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Steel-concrete composite girder bridges, in essence, are thin-walled structures, the dynamic responses of which will be greater than
those of a typical Euler–Bernoulli beam under the train-bridge interaction because of the shear lag and interface slip. Tus, in this
study, the dynamic analysis model of a train-composite box girder bridge-multiple tuned mass damper (MTMD) coupling system
is proposed, with the derived dynamic equations of this time-varying system. Meanwhile, the program is compiled using the
Newmark-βmethod for the solution, combined with the optimization toolbox to solve the complex optimization design problems
of MTMDs involved. Finally, factors afecting the vibration-damping efect are studied, such as the mass ratio of MTMDs, the
number of trains, and the slip and shear lag of the composite box girder bridge.

1. Introduction

Train-bridge coupling vibration is a strongly coupled time-
varying parameter excitation problem, and many re-
searchers worldwide have studied the mechanism of this
coupled vibration [1–13]. However, when the spans of
railway bridges become larger, the train’s higher speed will
cause excessive vibrations of them, posing a potential threat
to its trafc and structural safety and comfort of passengers.

In addition, the steel-concrete composite box girder
bridge is one of the thin-walled structures with relatively low
stifness.Tus, its special material and section properties also
determine its special mechanical behaviors, i.e., shear lag due
to a large width-span ratio [14–16], and interface slip caused
by the fatigue deformation of shear studs between the
concrete slab and the steel beam [17–19], as illustrated in
Figure 1. To a certain extent, its dynamic responses under the
train-bridge interaction will be greater than those of a typical
Euler–Bernoulli beam because of these efects above [20, 21],
and more importantly, cannot be ignored. Terefore, more

reasonable and reliable steps must be taken to control the
vibration of the composite girder bridge.

So, to achieve this, a simple and economical way, at frst,
was to install damping devices on the main structure, such as
a tuned mass damper (TMD). In the past, Kwon et al. [22],
Chen and Huang [23], Shi and Cai [24], Moghaddas et al.
[25], Krenk and Høgsberg [26], Chun et al. [27], and Lievens
et al. [28] have conducted intensive research on the classical
TMD model and its mechanisms, which are relatively ma-
ture now. In fact, the TMD is realized by tuning its frequency
at or near the corresponding one of a structure (generally the
frst-order natural frequency) to control its vibration. Ob-
viously, it is a must to determine the frequency of a bridge
accurately during the design stage of the TMD since it is
sensitive to the frequency. However, in many engineering
cases, due to errors of estimation during construction and
the time-varying efect of a coupling system, the TMD may
have a pronounced detuning efect, which greatly reduces
the vibration-damping efect, and stability and reliability
itself are not that strong.
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On the contrary, an MTMD system composed of
multiple smaller TMDs can be confgured to efectively avoid
these problems above because it has a larger bandwidth and
aims at more excitation’s frequencies than a TMD, not only
dispersing its mass and volume but also possessing ro-
bustness to suppress the vibration better. Terefore, in-
stalling MTMDs on the bridge can validly reduce the
resonant responses corresponding to the structure’s mode
[29, 30]. Yau and Yang [31, 32] developed a broadband
MTMD system to control the vibration of continuous truss
bridges under moving loads excited by trains. Lin et al. [29]
found that once axle loads of trains are evenly distributed,
MTMDs are more efective and reliable than an individual
TMD to suppress the resonant responses of the bridge. Li
et al. [33] discussed the TMD’s dominant factors in an
MTMD system and eventually obtained the optimum pa-
rameters of MTMDs in controlling the resonant responses of
railway simply supported beam bridges induced by high-
speed train loads. Luu et al. [34] were devoted to the op-
timization for high-speed railway bridges to control its
multiresonant peaks by an MTMD system. Miguel et al. [35]
studied the novel robust design optimization of MTMDs
with the principle of maximum entropy and the frefy al-
gorithm, successfully employing it into vehicle-bridge
coupled random excitations. Kahya and Araz [36] pre-
sented a series of multiple tuned mass dampers (SMTMDs)
aimed at high-speed railway continuous bridges and found
that the SMTMD system is more capable of controlling the
vibration than a typical TMD.

According to the studies mentioned above, the current
focus of vibration control is mainly on concrete or steel
bridges under train-bridge interactions, and the analysis
model is relatively simple. Nevertheless, now, there are few
steel-concrete composite girder bridges whose slip and
shear-lag efects have not been considered, resulting in an
inaccurate analysis of dynamic responses and thus the
vibration-damping efect. Given the lack of available
methods for vibration control aimed at the steel-concrete
composite girder bridges under train-bridge self-
excitations, its mechanisms need to be further studied.
However, the composite girder bridge-train-MTMD sys-
tem is a complex time-varying and coupled system, which

renders it more difcult to optimize the parameters, and
little else does so.

Hence, considering slip and shear-lag efects, in this
study, the dynamic analysis model of a train-composite box
girder bridge-MTMD coupling and time-varying system is
proposed.Ten, the matrices about the composite box girder
bridge are derived to obtain the dynamic equations of this
system. Meanwhile, the solution program is developed by
employing the Newmark-β method, combined with the
optimization toolbox to solve the problem of this complex
optimization design problems with MTMDs involved,
providing a novel approach for the optimization of the
coupled time-varying system. Finally, the optimization
method is employed in the numerical simulation to explore
the factors afecting the MTMDs’ vibration-damping efect
based on train-bridge interactions, such as the mass ratio of
MTMDs, the number of trains, and the slip and shear lag of
the composite girder bridge.

2. Dynamic Analysis Model of a Train-
Composite Box Girder Bridge Coupling
System with Special Mechanical Behaviors

2.1. Dynamic Analysis Model of the Composite Box Girder
Bridge. According to the research by Gara et al. [37], the
steel-concrete composite girder bridge is located in the
Cartesian coordinate system (within three directions), and
its geometric parameters are shown in Figure 2.

In this coordinate system, the position vector of any
point within the bridge can be demonstrated as

r(x, y, z) � xii + yjj + zkk, ∀(x, y) ∈ Ac ∪As , z ∈ [0, L],

(1)

where ii, jj, and kk are the unit vectors along three directions
in Figure 2, respectively, Ac and As are the areas enveloped
by the concrete slab and the steel beam, and L is the
bridge’s span.

