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Constructing tunnels in urban spaces usually uses shield tunneling. Because of numerous uncertainties related to underground
construction, appropriate monitoring systems are required to prevent disasters from happening. Tis study collected the set-
tlement monitoring data for Tender CG291 of the Songshan Line of the Taipei Mass Rapid Transit (MRT) system and considered
that infuential factors were examined to identify the correlations between predictor variables and settlement outcomes. An
inference model based on symbiotic organisms search-least squares support vector machine (SOS-LSSVM) was proposed and
trained on the collected data. Moreover, because the dataset used for this study contained far less data at the alert level than at the
safe level, the class of the dataset was imbalanced, which could compromise the classifcation accuracy. Tis study also employed
the probability distribution data balance sampling methods to enhance the forecast accuracy. Te results showed that the SOS-
LSSVM exhibited themost favorable accuracy compared to four other artifcial intelligence-based inferencemodels.Terefore, the
proposed model can serve as an early warning reference in tunnel design and construction work.

1. Introduction

Te rapid development of urban areas in recent decades has
led municipal authorities around to world to relocate urban
transportation infrastructures underground [1–4]. In Tai-
wan, underground public transport systems have been de-
veloped and expanded in major cities such as Taipei,
Taoyuan, and Kaohsiung. In Taipei alone, all heavy-load
transportation routes through the city have been relocated
underground and fve major metro lines with a total op-
erating mileage of 131.2 km have been constructed and are in
operation since 1996. Construction work underground is
mostly conducted in small and confned spaces subject to
numerous uncertainties, making work here much more
difcult than aboveground [5–7]. Besides, with the exception
of subway stations, most of the below-ground subway system
infrastructure is built using the shield tunneling method, in

which a tunnel boring machine (TBM) simultaneously ex-
cavates the soil ahead, removes the excavated material, and
installs a supporting shield structure to stabilize the newly
excavated tunnel section. However, underground con-
struction is not only challenging but also risky. During shield
tunneling, factors such as changes in stress, tail void closures,
disturbed soil compaction, and lining segment deformation
can displace lateral soil layers, leading to the ground settling,
bulging, or experiencing lateral displacement [8]. Terefore,
while the TBM is in operation, a safety monitoring system
must be active. Tis system collects site data and supervises
TBM maneuvers to prevent excessive ground settlement,
which can damage existing urban infrastructure and
buildings and trigger disastrous accidents [3, 5, 9–11].

However, data on settlement generated by the safety
monitoring system alert users to settling that has already
occurred and are thus useful only for developing and
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implementing postdeformation remedies that prevent a sit-
uation fromworsening [2, 11]. Shield tunneling safety would
beneft greatly from a database created with limited moni-
toring data and soil layer parameters that may be used to
predict settlement conditions, provide early warnings of
deformation, and increase reaction times [1, 12–14]. With
this aim in mind, the settlement monitoring data for Tender
CG291 of the Songshan Line of the Taipei MRTsystem were
collected in this study. In this monitoring data, safe-level
data entries far outnumber alert-level data entries, creating
an imbalanced dataset. Classifcation models based on or-
dinary classifcation techniques can result in serious bias in
class forecasting when imbalanced processing data [15]
which renders inference models based on artifcial in-
telligence (AI) unable to classify scarce data with accuracy.
For this reason, efectively processing imbalanced data to
prevent forecasting bias is critical for AI-based inference
models.

Few researchers have developed AI models for use as
autonomous integrated systems to predict ground settle-
ment in tunnel construction. Tus, in this study, a novel
advancement of symbiotic organisms search-least squares
support vector machine (SOS-LSSVM) and data balancing
methods is proposed to help predict settlement and help
project decision-makers to prevent geotechnical disasters.
Te developed model is at the forefront of eforts to integrate
metaheuristics, AI techniques, and data balancing methods
to automatically and accurately predict shield-tunnel set-
tlement. For this purpose, factors infuencing settlement
were investigated, and historical monitoring data were
gathered for the training on AI. Tis prediction model is
expected to be useful for design and construction agencies in
predicting settlement, thereby helping them adopt pre-
ventive measures against settlement. Tus, the objectives of
this study are as follows:

(1) Identifying infuential factors for settlement in shield
tunneling: the literature on settlement estimation
was reviewed for possible infuential factors, which
were further tested using statistical methods by the
software SPSS.

(2) Conducting resampling for imbalanced data: two
methods were applied against imbalanced data,
probability distribution data balance sampling
(PDDBS), and synthetic minority oversampling
technique (SMOTE).

