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Neural networks (NNs) can provide a simple solution to complex structural vibration control problems. However, most past NN-
based control strategies cannot guarantee an optimal policy in structural vibration control. In this study, a novel active vibration
control strategy based on deep reinforcement learning is proposed, which utilizes the learning ability of NN controllers and
simultaneously provides control performance comparable to traditional model-based optimal controllers. The proposed learning
algorithm can determine the control policy through interaction with the environment without knowing dynamic system models.
This study shows that the proposed model-free strategy can provide optimal control performance to various systems and ex-
citations. The proposed control strategy is first verified on a single-degree-of-freedom model and subsequently extended to
a multi-degree-of-freedom shear-building model. Its control performance with full-state feedback is nearly the same as that of
a classical linear quadratic regulator. Moreover, the learned policy can outperform a traditional output feedback controller in
a partially observed system. The robustness of the proposed control strategy against measurement noise is also tested.

1. Introduction

Structural vibration control aims to suppress the vibrations
of civil and mechanical structures induced by dynamic loads.
A variety of structural control systems have been proposed
and built to alleviate structural responses under various
dynamic loads (such as seismic and wind loads), particularly
when original structural resistance is insufficient [1, 2]. In
general, these systems can be classified into passive, semi-
active, and active types [3]. Although passive and semiactive
systems are cost-effective and reliable in operation, their
performance is limited because they cannot adapt to dif-
ferent excitations [4]. Active control systems, such as active
mass dampers [5], active tendon systems [6, 7], and active
brace systems [8], can provide high-performance structural
response reduction by calculating the desirable actuator
control force according to real-time observations.

In the past five decades, various active control algorithms
and strategies have been proposed to determine precise
control forces with sensor measurements [9], such as linear
quadratic regulator (LQR) [10], pole assignment [11], and
sliding mode control [12]. However, most optimal control
algorithms necessitate complete system dynamics knowl-
edge [13], and their control performance is primarily de-
pendent on the accuracy of model parameters. For example,
the design of an LQR controller requires solving the alge-
braic Riccati equation (ARE) by using the state-space rep-
resentation of a system [14, 15].

In contrast to these model-based algorithms, a neural
network (NN) controller offers a model-free control solution
that is more versatile in design and more practical in ap-
plications [16, 17]. NN controllers can eliminate the need for
analytically developing control algorithms, which is often
difficult for structures with unknown dynamics and strong
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nonlinearity [18]. The early applications of NN to active
vibration control started in the 1990s [19-21] when an
emulator network was used to learn structural behavior and
train a controller network by minimizing different types of
error functions to achieve the desired response. Examples
include the zero-one-step response [22] and the zero-
average expected future response [23]. Although these
methods can reduce structural response under different
loadings, their control performance is mostly not compa-
rable with model-based optimal control methods because
the error functions used for training can only represent
simple control schemes. Kim et al. [24] studied in-
stantaneous optimal control by using the quadratic cost
function to train an NN controller for a single-degree-of-
freedom (SDOF) system under the El Centro earthquake, in
which structural displacement, velocity, and ground accel-
eration were input into the network. Nevertheless, the
performance of this controller was still not comparable with
the optimal LQR algorithm that optimizes the same qua-
dratic cost function.

Previous studies on finding model-free optimal control
strategies have been mostly conducted on solving ARE
through reinforcement learning (RL). This data-driven
technique directly finds the optimal policy from its own
experience with the environment and does not require the
knowledge of full system dynamics. Vrabie et al. [25] used
integral RL (IRL) to update the control policy for a full-state
feedback system. The policy iteration of IRL is achieved by
solving the least-squares problem while integrating the
target function along the state trajectory. The same approach
has also been applied to output feedback systems [26] and
tracking control problems [27, 28]. However, this method is
unsuitable for high-dimensional states because it calculates
the integrated quadratic cost for every step. Vibration
problems in the civil engineering field are typically high-
dimensional considering the observation states, adding
difficulty to traditional policy iteration, and value iteration
algorithms, such as step-by-step least-squares calculation.
Hence, conventional RL algorithms are unsuitable for such
problems. Consequently, an urgent need arises to develop
a novel approach that can utilize the learning ability of NN
controllers while attaining performance close to or even
better than classical optimal control methods.