To consider the shear-lag efect (see Figure 3), the shear
warping intensity functions fc and fs and shear warping
shape functions ψc(y),ψs(y) are introduced, respectively,
according to equations (2) and (3):
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Figure 1: Shear-lag and interface slip efects in the composite girder bridge: (a) shear lag; (b) interface slip.
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Tus, combined with Figure 4, the translational dis-
placement of any point in the composite girder bridge along
three directions are

u(x, y, z) � u0(x) − ϕ(x) z − zCT
 ,

v(x, y, z) � v0(x) + ϕ(x) y − yCT
 ,

wm(x, y, z) � wm0(x) − u0′(x) y − ym(  − v0′(x) z − zm(  + fm(x)ψm(y),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

wherem� c, s (referring to concrete and steel), u0 and v0 are
the displacement of the composite box girder bridge along
O-y and O-z directions, respectively, yCT

and zCT
are po-

sitions of the torsion center in the transformed section of the
bridge along O-y and O-z directions, respectively, yc, ys are
positions of centroids along the O-y direction, respectively,
zc and zs along the O-z direction, wc0 and ws0 are dis-
placements of centroids along the O-x direction, and ϕ is the
angle of the bridge’s free torsion (subscript c refers to the
concrete slab and s to the steel beam).

Since there is no shear lag at the web of the steel beam,
the interface slip displacement Δsh can be simplifed as

Δsh(x, y, z) � ws0(x) − wc0(x) + v0′(x)ho, (5)

where ho is the distance between centroids the concrete slab
and the steel beam along the O-z direction.

On top of that, concrete and steel are always linearly
elastic. As the shear studs are evenly arranged, its shear
connection stifness ρsh is constant along the O-x direction.
Hence, its bond-slip force qsh (x, y, z) is

qsh � ρshΔsh. (6)

According to the principle of virtual work, the virtual
work equation is



V

σ · ∇ δdb(  � 

V

fb · δdb + 

zV

fs · δdb, ∀ δdb( ≠ 0, (7)

where σ is the stress tensor, ∇ is the gradient operator, fb and
fs are the body forces and surface forces, and V and zV
represent its volume and surface area, respectively. δdb
represents the variation of the generalized displacements db,
which is
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Figure 2: Te coordinate system and geometric parameters of the bridge: (a) Cartesian coordinate system; (b) cross section of the bridge.
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dTb(x) � wc0(x) ws0(x) v0(x) u0(x) ϕ(x) fc(x) fs(x) . (8)

Ten, taking advantage of the fnite element method and
research by Zhu et al. [38] to solve equation (7), the girder
bridge is discretized evenly into 3D fnite beam elements (as
shown in Figure 5), with two nodes and 18 degrees of
freedom (DOFs) including its slip and shear-lag efects, each
with 9 DOFs: wcm, wsm,ϕm, um,φm, vm, θm, fcm, and fsm,
where φm and θm are rotations around the O-y and O-z axes,
respectively; subscripts i and j represent two nodes of the
beam element, respectively.

Finally, the stifness matrixKbb andmass matrixMbb can
be obtained, respectively. Ten, its damping matrix Cbb is
derived from Rayleigh viscous damping theory (the deri-
vations and expressions of all matrices and nonzero ele-
ments in research by Zhu et al. [38]).

2.2.DynamicAnalysisModel of a Train-Composite BoxGirder
Bridge Coupling System. Te dynamic analysis model of
a fne train-composite box girder bridge coupling systemwas
adopted, as illustrated in Figure 6. As mentioned above, the
composite box girder bridge model referred to Section 2.1
and the train were simulated according to a classical 27-DOF
vehicle rigid body, including one car body (5 DOFs), two
bogies (5 DOFs each), and four wheel sets (3 DOFs each); the
symbolic representations of all geometric and characteristic
parameters were consistent with the research by Zhu et al.
[38]. Terefore, the dynamic equilibrium equations of this
coupling system are

Mvv 0

0 Mbb
 

€qv

€qb

  +
Cvv 0

0 Cbb
 

_qv

_qb

  +
Kvv 0

0 Kbb
 

qv
qb

  �
Fv
Fb

 , (9)
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Figure 3: Shear-lag efect of the steel beam and concrete slab.
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Figure 4: Displacements of the bridge.
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where Mvv and Kvv are matrices about the train’s mass and
stifness in the global coordinate system, respectively, then,
the damping matrix Cvv is Rayleigh viscous damping matrix,
and qv and qb are displacement vectors of the train and the
bridge, respectively. Te dots on their top denote the de-
rivative with respect to time. Fv and Fb are load vectors of

each wheel set and the bridge in the global coordinate
system, respectively.

We move some components of the load vector in
equation (9), so that all elements about dynamic responses to
be solved are on the left of equation (9), leaving the track
irregularities on the right, and then, equation (9) owns the
following form:

Mt
vv Mt

vb
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bv Mt

bb

⎡⎣ ⎤⎦
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b
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Ct
vv Ct
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Ct
bv Ct
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_qt

v

_qt
b

⎡⎣ ⎤⎦ +
Kt

vv Kt
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Kt
bv Kt
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⎡⎣ ⎤⎦
qt
v

qt
b

⎡⎣ ⎤⎦ �
Ft
v

Ft
b

⎡⎣ ⎤⎦, (10)

where the superscript t indicates that nonzero elements
within the matrix change as time goes. Te results of its
submatrix can be found in the study by Zhu et al. [38].

2.3. Consideration of the Rolling Contact. To better simulate
the actual engineering situation, consider the coupling
characteristics, and obtain exact responses of the system as
trains pass over the composite girder bridge at a high speed,
a more accurate wheel-rail rolling contact was introduced.
Specifcally, there is no relative displacement between the
wheel set and the track both in the foating and rolling di-
rections. However, in the yawing direction, based on Kalker
elastic accurate creep theory [39], under the train coordinate
system, the relationship between the wheel’s lateral relative
speed to the rail and the creep force Fcy (shown in Figure 7)
was assumed to be approximately linear and expressed as

Fcy � −fcyξcy � −
fcy

V
_uvwijk − _ub xvwijk  , (11)

where Fcy is the creep force in the y direction (yawing di-
rection) under the train coordinate system, Fcy is the creep
coefcient in the y direction, ξcy is the creepage, V is the
train’s operation speed, _uvwijk is the speed at the kth wheel set
of the jth bogie in the ith car body, and _ub(xvwijk) is the
bridge speed of the bridge corresponding to the kth wheel set
of the jth bogie in the ith car body.

