss values of the training and
validation set are similar in the best epoch, obtaining a value of
0.0009 and 0.0016. Likewise, the model accuracy data are
presented in Figure 9, obtaining values of 0.9997 and 0.9994 for
the training and validation set, respectively, in the best epoch.
For both plots, a 35 epoch training was simulated, resulting in
the best epoch number 14 because it is the epoch that presents
the best performance in the loss, precision average, recall
average, F1-score average, and accuracy metrics with a value of
0.0016, 0.9993, 0.9993, 0.9993, and 0.9994, respectively, at
a lower training time in the validation dataset; this can be
evidenced in Tables 6 and 7, which details the performance of
the diferent epochs as a summary, in the training and vali-
dation datasets, respectively. Table 8 details the results obtained
in the test dataset, when testing themodel in each of the epochs
once it has been trained, in order to visualize how the accuracy
varies in each model obtained from each training epoch.

In Figure 10, the confusion matrix is presented sum-
marizing the performance of the classifcation model in the
test set for 13 diferent structural states. Each column of the
matrix represents the true class of the samples, and each row
represents the class predicted by the model. On the main
diagonal of the confusion matrix, the number of true pre-
dictions can be observed for each of the 13 structural states;
that is, the number of samples that were correctly classifed.
On the other hand, outside the main diagonal, few

Table 4: Hyperparameters used to train the transformer model.

Parameter Value
Activation function GeLU/ReLU
Learning rate 0.001
Pos. encoding Learnable
Dropout 0.1
Batch size 64
Batch norm ϵ � 1 × 10− 5

Feedforward dimension dff � 16
Model dimension d � 32
Number of heads h � 4
Number of transformer encoder blocks e � 2
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misclassifcations can be observed. In total, only 5 samples
from the class “Crack level 1” were misclassifed as “Crack
level 2,” 3 samples from the class “Bolt level 2” were mis-
classifed as “Bolt level 1,” and 1 sample from the class “Bolt
level 1” was misclassifed as “Bolt level 2.” In conclusion, the

model does not have difculty distinguishing between the
diferent structural states, presenting very few errors in the
detection of the 13 types, which were only at the location
level, but not the type of damage (crack or missing bolt). Te
fnal accuracy achieved with the test data is 99.97%.

Table 5: Results obtained by testing the methodology with diferent architecture confgurations of the transformer model.

Confguration
number

Activation
function dff d h e

Inference
time
(ms)

Avg
training
time
(min)

Best
epoch

Validation
accuracy

Training
accuracy

Test
accuracy

1 ReLU 16 32 4 2 2.87 6.13 14 0.9994 0.9997 0.9996
2 ReLU 16 16 8 3 1.96 12.32 22 0.9996 0.9998 0.9998
3 ReLU 128 32 8 3 2.24 14.24 33 0.9997 0.9999 0.9994
4 ReLU 256 64 8 3 2.72 17.54 22 0.9994 0.9944 0.9996
5 GeLU 16 32 4 2 2.82 6.20 20 0.9995 0.9998 0.9993
6 GeLU 16 16 8 3 5.41 13.66 17 0.9996 0.9998 0.9994
7 GeLU 128 32 8 3 5.99 16.11 23 0.9995 0.9990 0.9994
8 GeLU 256 64 8 3 8.81 19.98 25 0.9995 0.9926 0.9995
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Table 6: Precision, recall, F1-score, and accuracy metrics after 35 epochs on training data set.

Epoch Precision average Recall average F1-score average Accuracy Loss
1 0.9947 0.9943 0.9943 0.9948 0.0144
2 0.9921 0.9914 0.9914 0.9922 0.0230
3 0.9992 0.9991 0.9992 0.9992 0.0024
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
13 0.9978 0.9978 0.9978 0.9980 0.0060
14∗ 0.9997 0.9997 0.9997 0.9997 0.0008
15 0.9990 0.9990 0.9990 0.9991 0.0022
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
33 0.9991 0.9991 0.9991 0.9992 0.0112
34 0.9997 0.9997 0.9997 0.9997 0.0005
35 0.9993 0.9993 0.9993 0.9993 0.0014
Te asterisk identifes the best model.

Table 7: Precision, recall, F1-score, and accuracy metrics after 35 epochs on validation data set.

Epoch Precision average Recall average F1-score average Accuracy Loss
1 0.9943 0.9940 0.9940 0.9945 0.0155
2 0.9928 0.9922 0.9922 0.9929 0.0227
3 0.9987 0.9987 0.9987 0.9988 0.0032
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
13 0.9971 0.9970 0.9970 0.9973 0.0080
14∗ 0.9993 0.9993 0.9993 0.9994 0.0016
15 0.9981 0.9981 0.9981 0.9982 0.0045
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
33 0.9986 0.9986 0.9986 0.9988 0.0153
34 0.9993 0.9993 0.9993 0.9993 0.0024
35 0.9987 0.9986 0.9986 0.9988 0.0037
Te asterisk identifes the best model.

Table 8: Precision, recall, F1-score, and accuracy metrics after 35 epochs on test data set.

Epoch Precision average Recall average F1-score average Accuracy Loss
1 0.9946 0.9943 0.9943 0.9948 0.0148
2 0.9914 0.9907 0.9906 0.9915 0.0241
3 0.9988 0.9988 0.9988 0.9989 0.0031
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
13 0.9970 0.9969 0.9969 0.9972 0.0095
14∗ 0.9995 0.9995 0.9995 0.9996 0.0016
15 0.9988 0.9988 0.9988 0.9989 0.0040
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
33 0.9985 0.9985 0.9985 0.9986 0.0114
34 0.9995 0.9995 0.9995 0.9996 0.0015
35 0.9988 0.9988 0.9988 0.9989 0.0035
Te asterisk identifes the best model.
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6. Conclusions

In this work, a model for the detection and localization of
diferent types of structural states located at four diferent
levels of the jacket structure of an ofshore WT is proposed.
Temethodology presented is based on a vibration-response
only analysis for the development of the transformer model
based on multivariate time series. Data were collected by
eight sensors (triaxial accelerometers) in 1140 diferent
experiments performed at diferent frequencies, so the
model is adaptable for all regions of operation of WTs.

Since the original transformers model is based on a se-
quence-to-sequence problem, for this work, the architecture is
successfully modifed to adapt to the multivariate time data
classifcation problem. Achieving almost perfect classifcation
of the 13 diferent structural states, with a model accuracy of
99.96%, a precision average of 99.95%, a recall average of
99.95%, F1-score average of 99.95%, and loss of 0.0016 for the
test set is obtained. Te results obtained suggest that the

model is highly efective, allowing early detection and lo-
calization of damage and allowing the wind farm operator to
take corrective measures before damage becomes major or
even catastrophic. Tus, the results successfully demonstrate
the transformer model’s efcacy for detecting and localizing
damage, achieving the research objective.

Finally, the key advantage of the transformer neural
network approach from an applied perspective is its highly
parallelizable computational architecture. Using self-
attention instead of recurrent processing, the model can
rapidly analyze all points in a multivariate input sequence
simultaneously. Tis allows the transformer-based model to
evaluate lengthy 60-second windows of vibration data for
accurate damage detection in only a few milliseconds of
inference time per sample. Te ability to perform rapid
detection on high-rate vibration streams with minimal la-
tency means that the transformer methodology can be
readily integrated into real-time ofshore monitoring sys-
tems for continuous structural health assessment.
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