The development of deep learning in the past decade has
dramatically enhanced the ability of RL by involving deep
NNs, known as deep RL (DRL). A well-known example is the
remarkable success of Alpha GO [29-31]. DRL provides
a new method for directly determining the control policy by
interacting with the environment without the need to solve
ARE. Novel DRL algorithms, such as deep Q-network
(DQN) [32], demonstrate the possibilities of solving com-
plex human-level problems by using DRL strategies and thus
establishes the basis of DRL. However, DQN uses discrete
action and is unsuitable for continuous control problems.
Newly developed algorithms, such as deterministic policy
gradient (DPG) [33], deep DPG (DDPG) [34], trust region
policy optimization (TRPO) [35], and proximal policy op-
timization (PPO), [36] have exhibited notable success in
robotics control tasks for the action-state domain. Radmard
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Rahmani et al. [37] used a modified DQN in structural
vibration control by optimizing a simple reward function.
However, the control signal was discrete and could not be
precisely determined. Khalatbarisoltani et al. [38] used Q-
learning to tune a fuzzy logic-based AMD. Duan et al. [39]
reviewed a couple of benchmarks for DRL continuous
control tasks, such as cart-pole balancing, mountain car,
double-inverted pendulum balancing, and several locomo-
tion tasks. Their results showed that TRPO and DDPG are
effective methods for training deep NN policies, while
DDPG converged significantly faster due to its better sample
efficiency. The DDPG algorithm improves the policy con-
tinuously compared with batch algorithms by exploring the
environment. The deterministic policy network allows the
algorithm to provide continuous control, and it has been
applied to robotics, quadrotors, and autonomous vehicle
fields.

Research on achieving optimal structural vibration control
performance using a model-free method is still absent in the
review mentioned above. Existing methods exhibit at least one of
the following limitations: (1) the control performance is non-
optimal, (2) the method cannot be applied to multi-degree-of-
freedom (MDOF) systems, or (3) the method cannot be ex-
tended to partially observed systems. This paper proposes
a novel active vibration control strategy based on DRL to fill
these existing gaps. This control strategy can be applied to
various linear vibration control problems because its model-free
nature does not require any knowledge of system dynamics.
Compared with traditional active control based on NN, the
current study has demonstrated the ability to find optimal
strategies that traditional NN methods cannot achieve. The
major contributions of this work are summarized as follows:

(a) In fully observable SDOF and MDOF systems, the
proposed model-free NN controller is compared
with a model-based optimal LQR controller. The
control performance under free and random vi-
brations and the robustness against measurement
noise are examined.

(b) The same strategy can be directly applied to a par-
tially observed system. The corresponding control
performance is compared with a full-state controller
and an output feedback controller under different
excitations.

The remainder of this paper is organized as follows: The
vibration problem is formulated in Section 2. Then, the
settings of the traditional model-based methods, namely,
LQR and output feedback controllers, are presented as the
baseline cases for comparison. The RL setup and the pro-
posed DRL controller are presented in Section 3. The details
of the implementation and simulation results of various test
conditions are shown in Section 4. Finally, Section 5
summarizes the conclusion of this work.

2. Control Problem Formulation

The vibration control of a linear continuous-time system is
examined in this study. The state-space representation can
be written as
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X = Ax+ Bu + B, w, (1a)

y = Cx, (1b)

where x is the system state vector, y is the system output, u is
the control action, w is the excitation, A is the system matrix,
B is the input matrix, B,, is the excitation input matrix, and
C is the output matrix. We usually assume that pair (A, B) is
controllable, and pair (A, C) is observable.

Two scenarios of the feedback control problem are
considered. In the first scenario, the full knowledge of the
system state vector x is measurable. In the second scenario,
only a part of the state vector is observed. Two model-based
controllers are selected to compare with the proposed
model-free controller. The block diagrams of the traditional
optimal controllers in these two scenarios are illustrated in
Figure 1, in which the control forces are determined based
on the state vector x and output vector y, respectively, in
these two controllers.