Terefore, the independent DOFs of the wheel set are
only uvw (yawing direction); vvw (foating direction) and θvw
(rolling direction) can be determined by the displacement of
the bridge. In other words, the train model has 19
independent DOFs.

2.4. Validity of the Dynamic Analysis Model. Since this
dynamic analysis model has been verifed by an actual case
in the research by Zhu et al. [38], where the Italia ETR
500Y train (V � 288 km/h) passed over a steel-concrete
composite box viaduct (7 × 46 � 322m), the dynamic re-
sponses in time history agreed with the measured data,
proving that the model was close to the real situation with
validity.

Despite dealing with a more accurate wheel-rail
rolling contact, this study only considered the trans-
verse creep force in the direction, which made little
diference in the vertical responses of the bridge. So the
proposed model can still be efectively applicable to the
following research.

3. Dynamic Analysis Model of a Train-
Composite Box Girder Bridge-MTMD
Coupling System with Special
Mechanical Behaviors

3.1. MTMD System. Figure 8 illustrates an individual TMD
device in the MTMD system installed on the composite box
girder bridge. Dynamic equations of its vertical vibration can
be given as

mti€vti + cti _vti − _vbl(  + kti vti − vbl(  � 0 (i � 1, 2, 3, . . . , n),

(12)

where mti, cti, and kti are the mass, damping coefcient, and
stifness of an individual TMD, respectively, vti is the ab-
solute vertical displacement of a TMD, and vbl is absolute
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Figure 5: Finite beam element and the composite box girder bridge.
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vertical displacement of the lth beam element within the
bridge where the TMD is installed.

After installing MTMDs on the composite box girder
bridge (x� xbl) exactly for vibration control, its dynamic
equation for the vertical vibration can be

mbl €vbl + cbl _vbl + kblvbl � Fbl + FT, (13)

where mbl, cbl, kbl are the consistent mass, damping co-
efcient, and stifness of the lth beam element corresponding
to where MTMDs are attached, respectively, Fbl is the lth
beam element’s node load vector exerted by wheel sets
because of track irregularities, and FT is the vector about the
inertial force of MTMDs applied to the beam element, which
can be expressed as

FT � −δ x − xbl(  

n

i�1
mti €vti � δ x − xbl(  

n

i�1
cti _vti − _vbl(  + kti vti − vbl(  , (14)

where δ (−) is the Dirac function given as follows:

δ x − xbl(  �
1, x � xbl( ,

0, x≠ xbl( .
 (15)

Substituting equations (15) and (14) into equation (13), it
can be simplifed as
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Figure 6: 3D train-composite box girder bridge-coupling system.
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mbl €vbl + cbl + 
n

i�1
cti

⎛⎝ ⎞⎠ _vbl + kbl + 
n

i�1
kti

⎛⎝ ⎞⎠vbl � Fbl + 
n

i�1
cti _vti + ktivti( . (16)

3.2. A Fine Train-Composite Box Girder Bridge-MTMD
Coupling System with Special Mechanical Behaviors. If
a high-speed train operates at a uniform speed V on
a composite girder bridge, any position within which the
displacement of the track contacted by every wheel set is the

superposition of displacements corresponding to bridge and
track irregularities. In addition, MTMDs are hung inside to
mitigate the bridge’s vibration (see Figure 9). In this way, the
dynamic equilibrium equation is

Mvv 0 0

0 Mbb 0

0 0 Mtt
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0
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (17)

where Ft is the column vector about inertia forces of
MTMDs applied to the corresponding beam elements.

We move some components of the load vector in
equation (17), so that all elements about dynamic responses
to be solved are on the left, leaving the known track

irregularities on the right. In addition, equation (17) has
another following form:
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�
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Ftb
0
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (18)

where qt is the displacement vector of MTMDs.
From equation (18) above, not only are some elements of

the composite box girder bridge coupled with those of trains
but also coupled with those of MTMDs. Meanwhile, the
existing train components and bridge components them-
selves will be updated with the passage of time. Terefore, it
has proved as a time-varying and coupled system.

To solve the second-order complex diferential equations
above, the Newmark-β method can be used in the iterative
process. Te elements of the stifness submatrix Ktt, mass
submatrix Mtt, and damping submatrix Ctt in the MTMD
system and the nonzero MTMD-composite girder bridge
coupling elements are elaborated in Appendix.

4. Vibration Control for Bridge and Optimum
MTMD Design

4.1. Te Numerical Example with Related Details. To in-
vestigate systematically the infuence of the MTMD’s mass
ratio, the train’s number, and the composite girder bridge’s
interface slip and shear lag on vibration control, according to
the study by Tang et al. [41], an example is taken that a series of
German ICE3 trains (all the parameters listed in Table 1) run
over amono-track railway simply supported by a steel-concrete
composite box girder bridge (L� 40m), as shown in Figure 10.
Te track irregularities refer to the sixth-grade power spectral
density (PSD) according to the U.S. railway standard.

vti

mtivti

kti (vti – vbl)
cti (vti – vbl)

(a)

mti

kti

cti

MTMD

ith
TMD

(b)

Figure 8: MTMD system and a TMD: (a) forces acting on a TMD; (b) MTMD system.
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An imaginary composite box girder bridge was selected,
and its cross-sectional dimensions are illustrated in Figure 10.
Te diaphragms were arranged at both ends, and the shear
studs were distributed close and spaced evenly. Tus, we
assume the shear connection stifness ρsh (actually the shear
force per interface [37]) to be linearly elastic, uniform, and
constant. Considering Ollgaard’s nonlinear load-slip re-
lationships [42], the load-slip relationship of each shear stud
was the secant stifness at 40% of the ultimate strength [43], as
ρsh� 10 kN/mm2. Young’s modulus of steel and concrete was
Es � 2.06×105MPa and Ec� 3.86×104MPa, respectively. In
addition, Poisson’s ratios are μs � 0.3 and μs � 0.2, respectively.
Terefore, the frst-order natural frequency obtained from the
eigenvalue analysis was 3.98Hz, with the equivalent com-
posite damping ratio ξb considered to be 2.98% [44]. Te
corresponding vibration mode was vertical bending, selected
as the module to be controlled. Te MTMD device was in-
stalled on the box girder bridge’s interior at its midspan
(where the dynamic response is the largest in the frst mode)
with a uniformly distributed mass ratio of 0.7%.