(3) Establishing a model for settlement prediction: the
proposed settlement prediction model for shield
tunneling was developed using symbiotic organisms
search-least squares support vector machine (SOS-
LSSVM).

(4) Verifying the efectiveness of the proposed model:
the prediction results of SOS-LSSVM and another
four AI-based models were compared to determine
the best performer based on prediction accuracy.
Also, the receiver operating characteristic (ROC)
curve and the area under the curve (AUC) were used
to evaluate the classifcation accuracy of the data

balanced by PDDBS and SMOTE. Tus, the pro-
posed model has been verifed to solve the data
imbalance problem efectively.

In this study, SOS-LSSVM was integrated with the data
balance sampling method to create a shield-tunnel settle-
ment prediction system optimized to help prevent ground-
settlement-related disasters during tunnel construction. Te
system, based in the construction control center, utilizes
automatically collected and wirelessly transmitted moni-
toring data to forecast tunnel settlement status in real-time.
When predicted settlement levels exceed the warning value,
engineers may take appropriate actions to prevent disaster.

2. Literature Review

2.1. Causes of Settlement in Shield Tunneling. In Taiwan,
shield tunneling has been in use for over 31 years since its
debut in 1976; through the years, TBMs have seen con-
siderable improvements, from the most primitive open-face
manual types to the later mechanical, slurry pressure bal-
anced, and earth pressure balanced types. Because of the lack
of slurry deposit yards or facilities, the Rapid Transit System
in Taipei mostly employs earth pressure balanced TBMs,
except for the Xindian Line (CH22), which uses two slurry
pressure balanced machines. Shield tunneling would result
in ground settlement having negative impacts on the ad-
jacent structures [5, 16]. Te soil layer and surface dis-
placements caused by shield tunneling are related to the type
and diameter of the TBM, excavation depth, site condition,
soil properties, and groundwater level. When a TBM is
advancing, if the thrust force against the tunnel face is lower
than the static earth pressure of the soil layers, the soil
releases its stresses along the tunnel face and rushes toward
the tunnel face because the soil layers are under active earth
pressure. Tis leads to ground loss and results in settlement.
If the thrust force is equal to the static earth pressure of the
soil layers, the tunnel face becomes static. Furthermore, if
the thrust force is greater than the static earth pressure of the
soil layers, the soil along the tunnel face is pressed forward,
causing the ground to bulge. Ground settlement during
shield TBM tunneling develops in the following steps: (1)
before and during tunnel face excavation, (2) during the
passage of the shield skin plate, and (3) after installation of
segmental lining and backfll grouting [17].

According to previous studies, various factors contribute
to ground settlements, such as geometrical, geological (e.g.,
the strength characteristics and the overconsolidation ratio
of the soil), and shield operational parameters [4, 7, 8,
11–14, 18]. Fargnoli et al. summarized that face support
pressure, grouting pressure, machine stoppage time, and
installation time for one-ring tunnel lining were essential
parameters to predict surface settlement [2]. Luo et al. also
indicated that the groundwater condition is an important
factor because shield tunneling would cause pore water
pressure variation [18]. Te fll factor of grouting and
grouting pressure was identifed as the most afecting pa-
rameters when applying an AI-based algorithm to predict
settlements [14].
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2.2. AI-Based Algorithm Applications for Predicting
Settlements. Establishing a settlement prediction model is
necessary for underground construction safety. Analytical,
empirical, and numerical methods were proposed to predict
settlement and other tunnel deformations. Te most im-
portant weakness of such proposed methods is that they fail
to consider all parameters contributing to the settlement
(e.g., ground condition, operational parameters, and tunnel
geometry) [14]. Also, because the process around shield
TBM tunneling is complicated, most of the studies could not
provide statistically meaningful relationships between the
volume loss and operation parameters [17].

Recently, some researchers have successfully used AI-based
algorithms to establish a model for predicting the settlement
induced by shield tunneling, such as artifcial neural networks
(ANNs), fuzzy logic (FL), support vector machine (SVM), and
gene expression programming (GEP) [7, 14]. Wang et al.
successfully applied an adaptive relevance vector machine
(aRVM) to predict real-time settlement development [9].
Bouayad and Emeriault proposed a methodology that com-
bines the principal component analysis (PCA) with an adaptive
neuro-fuzzy-based inference system (ANFIS) to model the
nonlinear relationship between ground surface settlements
induced by an earth pressure-balanced TBM [7].