2.1. Full-State Feedback Control. For the full-state observable
system, the classical active LQR controller is selected for
comparison with the proposed novel DRL-based controller.
The control action u is given as

u= _Klqrx’ (2)

Kj,; is the optimal feedback gain that minimizes the qua-
dratic cost

J. = J:O(XTQXX + uTRu)dt, (3)

where Q, and R are the state and control force weight
matrices, respectively; xTQxx stands for the cost of states;
and u”Ru is the force cost. The optimal feedback gain K, is
determined by

K, =R 'B'P, (4)
where P is the solution for ARE.
AP +PA-PBR 'B'P+Q, =0. (5)

P can be determined by solving the ARE matrix. Using
Equation (4), we obtain the optimal gain matrix K. The
system response with the LQR controller can now be de-
scribed by

x = (A-BK,, )x. (6)

If the quadratic cost function is calculated on the basis of
the output vector y, instead of the vector x, then

]y = Jm(yTny + uTRu)dt = Jm(xTCTQyCX + uTRu)dt.
0 0
(7)

The corresponding algorithm is often termed as LQRy.
Note that the control action u = —Kj, x is still based on the
full-state vector, where Ky, is the optimal feedback gain
that minimizes the quadratic cost in Equation (7). Ac-
cordingly, the ARE is transformed into

A"P+PA-PBR 'B'P+C'Q,C=0. (8)

The block diagram corresponding to the LQR/LQRy
controller is presented in Figure 1(a).

2.2. Output Feedback Control. It is usually impractical to
observe a full-state vector in a large-scale structure.
Therefore, the second scenario represents a practical con-
dition when the state vector is only partially observable. The
output feedback controller is adopted, in which the control
action is determined directly by the output measurement,

u=-K,y. 9)

The gain matrix K,s can be calculated as [14]
K,; = R 'BPsCT(csCT) (10)
where matrices P and S are the solutions for the following

Lyapunov equations:

(A-BK,,C)' P+ P(A - BK,C)

7 . (11a)
+C'K,;"RK,,C+C'Q,C =0,
T
(A-BK,;C) S+8(A-BK,;C)+X=0. (11b)
X is the expected value, i.e.,
X="[x(0)x" (0)]- (12)

Considering that an initial gain matrix iterative solution
algorithm can be used to search for the optimal gain matrix
K,s the system response under output feedback control is
written as

x=(A-BK,C)x (13)

The block diagram of the output feedback control is
presented in Figure 1(b). Note that the LQR, LQRy, and
output feedback controllers represent the classic model-
based control algorithms that require the full knowledge
of the state space models.

3. Vibration Control Based on DRL

3.1. RL for Vibration Control. The RL problem includes five
key components: environment, agent, state, action, and
reward. When applied to a feedback control system, the
environment is equivalent to the plant model; the agent acts
as the controller; the state is equal to the complete obser-
vation of the environment, but the observation can also be
partial; the action is the same as that in the control scheme;
and the agent interacts directly with the environment by
observing the state and performing the action. [40] In ad-
dition, a reward is generated in each step to measure the
success or failure of the agent’s action, and the agent can
learn the action policy through experience. The agent aims to
find the optimal policy y* to maximize the total discounted
reward. If a model-free RL algorithm is adopted, the optimal
controllers can be determined without knowledge of system
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FiGure 1: Block diagrams of classical control: (a) state-space model with LQR and LQRy controllers and (b) state-space model with an

output feedback controller.

dynamics. Moreover, a model-free algorithm exhibits the
advantage of handling model uncertainties in real-world
control applications, as it does not require accurate system
dynamics. The interaction between an agent and the envi-
ronment in a standard RL setup is illustrated in Figure 2.

The dynamic system model is first discretized when
designing an RL environment for vibration control. Then,
the environment is formulated as a Markov decision process
(MDP) model, that is, the future state only depends on the
most current state and action, referred to as the Markov
property. At each time step t, the environment experiences
the state s, receives the action g, based on the policy ¢, and
the corresponding reward is r,. Then, it ends in a new state
St 1. The total discounted reward from time ¢ is defined as
the return G,, with the discount factor y € (0, 1).