As the train operates at a uniform speedV, forming a series
of regular axle loads, they might well exert a periodic dynamic
efect on the bridge. We assume that the interval between
moving train loads dv and its cycle should be dv/V. When it
corresponds to the nth-order natural frequency of the bridge or
i times of the harmonic cycle, resonance will occur. According
to Frýba [45], the critical speed Vre (km/h) can be expressed as

Vre �
3.6fb

i
· dv(i � 1,2,3 . . .), (19)

wherefb (Hz) is a certain natural frequency of the bridge
(in this study, it is selected as the fundamental frequency)
and dv (m) is the fxed wheelbase.

Let i� 2, and the operation speed is V ≈ 180 km/h.

kt1

ct1

kti

cti

y

z

ith
TMD

Concrete Slab

Steel Beam

evi

θ

zt

hv4i

Wheel Set

Rail

Transformed section
center CT 

mtimt1

Car Body

Figure 9: Bridge combined with the MTMD system at the section x� xbl under train loads.

Table 1: Te ICE3 train’s parameters.

Parameters Unit Value
mvc kg 48000
Jvcθ/Jvcφ/Jvcψ kg·m2 115000/2700000/2700000
mvt kg 3200
Jvtθ/Jvtφ/Jvtψ kg·m2 3200/7200/6800
mvw kg 2400
Jvwθ kg·m2 1200
kv1a/kv1h/kv1v kN/m 18000/6000/2080
cv1a/cv1h/cv1v kN·s/m 0/0/10
kv2a/kv2h/kv2v kN/m 480/480/800
cv2a/cv2h/cv2v kN·s/m 20/60/12
dv1 M 21.075
dv2 M 23.575
bv1 M 1
bv2 M 0.95
hv1 M 0.8
hv2 M 0.3
hv3 M 0.14
hv4 M 2.466
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4.2. Comparison and Selection of the Optimization Algorithm.
In most cases, closed-form expressions from Den Hartog
[46] were utilized in this study to simplify the process of the
numerical simulation, appropriate for the optimization of an
SDOF (single degree ofreedom) TMD with undamped
SDOF structures subjected to harmonic excitations. Tus,
the optimum tuning frequency ratio βti and the optimum
damping ratio ξti of a TMD are expressed, respectively,

βti,opt �
1

1 + μti
,

ξti,opt �

���������
3μti

8 1 + μti( 
3



,

(20)

where μti is the mass ratio of a single TMD, defned as
μti � mti/mb(i � 1,2,3, . . . , n), and mti and mb are the mass of
an individual TMD and the composite girder bridge,
respectively.

Te expressions of DenHartog orWarburton [47] can be
utilized as the initial parameters of optimization in this
study. However, Warburton’s expressions only apply to
SDOF structures subjected to white noise excitations, which
is not suitable for this study. Tus, the optimum tuning
frequency ωti,opt, stifness kti,opt, and damping cti,opt of
a single TMD can be calculated as follows:

ωti,opt � βti,optωb1, (21)

kti,opt � mtiω
2
ti,opt,

cti,opt � 2ξti,optmtiωti,opt,
(22)

where ωb1 is the bridge’s angular frequency in the frst order,
ωb1 � 2πfb1.

For most of the simple structures, the mode superpo-
sition method is appropriate for solving their dynamic re-
sponses. Undoubtedly, its dynamic amplifcation factor can
be treated as the optimization objective function during the
optimization for the TMD.Te advantage of this approach is
that only several key modes need tuning for vibration
control and that the solution can be obtained through
general optimization algorithms. However, in this study, the
proposed approach was established for the purpose of higher
analysis accuracy, the downside of which was more difcult
to optimize the parameters ofMTMDs. Obviously, almost all
simple optimization algorithms are not a good choice for the
optimal design, especially under train-bridge interactions.
For another, the time-varying coupling system itself is rather
complex in terms of the optimization design. So objective
functions can only take the maximum vertical responses
after all time steps of iteration, which are nondiferentiable
and classifed as implicit function optimization.

For the better optimization and comparison, three trains
(nv � 3) passed over the composite box girder bridge, an
individual TMD (n� 1) considered a spring-mass-damping
system. Terefore, taking the maximum acceleration of the
bridge as an objective function, the fnal optimization
problem is simplifed as the following expressions:

min €vbl,max μt, βti, ξti( 

s.t. μt � 0.02;

βti ∈ [0.8,2.2];

ξti ∈ (0, 0.5].

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(23)
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Figure 10: Te composite box girder bridge along the monoline (unit: mm).
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At present, numerical optimization methods, such as
ergodic search methods, are reasonable for calculations, as
the classical closed-form expressions of TMD above are
always limited in practice.

In a TMD/MTMD system, the pattern search method
(PSM), particle swarm optimization (PSO), and genetic
algorithm (GA) were selected as optimization methods
separately for programming in MATLAB 2021 embedded
with the optimization toolbox. Te specifc implementation
is to set the initial TMD’s/MTMD’s parameters μt0, βt0, ξt0 ,
and their boundaries are included within a certain range in
equation (21). In the end, optimum TMD/MTMD param-
eters could be obtained. More details about the procedures
are shown in Figure 11.

Under the same initial conditions, three diferent al-
gorithms above were used to optimize μt, frequency ratio βt1,
and damping ratio ξt1 of a TMD system. Te optimization
results of these algorithms are listed in Table 2, and the
optimization results are illustrated in Figure 12.

In light of efciency of optimization, PSM and PSO are
better than GA in searching the optimal value, but the
optimization time of PSM was signifcantly reduced to the
minimum out of these because the initial points were cal-
culated by closed-form expressions of Den Hartog, accel-
erating the speed of converging to the optimal value points
during the search process. Instead, from the optimization
results, the computational efciency of GA was still the
lowest and was not suitable for the optimization of this
strongly coupled time-varying system.

Te goal of the optimization algorithm is to make the
results as close to the optimal value as possible with less
computation and time.Terefore, the subsequent research in
this study adopted PSM combined with closed-form ex-
pressions of Den Hartog as the initial point, which saved
a great deal of time and facilitated optimization.

5. Factors Affecting Vibration Control

5.1. Te Mass Ratio. To lower the difculty of optimization
and refect the efect of the mass ratio, the parameters of both
trains and the simply supported composite box girder bridge
remained consistent with those described in Section 4.1,
while the MTMD system was simplifed to a TMD system,
i.e., n� 1, installed inside the composite box girder bridge at
its midspan.Te range of the mass ratio μt varied from 0.005
to 0.05 with an interval of 0.005. Te corresponding opti-
mum tuning frequency ratio βt,opt and damping ratio ξt,opt
were obtained by PSM. In this case, the maximum accel-
eration and defection of the bridge at its midspan were
regarded as the optimization objective functions, re-
spectively. Te optimization problem was fnally simplifed
to the following expression:

min vbl,max μt, βti, ξti(  or€vbl,max μt, βti, ξti( ,

s.t. μt � 0.005: Δμt � 0.005: 0.05 ;

βti ∈ [0.8,2.2];

ξti ∈ (0, 0.5].