Symbiotic organisms search-least squares SVM
(SOS–LSSVM) was developed by Cheng and Proyogo [19]
and proved to be reliable in prediction tasks [20–22]. SOS-
LSSVM uses an advanced metaheuristic to search optimal
parameters and identify the correlations between input and
output variables from the historical case data to establish
inference models. Previous studies also identifed that the
SOS method exhibited excellent performance [19, 23, 24].
In addition to SOS-LSSVM, this study also applied back-
propagation neural network (BPNN), least squares support
vector machine (LSSVM), evolutionary least squares
support vector machine inference model (ELSIM) [25, 26],
and SVM to estimate the settlements for comparison.

2.3. Strategies againstData Imbalance. Data imbalance refers
to one class of samples in a dataset overwhelming another
class; this has serious consequences in classifcation. Gen-
erally, the term “minority” (MI) is used to refer to the class of
scarce samples in the dataset and “majority” (MA) for the
dominant class [27]. For example, when a dataset contains
95% majority class samples and 5% minority class samples,
an inference model will tend to classify all of the samples as
the majority class and achieve 95% accuracy; however, its
accuracy for the minority class will be 0%.Tis bias is caused
by the characteristics and limitations of AI, which requires
a large amount of evenly distributed data for training and
testing to achieve satisfactory forecasting results.

Once the distribution of imbalanced data is skewed, an
AI-based inference model trained on them will also produce
skewed results accordingly. Te major measures to solve the
data imbalance problem are undersampling and over-
sampling. Besides, this study also introduces a sampling
method that utilizes probability distribution to balance data
and improve the classifcation accuracy.

2.3.1. Undersampling. Undersampling is a technique that
decreases the number of MA samples for the balance of
a training dataset. It reduces the number of MA samples
until the MA class is the same in size as the MI class.
Undersampling is superior to oversampling for the training
of imbalanced data; however, this approach can eliminate
some potentially useful training samples; hence, it lowers the
performance of the classifer.

Excessive MA samples could be eliminated through ran-
dom selection to balance out the two classes. To avoid un-
certainty pertaining to random undersampling, Kubat and
Matwin proposed an alternative undersampling approach that
they considered more appropriate. To mitigate data imbalance,
they removed the redundant data in the MA class, followed by
removing the borderline samples close to the boundary of the
MA and MI classes as well as the noisy data [28].

2.3.2. Oversampling. Oversampling increases the number of
MI samples for the balance of a training dataset. It increases
the number of MI samples until the MI class is of the same
size as the MA class. As an approach against data imbalance,
it is highly popular, and it is efective for the training of
imbalanced data. However, because oversampling in-
troduces some high-precision samples into the dataset, the
result is often a lengthy training time or even overtraining.

In addition to random oversampling, the synthetic
minority oversampling technique (SMOTE) was used in this
study. Unlike random oversampling, which duplicates the
MI class to expand the sample size, SMOTE generates
synthetic samples by adopting linear interpolations between
two near samples. Specifcally, SMOTE identifes and cal-
culates the diference between MI samples using the nearest
one, then multiplies the diference using a random value
between 0 and 1, and then adds it to the MI class via the
generation of a new MI sample class.

3. Establishing Settlement Inference Model for
Shield Tunneling

Tis chapter addresses how the infuential critical factors for
settlement in shield tunneling were identifed. Tese factors
serve as the input variables for the proposed model, which
uses SOS-LSSVM and relies on historical case data for
training and testing to determine the optimal mapping of
input and output variables, thereby predicting the settlement
of tunnels. Te fowchart is illustrated in Figure 1.

Step 1. Identify infuential preliminary factors
Review studies on shield tunneling and list the reasons that

are attributed as the cause for settlement. Te ones that are
mentioned more frequently will be identifed as preliminary
infuential factors. Ten, implement SPSS on the preliminary
infuential factors to determine the factors to be included.

Step 2. Collect and establish the case dataset
Collect case data according to the required input and

output variables and thus establish a complete case dataset
that provides the input data.