(&8

2 k
G =T ¥V + Y Tust... = Z Y Ttiks1-
k=0

(14)

If the state is partially observed, then the system is
regarded as a partially observable Markov decision process
(POMDP). The time horizon can also be set to finite to
achieve the optimal reward in the given steps. The optimal
policy u* shall maximize the discounted reward.

p* = argmaxG,. (15)

The objective is to suppress vibrations under excitations
via the quadratic cost functions. For each step, the expected
reward G, represents future control performance. Thus,
instead of obtaining an analytical solution or numerically
searching for optimal strategies, the policy in RL is learned
through interaction without requiring a full-dynamics
model. The step reward for full-state feedback control is
defined as the negative quadratic cost for the vibration
control problem.

r, = —xtTQxxt - utTRut. (16)

Agent

State s

t+1

Action State s,

a, Reward r, | Reward r,

Environment

FiGure 2: RL setup.

The step reward for partial observable state control is

T T

r ==Y, Qy; —u; Ru,. (17)
Consequently, maximizing the total reward is equivalent

to minimizing the quadratic cost function.

3.2. DRL-Based Vibration Control Strategy. The current
study chooses the DDPG algorithm to train the NN con-
troller. DDPG is a model-free, off-policy, online RL algo-
rithm. The DDPG algorithm uses a deterministic policy
instead of the traditional stochastic policy. Thus, the DDPG
agent outputs a deterministic action for each observation
state. Furthermore, in contrast to the well-known DQN
algorithm, which can only handle discrete actions, the policy
of DDPG is modeled as a deep NN. Consequently, it can
work with continuous action spaces, and this capability is
critical for high-dimensional space vibration control.

The DDPG algorithm adopted in this work is a combi-
nation of DPG and DQN presented in Ref. [34]. The actor-
critic structure in DPG is represented by deep NNs in the
DDPG agent. The actor outputs the corresponding action to
the environment, and the critic approximates the long-term
reward based on the observation and action. The expectation
@ of a state-action pair (s;, a,) is
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Q' (sia) = E[r(spa) + yQ (st (s10))]. - (18)

The critic network Q¥ parameterized by 6 is optimized
by minimizing loss L as follows:

2
L:E[(Q"(st,at 162)-Y,) ] (19)
where Y, is the value function target at time ¢, i.e.,
Y, =r(spa,)+ YQ#(SHD”(SHJ) | 9QM)- (20)

Two significant changes introduced into the Q-learning
by DDPG are a replay buffer and two separate networks for
critic and actor updates to increase the learning stability. The
critic is learned using Bellman’s equation, i.e., Equation (18),
and the actor is updated through gradient descent. As an off-
policy algorithm, DDPG exhibits the advantage of in-
dependent exploration from learning. Temporally correlated
exploration noise is added to the action during training for
better exploration. The flowchart of using DDPG to train the
NN controller is presented in Figure 3, and the training
follows Algorithm 1.

After the training process, the actor-network can be used
as the NN controller separately to generate control forces by
accepting the states as input, similar to a regular controller in
an offline manner, as shown in Figure 1.

4. Simulation Results

In this section, various cases are presented to demonstrate
the effectiveness of DRL agents in vibration control. Starting
with a simple SDOF model (Section 4.1), the performance of
the DRL-trained NN controller is compared with the LQR
control under free and random vibrations. Subsequently,
this strategy is extended to a six-story shear building model
with an actuator installed in the first story. Full-state control
(Section 4.2) and partially observed state control (Section
4.3) are examined. Moreover, the robustness of the DRL-
based controller is tested by including measurement noise
(Section 4.4).