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(24)

After parameter optimization by PSM, the maximum
dynamic response in the midspan cross section under dif-
ferent mass ratios is shown in Figure 13.

Te results indicate that the vertical dynamic responses
of the composite girder bridge at its midspan decrease with
an increase in the mass ratio μt and that the vibration-
damping efect of the TMD system gradually enhanced.
However, when the TMD mass ratio reaches 3.5% or more,
the trend of acceleration is slightly diferent from defection.
Te former is not obvious; the latter, nevertheless, is still
decreasing slightly.

From a great deal of earlier research, the mass ratio μt
of the MTMD system usually lies within the range of 1%–
5% [48–52]. Te lighter the mass, the more difcult it is for
the MTMD system to achieve the ideal damping efect. On
the other hand, if the mass is too heavy, like static loading,
the dynamic characteristics of the bridge and its me-
chanical behaviors would change. Afterward, for large
structures such as the railway bridge (the mass itself is
quite large), it is extremely difcult to obtain a mass ratio
of more than 3%. Terefore, the design of MTMDs should
be taken into a comprehensive consideration of the
economy, bearing capacity of the composite box girder
bridge, and vibration-damping efect of MTMDs. Tus,
based on the consideration above, in the following re-
search, the mass ratio μt of the MTMD system will be
maintained at approximately 2%.

5.2. Train’s Number. Given the limited internal space of the
composite box girder bridge, inconvenient installation, and
maintenance of an individual TMD, the MTMD system was
only composed of three TMDs, which were evenly dis-
tributed in the transverse direction. During the optimization
process, every small TMD had the same mass ratio of 0.7%
and remained constant but not the same frequency βti and
damping ratio ξti. Te parameters of both trains and the
simply supported composite box girder bridge remained
consistent with those in Section 4.1, while the number of
trains varied, i.e., nv � 1, 3, 5, and 8, respectively. In this case,
the maximum acceleration and defection of the bridge at its
midspan were regarded as the optimization objective
functions, respectively. Te optimization problem was f-
nally simplifed to the following expression:

min vbl,max μt, βti, ξti(  or€vbl,max μt, βti, ξti( 

s.t. μt � 3 × 0.007 � 0.021;

βti ∈ [0.8,2.2];

ξti ∈ (0, 0.5].

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(25)

After parameter optimization by PSM, the optimum
tuning frequency ratio βti and damping ratio ξti of MTMDs
and the maximum dynamic response of the bridge at its
midspan €vbl,max and vbl,max are demonstrated in Table 3. Te
vertical accelerations and defections in both the time history
and frequency domain are displayed in Figures 14–21.

Tus, it can be viewed from the above that the interaction
between every train and the composite girder bridge will be
more obvious due to the increase in the number of trains,
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and vertical dynamic responses of the bridge are also am-
plifed with the superposition of continuous periodic exci-
tations from the trains. For example, vertical acceleration
and defection were increased to 1.7059m/s2 and 5.867mm,
respectively.

However, due to the coupling efect and the assumption
of the wheel-rail rolling contact, the bridge’s natural fre-
quency is always changing when the train runs on it, because
the mass of wheel sets is added to the bridge so that the
dynamic peak in the frequency domain does not correspond
to the frst-order frequency of the bridge but is slightly
smaller. Even so, MTMDs still work as they would frst
resonate with the excitation to suppress the vibration of the

corresponding mode of the composite girder bridge and
avoid resonance after tuning.

Figure 22 shows vertical defection and acceleration
damping ratios of the composite box girder bridge at its
midspan regarding diferent train’s numbers within the
whole time trains pass. When the number is increased from
1 to 3, the vibration damping ratio for the vertical accel-
eration of the bridge at its midspan reduces from 34.39% to
33.52% and for the vertical defection from 1.62% to 1.51%.
Although they are both reduced, yet not much, they tend to
be toward stability. When the number is 3, the vibration
damping ratios of its vertical acceleration and defection are
close to theminimum.When the number increases from 3 to

Start

Determine whether it is the Best Value

Modify dynamic characteristic matrices of Bridge-
train-MTMD time-varying coupling systems

End

Use the Newmark-β Method to get the iterative solution

Set the initial
parameters and limits

of MTMDs

Select the Optimization Toolbox

Call the functions corresponding to a type
of Optimization Algorithm and optimize

the parameters of βt1, ξt1

Call the functions corresponding to a type
of Optimization Algorithm and optimize

the parameters of βt1, ξt1

Extract the maximum response in the span qmax as the optimization goal

Change the parameters 
of MTMDs within the

boundaries

Yes

No

Form the Matrices about dynamic
characteristics K, M and C,

and the load vector F

Input the Parameters of Bridge-train Coupling Systems,
Track Irregularity Sequences

Output the Optimal Results:
min{v̈bl,max}, βt1, ξt1

Figure 11: Optimization design fowchart of MTMDs.
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5, the vibration damping ratio for the vertical acceleration
increases to 40.98% and for the vertical defection to 14.36%.
When the number of trains is 8, the vibration damping ratios
for vertical acceleration and defection become maximum,
which are 43.02% and 16.53%, respectively.

In general, the vibration damping ratios of vertical ac-
celeration and defection of the bridge at its midspan in-
creased as the number of trains increased.When the number
was increased from 1 to 8, the resonance efect became more
obvious. Tis made the vibration damping ratios of MTMDs

for the vertical acceleration and defection increase by 8.63%
and 14.91%, respectively, whereas the dynamic character-
istics of the composite girder bridge do not change in nature.

In addition, the vibration-damping efect of MTMDs for
vertical acceleration is still better than that of vertical de-
fection, because MTMDs themselves only reduce the dy-
namic defection of a structure, and static defection
accounts for a large proportion. In other words, the response
of vertical defection was particularly concentrated in the
range of low frequency (0-1Hz), but MTMDs can be

Table 2: Optimization results.