Structural Control and Health Monitoring 3



1. Identify influential preliminary factors

2. Collect and establish the case dataset

3. Balance the dataset

1. PDDBS Oversampling 3. SMOTE Oversampling

2. PDDBS Median Sampling 4. SMOTE Median Sampling

4. Establish inference model (SOS-LSSVM)

Start

Historical Data

Partitioning Data

Training Dataset
Train set 1
Train set 2
Train set 3

…
Train set 10

LSSVM
training model

SOS parameters
search

LSSVM parameters (γ & σ)

Fitness
Evaluation

Termination
Criteria

Optimal
parameters

γ1 & σ1
γ2 & σ2
γ3 & σ3

…
γ10 & σ10No

Yes

Training

Testing Dataset
Test set 1
Test set 2
Test set 3

…
Test set 10

Prediction
result

LSSVM
prediction

model

Testing

10-Fold-Cross Validation

5. Results

Prediction accuracy:

1. MAPE

2. RMSE

3. MAE

4. R

5. R2

Classification accuracy:

1. ROC

2. AUC

End

Data Preprocessing

6. System development and implementation

Comparison with other AI
models:

1. BPNN

2. LSSVM

3. ELSIM

4. SVM

Selecting the best AI model

Use various balancing dataset
methods to the best model, then
compare:

1. PDDBS Oversampling

2. PDDBS Median sampling

3. SMOTE Oversampling

4. SMOTE Median sampling

Figure 1: Inference model fowchart.
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Step 3. Balance the dataset
A total of 999 data were collected for the present study, of

which 75 were of alert level; therefore, the data were im-
balanced. To overcome this problem, this study proposed
a new data balancing method: probability distribution data
balance sampling (PDDBS). Tere are two types of proba-
bility distribution data balance sampling (PDDBS): PDDBS
oversampling and PDDBS median sampling, as shown in
Figure 2. PDDBS oversampling balances a dataset by in-
creasing theMI samples to the same amount of MA samples.
By contrast, PDDBS median sampling simultaneously in-
creasesMI samples and decreasesMA samples to themedian
total sample size to achieve balance in the dataset [29].

(1) PDDBS oversampling procedure (Figure 2(a))
Step a: select one type of attribute data from the
dataset and calculate its sample size and R (MI). Te
number of samples of R (MI) that must be added to
the MI class is determined as follows:

R(MI) � ni(MA.) − ni(MI). (1)

Step b: divide the MI class ni (MI) into k intervals.

k � 1.87 ni(MI) − 1( 􏼁
2/5

. (2)

Step c: calculate the probability of an interval, as
shown in Figure 3. Te conversion equation for the
normal distribution of the sample X is

Z �
Xij − μXi

σXi

�
Xij − μXi

σXi
/

��
ni

√ . (3)

Te probability of an interval is

P � P Xij(L)≤X≤Xij(U)􏽨 􏽩

� P
Xij(U) − μXi

σXi

⎛⎝ ⎞⎠ − P
Xij(L) − μXi

σXi

⎛⎝ ⎞⎠.

(4)

Step d: calculate the number of samples S that must
be increased in an interval (Figure 3). Te formula
for S is

S � P × R(MI). (5)

Step e: generate the values and add them to the MI
class. Te formula to increase S samples in Step d is

Xij(L) + r(0 ∼ 1) × Xij(U) − Xij(L)􏼐 􏼑. (6)

Step f: examine whether the sample sizes are bal-
anced. Examine if the classes in the dataset are equal
in size. If not, they will require balancing again; if
they are, the dataset is considered balanced.

(2) PDDBS median sampling procedure (Figure 2(b))
Step a: select one type of attribute data from the
dataset and calculate its sample size, R (MI), and R

(MA). Te number of samples R (MI) that must be
added to the MI class is

R(MI) � ni(C) − ni(MI). (7)

Te number of samples R (MA) that must be
detracted from the MA class is

R(MA) � ni(MA) − ni(C). (8)

Step b: divide theMI class ni (MI) into k intervals and
the MA class ni (MA) into k2 intervals. Te number
k1 can be calculated as

k1 � 1.87 ni(MI) − 1( 􏼁
2/5

. (9)

Te number k2 can be calculated as

k2 � 1.87 ni(MA) − 1( 􏼁
2/5

. (10)

Step c: calculate the probability of an interval as
shown in Figures 4 and 5. Te conversion equation
for the normal distribution of sample X is

Z �
Xij − μXi

σXi

�
Xij − μXi

σXi
/

��
ni

√ . (11)

Te probability of an interval is

P � P Xij(L)≤X≤Xij(U)􏽨 􏽩

� P
Xij(U) − μXi

σXi

⎛⎝ ⎞⎠ − P
Xij(L) − μXi

σXi

⎛⎝ ⎞⎠.