4.1. SDOF System. Consider an SDOF system with the
system matrices as follows:

01 0
A:[ ],B:[ ] (21)
-10 1

The weighting matrices Q, and R in the cost function are
selected to be

10
Qx=[ ],Rzl. (22)
01

Given an initial displacement and velocity, the SDOF
system undergoes free vibration with the control action. 10-s
free vibration records under the current agent are used for
each training episode. The actor-network has one hidden
layer with a dimension of 64, and the critic network has two
hidden layers, each with a dimension of 64. Both networks
are composed of rectified linear unit (ReLU) activations. The

training progress is shown in Figure 4, and the agent reaches
the total reward of the LQR controller in less than 500
episodes.

The performance of the LQR controller (model-based)
and the DDPG agent (model-free) under free vibrations is
compared in Figures 5(a) and 5(b). Given the initial state (1,
1), the displacement and velocity trajectories of the SDOF
system controlled by the DDPG agent and the LQR con-
troller are nearly the same.

Although the DDPG agent is only trained on the basis of
free vibration, white noise random excitations are also ap-
plied to test the performance. Random excitations of three
different levels (low, middle, and high) are applied to ex-
amine if the DDPG agent produces any nonlinear effect that
would affect the control performance. The cumulative cost
for each simulation is provided in Table 1. The result of the
DDPG controller is still very close to that of the LQR
controller. Figure 6 presents the displacement comparison in
one random excitation case. The performance of the two
controllers is generally consistent. Although trained on free
vibration only, the model-free DDPG controller can still
offer an optimal control performance comparable to the
classical LQR controller for the SDOF system under random
situations.

4.2. Full-State Observable MDOF System. The proposed
control strategy is extended from SDOF to a higher-order
MDOF system, namely, a six-story shear building with an
actuator in the first story as shown in Figure 7. A couple of
assumptions are made for this simplified model. The floor
is assumed to be rigid without rotation, and the floor mass
is modeled as a lumped mass. Table 2 provides each floor’s
structural properties. The damping ratio is set as 5% for all
modes. Notably, although the actuator is assumed to be
installed in the first story of the six-story building in this
simulation case, the presented control strategy can be
extended to other actuator locations or even other
structures.

Only the inplane vibration is considered. The corre-
sponding equation of motion can be written as

mz + cz + kz = —mb,w + bu, (23)

where m, ¢, and k are the mass, damping, and stiffness matrices
of the shear building, respectively; z=[z; ... ze) ¥ includes the
displacement of each floor; w is the ground excitation; u is the
control force; b=(100000) '; and b,=11111 nT.

This equation can transform into a state-space repre-
sentation as

x = Ax+ Bu+ B, w, (24)

where x is the full-state vector of velocity and displacements.
A is the state matrix, i.e.,

A= 0 ! 25
_[—m_lk —m_lc]' (25)

B,, is the input matrix for the excitation force, i.e.,
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FIGURE 3: Flowchart of using the DDPG algorithm to train a vibration controller.

repeat
Observe state s, and get action a, = u(s,)
Execute g, in the environment
Observe the next state
Get the reward r, (s,,a,)

If it is time to update, then
# =DDPG (u, [s;, 1, (s> ap), i1 1)
end if
until convergence

Initialization step: initial DDPG agent, initial state vector x(0)

If s,,, is terminal, then reset the initial states and start a new episode

ALGORITHM 1: DRL controller training.

LQR: -42.00

IS
&
.

Total rewards
&
o

'

w

w
T

-60 I L

0 100 200 300
Episodes

400 500

F1GURE 4: Episode reward of the DDPG agent during training for the SDOF system.
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F1GURE 5: Comparison of SDOF free vibration: (a) displacement and (b) velocity.

TaBLE 1: Cumulative cost comparison under white noise excitations.

Time (s) Excitation level DDPG LQR
Low 720.96 720.94
500 Middle 902.70 902.73
High 7.18 x10* 7.18 x 10*
0'6 T T T T T T T T T

Displacement (m)

-0.6 -
_08 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200
Time (s)
— LQR
--- DDPG

FIGURE 6: Displacement comparison of the SDOF system under random excitations.