Te number
of trains

Iteration/generation (in
GA) βt,opt ξt,opt

Te best
value €vbl,max

(m/s2)
Time (s)

PSM 44 1.183297 0.01000 0.7050 48.481
PSO 33 1.183296 0.01000 0.7050 270.955
GA 60 1.183303 0.01003 0.7051 952.053

Initial Parameters
nv = 3
μt = 2%
βt : 0.5~2.2
ξt : 0.01~0.5
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Mean Value
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Figure 12: Optimization process of three algorithms: (a) particle swarm optimization; (b) genetic algorithm; (c) pattern search method.
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brought into play only when their frequencies fall in or near
a certain frequency of the bridge, so its vertical defection
would not be reduced so much.

5.3. Interface Slip. As illustrated above, the MTMD system
was still composed of three TMDs, which were evenly
distributed in the transverse direction. During the

D
ef

ec
tio

n 
(m

m
)

3.5%

Initial Parameters
nv = 3
μt = 0~5%
βt : 0.5~2.2
ξt : 0.01~0.5

0.4

0.6

0.8

1.0

1.2

1 2 3 4 50
μt (%)

(a)

Initial Parameters
nv = 3
μt = 0~5%
βt : 0.5~2.2
ξt : 0.01~0.5

4.80

4.85

4.90

4.95

5.00

Ac
ce

le
ra

tio
n 

(m
/s

2 )

1 2 3 4 50
μt (%)

(b)

Figure 13: Infuence of the mass ratio.

Table 3: Infuence of the train’s number.

Te number of trains 1 3 5 8

€vbl,max (m/s2) Without MTMDs 0.6641 1.0469 1.6470 1.7059
With MTMDs 0.4457 0.6960 0.9721 0.9721

Acceleration damping ratio 34.39% 33.52% 40.98% 43.02%
βti,opt 1.0696, 1.0696, 1.0696 1.1854, 1.1898, 1.1918 1.1734, 1.1734, 1.1734 1.1734, 1.1734, 1.1734
ξti,opt 0.01, 0.01, 0.01 0.01, 0.01, 0.01 0.01, 0.01, 0.01 0.01, 0.01, 0.01

vbl,max (mm) Without MTMDs 2.882 4.964 5.718 5.867
With MTMDs 2.819 4.889 4.897 4.897

Defection damping ratio 1.62% 1.51% 14.36% 16.53%
βti,opt 0.7440, 0.7440, 0.7440 1.2514, 1.2514, 1.2514 1.1860, 1.1480, 1.1480 1.1860, 1.1480, 1.1480
ξti,opt 0.01, 0.01, 0.01 0.01, 0.01, 0.01 0.01, 0.01, 0.01 0.01, 0.01, 0.01
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Figure 14: Vertical defection of the bridge at its midspan when nv � 1: (a) time history; (b) spectral power density.

Structural Control and Health Monitoring 13



without MTMDs
with MTMDs

nv = 1
ρsh = 10 kN/mm2

-0.8

-0.4

0.0

0.4

0.8
A

cc
el

er
at

io
n 

(m
/s

2 )

1 2 3 40
Time (s)

(a)

without MTMDs
with MTMDs

A
cc

el
er

at
io

n 
PS

D
 (m

2 ·s-4
·H

z-1
)

3.76 Hz

4.23 Hz

3.55 Hz
nv = 1
ρsh = 10 kN/mm2

0.00

0.01

0.02

0.03

0.04

1.5 3.0 4.5 6.00.0
Frequency (Hz)

(b)

Figure 15: Vertical acceleration of the bridge at its midspan when nv � 1: (a) time history; (b) spectral power density.
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Figure 16: Vertical defection of the bridge at its midspan when nv � 3: (a) time history; (b) spectral power density.

without MTMDs
with MTMDs

nv = 3
ρsh = 10 kN/mm2

-1.50

-0.75

0.00

0.75

1.50

A
cc

el
er

at
io

n 
(m

/s
2 )

2 4 6 80
Time (s)

(a)

without MTMDs
with MTMDs

3.47 Hz

4.28 Hz

3.67 Hz

A
cc

el
er

at
io

n 
PS

D
 (m

2 ·s-4
·H

z-1
)

nv = 3
ρsh = 10 kN/mm2

0.00

0.05

0.10

0.15

1.5 3.0 4.5 6.0 7.5 9.00.0
Frequency (Hz)

(b)

Figure 17: Vertical acceleration of the bridge at its midspan when nv � 3: (a) time history; (b) spectral power density.
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Figure 18: Vertical defection of the bridge at its midspan when nv � 5: (a) time history; (b) spectral power density.
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Figure 19: Vertical acceleration of the bridge at its midspan when nv � 5: (a) time history; (b) spectral power density.
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Figure 20: Vertical defection of the bridge at its midspan when nv � 8: (a) time history; (b) spectral power density.
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optimization process, every small TMD had the same mass
ratio of 0.7% and remained the same but not the frequency
βti and damping ratio ξti. Te parameters of trains remained
consistent with those in Section 4.1, while the shear con-
nection stifness of the bridge varied, i.e., ρsh � 1 kN/m2,
ρsh � 5 kN/m2, ρsh � 10 kN/m2, and ρsh � 100 kN/m2.

In this case, the maximum acceleration and defection of
the bridge at its midspan were considered the objective
functions for optimization. After parameter optimization by
PSM, the optimum tuning frequency ratio βti and damping
ratio ξti of MTMDs and the maximum dynamic responses of
the bridge at its midspan €vbl,max and vbl,max are demonstrated
in Table 4, respectively. Te vertical accelerations and de-
fections in both the time history and frequency domains are
displayed in Figures 23–30.

Tus, it is clear from above that the vertical defection of
the bridge at its midspan decreases originally and then
increases slightly with the shear connection stifness ρsh
getting larger, as minimum 5.862mm and maximum
6.071mm; the larger the interface connection stifness, the
slighter the increase. However, vertical acceleration in-
creases with an increase in ρsh, as the maximum is 1.7179m/
s2; the larger the interface connection stifness, the slower the

increase. Te most likely reason is that when a weak shear
connection (ρsh � 1 kN/m2) changes to a strong shear con-
nection (ρsh � 100 kN/m2), its fundamental frequency in-
creases slightly, and Vre gradually approaches V, so the
dynamic responses are amplifed, making it close to the
condition of resonance. Although vertical acceleration in-
creases to a certain extent as well as vertical defection,
resonance is not prominent due to the large proportion of
static (or low-frequency) components. So the overall trend
has no signifcant diference.