(12)

Step d: calculate the number of small-class samples
S1 and reduce the number of multiclass samples S2
for each interval. Te equation for the number of S1
(Figure 4) that must be increased for the small
number of samples in each interval is

S1 � P × R(MI). (13)

Te equation for the number of S2 that must be
reduced formultiple types of samples in each interval
is

S2 � P × R(MA). (14)

Step e: generate values and add samples. Te
equation for increasing the number of S1 samples in
step d is

Xij(L) + r(0 ∼ 1) × Xij(U) − Xij(L)􏼐 􏼑, (15)

which directly reduces the S2 samples calculated in
step d from the multiclass samples.
Step f: confrm that the sample sizes are balanced and
the classes in the dataset are equal in size. If not, they
must be balanced again.
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In the preceding equations, i � influential factors,
and i�(1, 2, 3, . . . , m), Xij � the i − th factor in the
j − th case, μXi

� themean sample value of factor i,

σXi
� the sample standard deviation of factor i, ni

(MI) � the number of MI samples of factor i, ni(M
A) � the number of MA samples of factor i, P �

probability of the interval, R(MI) � the number of
samples to be added toMI, R(MA) � the number
of samples to be subtracted fromMA, S1 � the
number of increased samples, S2 � the number of
decreased samples, Xij(L) � minimumvalue in the
set, Xij(U) � maximumvalue in the set, r(0 ∼ 1) �

randomvariable ranging from0 to 1, and ni(C) �

median of the sample size of factor i.

Four methods, including PDDBS oversampling, PDDBS
median sampling, SMOTE oversampling, and SMOTEmedian
sampling, were implemented to thoroughly examine their
performance in dealing with imbalanced classifcation based on
their respective advantages and disadvantages [30–32]. PDDBS
provides larger numbers of replicated minority samples but
increases the likelihood of overftting, while SMOTE reduces
the risk of overftting but tends to exclude helpful information.
Also, while oversampling minimizes information loss and
generates equal numbers of minority and majority class
samples, the process may overft the classifer. Finally, although
the use of themedian inmedian sampling to punish diferences
in nominal features associated with typical diferences in
continuous eigenvalues provides an efective theoretical model
to remove noise and redundant samples, its sampling per-
formance on the same datasets may be poor.

Step 4. Establish the inference model and compare the
forecast results

Feed the case data to SOS-LSSVM to establish the
inference model.

Step 5. Results
Te prediction accuracy of the proposed model was

compared with other AI-based inference models to de-
termine its forecasting ability. Furthermore, the best model’s
ROC and AUCwith various balancing dataset methods were
compared to examine the classifcation performance.

Step 6. System development and implementation
In this step, the proposed model is developed and

implemented into an integrated system that engineers may
use in smart decision-making related to preventing and
resolving ground-settlement problems.

MI samples

MA samples

(a)

MI samples

MA samples

(b)

Figure 2: Probability distribution data balance sampling (PDDBS). (a) PDDBS oversampling. (b) PDDBS median sampling.

S

Xij (U)Xij (L)

Figure 3: Process of increasing the S required for the interval.

Xij (U)Xij (L)

S1

Figure 4: Process of increasing the S1 required for the interval.

Xij (U)Xij (L)

S2

Figure 5: Process of reducing the S2 required for the interval.
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3.1. Identifying Infuential Factors. As listed in Table 1, the
dataset had ten possible infuential factors (X1 − X10). Based
on the fndings of previous shield tunneling studies [33, 34],
soil shear strength is the primary factor afecting tunnel
settlement, with lower strength values associated with
a higher risk of settlement. Te parameters of soil shear
strength may be derived from cohesion force (C) and in-
ternal friction angle (φ). Te groundwater level variation
during shield tunnel construction [35] is another factor
afecting tunnel settlement, with Liu et al. (2023) fnding
a positive correlation between the groundwater level and
downward movement in the tunnel [36]. Tunnel geometry
(e.g., depth of the tunnel center line and tunneling distance)
[34], chamber pressure, total thrust force, tunneling speed,
backfll quantity, excavated soil quantity, and water pressure
[32] are also signifcant factors in tunnel settlement.

Although SOS-LSSVM can process large quantities of
data, if the factors are not positively correlated with the
output, they can interfere with the output in training,
resulting in excessive errors. Terefore, an objective method
was required to analyze the correlation between the factors
and settlement, to help select signifcantly correlated pa-
rameters for the inference model. In statistics, the term
“correlation” refers to the strength and direction of the linear
relationship between two variables; hence, it also indicates
the degree to which the two variables are mutually in-
dependent. In this study, SPSS 22.0 was used, which
employed Pearson’s correlation coefcient, Kendall’s tau-b,
and Spearman’s rho, to analyze the 10 factors and determine
the correlation between the input and output variables.