0 The continuous state-space model is further discretized

B, = [ ] (26)  with a sampling interval of 0.01 s. The performance indices

1 Q.. and R in the cost function are set as Q, = 10 x I,,,;, and

B is the input matrix for the control force, i.e., R = 10~*. The agent critic has three hidden layers, each with
a dimension of 64 and ReLU activations. The actor is rep-

_ [ 0 ] (27) resented by an NN composed of tanh nonlinearities and two

m'b| hidden layers, each with a dimension of 64. The training

process is the same as that for the SDOF system. A step
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FIGURE 7: Six-story shear building diagram.

TABLE 2: Six-story shear building model properties.

Story Mass (x10° kg) Stiffness (x10° N/m)

1 25 6.82
2-5 20 6.06
6 15 6.06

excitation is applied at the starting point, and the building is
allowed to perform under free vibration, and 5-s free vi-
bration records are used in the training process.

The total cost of the LQR controller and the trained
DDPG agent are 292.23 and 295.45. The total cost of the
DDPG agent is slightly higher, but its performance is still
very close to that of the LQR controller. Figures 8(a) and 8(b)
show the displacement and velocity time histories of two
representative floors. The vibration decay rates of the two
controllers are extremely close to each other and are in the
same phase.

The NN controller trained on free vibration is further
tested under random excitations and sine sweep excitations
(sweeping from 0.5 Hz to 10 Hz in 205s). Figure 9(a) depicts
the displacement response of the first floor under random
excitations. Figure 9(b) shows the root-mean-square (RMS)
displacement responses at different floors under random
excitations. The RMS displacement of the DDPG agent is
smaller than that of the LQR controller, indicating a slightly
better control performance of the DDPG agent.

Figure 10(a) presents the displacement response of the
sixth floor under sine sweep excitations. The response time
histories are nearly identical for the two controllers under all

Structural Control and Health Monitoring

frequencies. Figure 10(b) illustrates the relationship between
floor displacement and control force. The two controllers
demonstrate very close features. Vibration comparison
under different excitations indicates that the model-free NN
controller trained through the DRL method without any
knowledge of system dynamics under various occasions can
compete with the performance of the model-based LQR
controller in full-state feedback control.

4.3. Partially Observed MDOF System. One case with
a partially observed state is further investigated using the
same six-story shear building model. Only six states are
observed: the first-, third-, and fifth-floor displacements and
velocities. The agent structure follows that of the full-state
controller except for changing the nodes of the input layers.
The only difference in training is the reward calculation. The
weighting matrix Q, is selected to be 10 x I4,4, while R is the
same. The system performs training under free vibration for
6s during each training episode.

The free vibration results are provided in Table 3. The
performance of LQRy is the best among the three because it
uses the fully observable state to calculate the control force.
The trained DDPG agent using partially observable states
can achieve performance similar to that of LQRy, and the
DDPG agent can outperform the output feedback controller
with the same number of observable states. From the
training progress shown in Figure 11, the episode reward of
the DDPG agent surpasses that of the output feedback
controller after a dozen training steps. When training stops,
the total reward is extremely close to the result of the full-
state controller LQRy. The control performance of the
output feedback controller is the weakest among the three.
Figures 12(a) and 12(b) present the displacement responses
of the first floor and top floor, respectively.

Random and sine sweep excitations are also applied.
Figures 13(a) and 13(b) show the displacement of the first
floor under two different excitations. Similarly, the control
performance of the DDPG agent is close to that of the full-
state LQRy controller and exceeds that of the output
feedback controller. Figure 13(c) illustrates the force-
displacement relationship of the three controllers, in
which the negative stiffness features of the LQRy and DDPG
agents are close to each other and more significant than that
of the output feedback controller when selecting the same
weighting matrix. The comparison of the RMS displacement
of all the floors is depicted in Figure 13(d).

Figure 14 shows the components of the total cost under
sine sweep excitations. The output feedback controller has
the highest cost. Although the force component cost of the
output feedback controller is considerably lower than the
other two, its state cost is enormous. The DDPG controller
has a slightly higher state cost than LQRy, leading to a higher
total cost.