Figure 31 shows, respectively, vertical defection and
acceleration damping ratios of the composite box girder
bridge at its midspan regarding diferent shear connection
stifnesses within the whole time trains pass. When ρsh is
1 kN/m2, the operation speed of trains V is far from the
critical speed Vre, the MTMD system has a detuning efect,
and the vibration damping ratios decrease to minimum,
which are 18.96% and 2.75%, respectively. When ρsh in-
creases from 1 kN/m2 to 5 kN/m2, the damping ratio for the
vertical acceleration of the bridge at its midspan increases to
39.69%, and for vertical defection, it increases to 14.50%,
revealing an obvious diference. When ρsh increases from
10 kN/m2 to 100 kN/m2, the vibration damping ratio tends
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Figure 21: Vertical acceleration of the bridge at its midspan when nv � 8: (a) time history; (b) spectral power density.
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Figure 22: Te damping ratios of diferent train numbers.
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Table 4: Infuence of the interface slip.

ρsh (kN/mm2) 1 5 10 100

€vbl,max (m/s2) Without MTMDs 1.2350 1.6801 1.7059 1.7179
With MTMDs 1.0008 1.0133 0.9721 0.9286

Acceleration damping ratio 18.96% 39.69% 43.02% 45.95%
βti,opt 1.2250, 1.3500, 1.3537 1.1914, 1.1914, 1.1914 1.1734, 1.1734, 1.1734 1.1558, 1.1558, 1.1558
ξti,opt 0.0100, 0.0256, 0.0725 0.0100, 0.0100, 0.0100 0.0100, 0.0100, 0.010 0.0100, 0.0100, 0.0100

vbl,max (mm) Without MTMDs 6.071 5.862 5.867 5.898
With MTMDs 5.904 5.012 4.897 4.794

Defection damping ratio 2.75% 14.50% 16.53% 18.72%
βti,opt 1.4706, 1.4706, 1.4706 1.2714, 1.1725, 1.1313 1.1860, 1.1480, 1.1480 1.2158, 1.0959, 1.1078
ξti,opt 0.01, 0.01, 0.01 0.01, 0.01, 0.01 0.01, 0.01, 0.01 0.01, 0.01, 0.01
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Figure 23: Vertical defection of the bridge at its midspan when ρsh � 1 kN/m2: (a) time history; (b) spectral power density.
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Figure 24: Vertical acceleration of the bridge at its midspan when ρsh � 1 kN/m2: (a) time history; (b) spectral power density.
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Figure 25: Vertical defection of the bridge at its midspan when ρsh � 5 kN/m2: (a) time history; (b) spectral power density.
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Figure 26: Vertical acceleration of the bridge at its midspan when ρsh � 5 kN/m2: (a) time history; (b) spectral power density.
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Figure 27: Vertical defection of the bridge at its midspan when ρsh � 10 kN/m2: (a) time history; (b) spectral power density.
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Figure 28: Vertical acceleration of the bridge at its midspan when ρsh � 10 kN/m2: (a) time history; (b) spectral power density.
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Figure 29: Vertical defection of the bridge at its midspan when ρsh � 100 kN/m2: (a) time history; (b) spectral power density.
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Figure 30: Vertical acceleration of the bridge at its midspan when ρsh � 100 kN/m2: (a) time history; (b) spectral power density.
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to be stable. When ρsh is 100 kN/m2, V is the closest to Vre,
and the resonance efect becomes the most obvious, so the
vibration damping ratios of vertical acceleration and de-
fection reach maximum 45.95% and 18.72%, respectively.

In general, the interface slip reduces the vibration
damping ratios of MTMDs for both vertical acceleration and
defection by 26.99% and 15.97%, respectively. Te vibration
damping ratios of vertical acceleration and defection of the

bridge at its midspan increase as ρsh becomes larger. In
addition, the larger the shear connection stifness, the
slighter the increase. Terefore, the decrease of ρsh slightly
changes the dynamic characteristics of the bridge, making its
resonance weaker and even less obvious. Tus, the vibration
damping ratio of MTMDs greatly reduces, which, to a cer-
tain extent, refects that it is only suitable for structures
under narrow bandwidth excitations.
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Figure 31: Damping ratios of diferent shear connection stifnesses.

Table 5: Infuence of shear lag when 2bc/L� 0.25

2bc/L� 0.25 No shear lag With shear lag

€vbl,max (m/s2) Without MTMDs 1.6943 1.7039
With MTMDs 1.0993 1.1349

Acceleration damping ratio 35.12% 33.39%
βti,opt 1.1944, 1.1944, 1.1944 1.2035, 1.2035, 1.2035
ξti,opt 0.01, 0.01, 0.01 0.01, 0.01, 0.01

vbl,max (mm) Without MTMDs 6.109 6.086
With MTMDs 5.153 5.135

Defection damping ratio 15.65% 15.63%
βti,opt 1.8397, 1.0688, 1.0453 1.8492, 1.0541, 1.0692
ξti,opt 0.01, 0.01, 0.01 0.01, 0.01, 0.01

Table 6: Infuence of shear lag when 2bc/L� 0.5

2bc/L� 0.50 No shear lag With shear lag

€vbl,max (m/s2) Without MTMDs 0.9625 1.0167
With MTMDs 0.6193 0.7700

Acceleration damping ratio 35.66% 24.26%
βti,opt 1.2057, 1.2057, 1.2057 1.2964, 1.2964, 1.2964
ξti,opt 0.01, 0.01, 0.01 0.01, 0.01, 0.01

vbl,max (mm) Without MTMDs 3.377 3.406
With MTMDs 2.806 3.189

Defection damping ratio 16.91% 6.37%
βti,opt 1.8566, 1.0619, 1.0688 1.2250, 1.9750, 1.1000
ξti,opt 0.01, 0.01, 0.01 0.198, 0.214, 0.135
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Figure 32: Vertical defection of the bridge at its midspan when 2bc/L� 0.25 without shear lag: (a) time history; (b) spectral power density.
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Figure 33: Vertical acceleration of the bridge at its midspan when 2bc/L� 0.25 without shear lag: (a) time history; (b) spectral power density.
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Figure 34: Vertical defection of the bridge at its midspan when 2bc/L� 0.25 with shear lag: (a) time history; (b) spectral power density.
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Figure 35: Vertical acceleration of the bridge at its midspan when 2bc/L� 0.25 with shear lag: (a) time history; (b) spectral power density.
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Figure 36: Vertical defection of the bridge at its midspan when 2bc/L� 0.50 without shear lag: (a) time history; (b) spectral power density.
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Figure 37: Vertical acceleration of the bridge at its midspan when 2bc/L� 0.50 without shear lag: (a) time history; (b) spectral power density.
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5.4. Shear Lag. As illustrated above, the parameters of trains
remained consistent with those in Section 4.1, and the shear
connection stifness ρsh is 10 kN/m2, while width-span ratios
of the bridge varied, i.e., 2bc/L� 0.25 and 2bc/L� 0.5.

In this case, the maximum acceleration and defection of
the bridge at its midspan were considered the optimization
objective functions. After the optimization by PSM, Tables 5
and 6 specifcally show the optimum tuning frequency ratio
βti and damping ratio ξti of MTMDs and the maximum
dynamic responses of the bridge at its midspan €vbl,max and
vbl,max, comparing the results with a shear-lag efect with
those without. Te vertical acceleration and defection in
both the time history and frequency domains are displayed
in Figures 32–39.

Tus, it is clear from above that there is some diference
between these two conditions. When 2bc/L� 0.25, shear lag
of the bridge appears not as pronounced, so the vertical

maximum acceleration of the bridge at its midspan increases
slightly, and the vertical maximum defection decreases from
6.109mm to 6.086mm, which has little diference because
shear lag does not reduce the stifness of the bridge too
much. Tus, the vibration damping ratio of MTMDs for
vertical acceleration decreases from 35.12% to 33.39% and
that for vertical defection decreases from 15.65% to 15.63%.
However, the MTMD system still plays a role in vibration
control. When 2bc/L� 0.5, shear lag appears more serious,
and the stifness of the bridge decreases more, which made
the vertical maximum acceleration of the bridge at its
midspan increase from 0.9625m/s2 to 1.0167m/s2, and the
vertical maximum defection from 2.806mm to 3.189mm
but not drastically. However, because shear lag greatly
changes the dynamic characteristics of the bridge, the
components in the vertical defection of the bridge increase,
and even the peak does not correspond to the fundamental
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Figure 38: Vertical defection of the bridge at its midspan when 2bc/L� 0.50 with shear lag: (a) time history; (b) spectral power density.
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Figure 39: Vertical acceleration of the bridge at its midspan when 2bc/L� 0.50 with shear lag: (a) time history; (b) spectral power density.
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frequency. To be specifc, the vibration damping ratio of
MTMDs for vertical acceleration decreases from 35.66% to
24.26% and that for vertical defection decreases from
16.91% to 6.37%, suggesting that the detuning efect is
pronounced and even MTMDs could not control the vi-
bration of the bridge, especially for vertical defection.

Figure 40 shows a comparison of the vibration damping
ratios in the time history between the bridges with and
without shear lag. For the vertical acceleration of the bridge
at its mid-span, the larger the width-span ratio 2bc/L, the
greater impact shear lag has on the vibration-damping efect.
When the width-span ratio 2bc/L changes from 0.25 to 0.5,
the vibration damping ratio considering shear lag of the
bridge simply decreases from 33.39% to 24.26%. However,
the results are worse for vertical defection, which drops
rapidly from 15.63% to 6.37%.

Terefore, as 2bc/L increases, shear lag afects the dis-
tribution of components of the dynamic responses in the
frequency domain. Tis would be aggravated with an in-
crease in 2bc/L, and the vibration damping ratio for vertical
defection is seriously weakened. Moreover, in practice,
shear lag of the composite girder bridge should be fully taken
into consideration of vibration control using MTMDs.

6. Conclusions

In this study, the dynamic analysis model of a complex train-
composite box girder bridge-MTMD coupling system is
proposed with the derived dynamic equations for the fol-
lowing research. Trough the numerical simulation, con-
clusions can be drawn as follows:

(1) In terms of the strongly coupled and time-varying
system, PSM and PSO are better than GA in searching
for the optimum parameters to suppress the vibration
caused by train-bridge interaction. But the optimization

time of PSM is reduced to the minimum, taking ad-
vantage of the closed-form Den Hartog’s expressions.

(2) Te vibration damping ratio for vertical dynamic
responses of the bridge increases as the train’s
number is larger since resonance becomes more
obvious, whereas the dynamic characteristics of the
bridge do not change in nature.

(3) Te vibration damping ratio for vertical dynamic
responses of the bridge increases as ρsh is larger.
Meanwhile, the larger the shear connection stifness,
the smaller the increase. However, the decreased
shear connection stifness slightly changes the dy-
namic characteristics of the bridge and reduces the
vibration-damping efect of MTMDs.

(4) When 2bc/L is small, shear lag of the bridge is not
pronounced. So the vibration-damping efect of
MTMDs slightly decreases, but the device still plays
a role. When 2bc/L is large, shear lag of the bridge
becomes obvious, decreases the bridge’s stifness,
and greatly changes its dynamic characteristics, even
the peak of the dynamic response in the frequency
domain does not correspond to the fundamental
frequency.

(5) Under the train-bridge interaction, both slip and
shear lag have a signifcant infuence on the
vibration-damping efect of MTMDs. Hence, more
attention should be given during every structural
stage, such as design, construction, and operation to
minimize its hazards.

Appendix

Te results of the submatrices of stifness Ktt, mass Mtt, and
damping Ctt of the MTMD system are as follows:
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Figure 40: Damping ratios of diferent width-span ratios.
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Ktt �

kt1
kt2
⋱

ktn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n×n

, Μtt �

mt1
mt2
⋱

mtn

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

n×n

, and

Ctt �

ct1
ct2
⋱

ctn

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

n×n

where n is the total number of TMDs.

Te nonzero elements of the stifness submatrix and
damping submatrix in the composite box girder
bridge-MTMD coupling system are as follows:

for i � 1: n

Kbt(i, nbl) � Kbt (i, nbl)–kt(i);
Kt

bb(nbl, nbl) � Kt
bb (nbl, nbl) + kt(i);

Cbt (i, nbl) � Cbt(i, nbl)–ct(i);
Ct
bb(nbl, nbl) � Ct

bb(nbl, nbl) + ct(i);
end
Ktb � KT

bt

Ctb � CT
bt

where kt(i) � kti, ct(i) � cti, nbl is the nbl-th degree of
freedom of the beam element of the composite box girder
bridge where the ith TMD is installed, superscript T rep-
resents the transpose of a matrix, and subscript bt represents
the elements of the composite box girder coupled with
installed MTMDs.
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