4.4. Full-State Observable MDOF System with Measurement
Noise. Measurement noise in the observed state vector is
considered to demonstrate the robustness of the DRL
strategy. Thus, the full-state observation becomes



Structural Control and Health Monitoring 9

60 T T T 600
400
g =2 200
- g
5 g
£ >
2 g
= =}
> o 0
A >
-200
. . . -400 . . .
0 1 2 3 4 0 1 2 3 4
Time (s) Time (s)
-=+= No control .=.= No control
— LQR — LQR
--- DDPG --- DDPG
(a) (b)
FIGURE 8: Free vibration of full-state observable MDOF: (a) top-floor displacement and (b) first-floor velocity.
8
10 + E
6 J
CER 1 -~
g | g
g | g
g F ‘ 4 4| 1
QE'i 1 | ) a
= I
Y V af | "y 1\
N 0 i ! 1 * A
’ L ’ 1 ! | l ‘
i e ) l
LT | 2 '
I ‘
5t
0 5 10 15 20
Time (s) Floor
— LQR mm LQR
--- DDPG mm DDPG
() (b)

FIGURE 9: Full-state observable MDOF under random excitations: (a) top-floor displacement and (b) RMS displacement of different floors.
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TaBLE 3: Total cost for free vibration of partially observed MDOF system.

No.
Controller of observable states Total cost
LQRy 12 164.56
Output feedback 6 203.56
DDPG 6 168.80
Yn =Y + W, (28) -100

o ] ) LQRy: -164.56
The training progress stays the same as that in Section '

4.2 except for adding the measurement noise, and the -200 |
trained controller is compared with the LQR controller. The
total cost after the training is summarized in Table 4.
Similar to the case without noise, the total cost of LQR is
still slightly lower than that of DDPG when the mea-
surement noise is considered. In both cases without and
with noise, the differences in the total cost are less than 2%.
The displacement time histories of the first and top floors
are shown in Figures 15(a) and 15(b), respectively. The -500 . . . .

vibration decay rates are nearly the same in consideration 0 >0 100 150 200

\

Output feedback: -203.56
-300

Total rewards

-400

of measurement noise in the observation function. The Episodes
control force-displacement relationship is presented in —— Episode reward
Figure 16. The maximum force provided by the DDPG - -~ Average reward

agent is.lo.wer than that of LQR, but the overall trend is FiGure 11: Episode and average reward of DDPG during training
highly similar. of the partially observed MDOF system.
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FIGURE 12: Displacement response of the partially observed MDOF system under free vibration: (a) first floor and (b) top floor.
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FIGURe 13: Partially observed MDOF under different excitations: (a) top floor displacement under random excitations, (b) top floor
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TaBLE 4: Total cost of MDOF under free vibration with and without noise.

13

Noise LQR DDPG Difference (%)
Without noise 292.23 296.96 1.59
With noise 293.42 298.26 1.62
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FiGure 15: Displacement response of MDOF with measurement noise under free vibration: (a) first floor and (b) top floor.
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FiGure 16: Control force vs. first-floor displacement relationship of MDOF with measurement noise.
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5. Conclusion

A novel DRL-based vibration control strategy is presented in
this work, which, to the best of the authors’ knowledge,
presents the first study that introduces DRL into the optimal
structure control domain. An oft-policy model-free algo-
rithm, i.e., DDPG, is used to train the NN controller, and its
effectiveness is tested under various conditions.

The proposed DRL-based controller does not require any
information regarding structural dynamic models but can
still achieve control performance comparable to that of the
traditional model-based LQR controllers. The proposed
method is tested in an SDOF system and a six-story shear
building MDOF system. The agents are always trained under
free vibrations and then tested under different levels of
random excitations. For all the cases, the total costs and
displacement levels are nearly the same as those of LQR. In
addition, the control performance is relatively consistent
with measurement noise.

When feedback is not in a full state, the DRL controller is
considerably better than the output feedback controller with
the same number of observed states. The control perfor-
mance of the DRL controller does not degrade too much
compared with the full-state feedback controller LQRy, al-
though the former uses fewer states in the feedback than the
latter.

Implementing this proposed strategy in nonlinear sys-
tems needs to be investigated in future studies, in which the
strength of deep learning is expected to be better utilized.
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