Te results of the correlation analyses of ten infuential
factors are presented in Table 2, with eight of the 10 factors
accepted and two rejected as input variables. Te depth of
the tunnel center line factor met the requirements of the
correlation test from the Pearson test only, with the results of
Kendall’s tau-b and Spearman’s rho tests showing no sig-
nifcant correlation (ρ> 0.01). With regard to the quantity of
excavated soil factor, none of the correlation tests identifed
a signifcant correlation with soil settlement at a 0.01 level of
signifcance. Based on these fndings, the depth of the tunnel
center line and the quantity of excavated soil were not in-
cluded as input variables in the model. Te eight other
factors showed strong correlations (ρ< 0.01) with soil set-
tlement and were thus included as input variables. Te
factors that exhibited a signifcant correlation of more than
twice the aforementioned three methods at a signifcance
level of 0.01 (two-tailed) were selected for the models.

3.2.Case StudyandDataCollection. Te datasets used in this
study included data from construction projects imple-
mented by the Taipei Mass Rapid Transit (MRT) system in
Taiwan. A total of 999 settlement monitoring records were
collected, with each covering ten input variables and one
output variable. Tender CG291 of the Taipei Mass Rapid
Transit system was used as a case study covering G16
Zhongshan Station to G14 Beimen Station, as shown in
Figure 6. Te shield tunnel employed a two-section con-
fguration with a total length of 1861meters. Te frst section

extends from Beimen Station (G14) to Tianshui Road Ex-
tension Station (G15) and the second extends from Tianshui
Road Extension Station (G15) to Zhongshan Station (G16).
In terms of geological properties, the route is in what is
classifed as Zone T2 (Tamsui River Zone 2), and the tunnel
is primarily in the strata between Songshan Formation 3 and
Songshan Formation 4.Te strata are evenly layered, and the
groundwater level is approximately 2.7–3.5m underground
(EL 99.2–100m). Te monitoring system used was the
settlement reference point-shallow subsurface type (SSI).
Te monitoring setups used are summarized in Table 3.

3.3. Building a Balanced Dataset. As shown in Table 4, 75 of
the 999 samples in the dataset were at the alert level, while
the remaining 924 were at the safe level, making the dataset
imbalanced. Tus, the dataset was balanced separately using
PDDBS and SMOTE bymodifying the number of samples in
the majority and minority classes. Table 5 shows the number
of modifed samples by method.Te process of balancing the
dataset changed the majority: minority ratio from 12.32 to
≈1 by increasing the number of minority samples and re-
ducing the number of majority samples. PDDBS over-
sampling and PDDBS median sampling, respectively,
generated 924 and 499 samples in the minority class, while
SMOTE oversampling and SMOTE median sampling, re-
spectively, generated 918 and 495 samples in the minority
class. Based on the balanced datasets, SOS-LSSVM was then
applied to predict the settlement.

3.4. Data Testing Using SOS-LSSVM. After PDDBS and
SMOTE were applied to balance the dataset, the SOS-
LSSVM was used to test the balanced dataset. Ten, the two
data balance methods were compared with each other based
on the same algorithm. Furthermore, in addition to SOS-
LSSVM, this study also provides the estimation results
produced by BPNN, LSSVM, ELSIM, and SVM for
comparison.

3.4.1. Data Preprocessing. Data preprocessing involves
scaling the entire dataset, which signifcantly afects the
model outcomes. Preprocessing is required before training
the model to scale the data to an equivalent range. Although
SOS-LSSVM is able to process large quantities of data and
identify the nonlinear mapping of input and output values,
learning speed and accuracy are seriously compromised
when applied to very large variable ranges. Terefore, before
training a method for processing input and output values,
these values must be determined to prevent the model from
becoming temporarily unstable or failing to converge. In this
study, a normalization method was used to transform data
inputs into a 0-1 range using linear scaling. Te following
equation shows the normalization function applied to the
datasets:

Xnorm �
X − XMin

XMax − XMin
, (16)

Structural Control and Health Monitoring 7



where Xnorm is the normalized value, X is the actual value,
and Xmax and Xmin are the maximum and minimum values,
respectively.

3.4.2. Tenfold Cross-Validation. Tenfold cross-validation,
recommended to reduce bias and obtain reliable accuracy in
statistical analysis [37], was implemented in this study to
divide the datasets randomly into ten folds of approximately
equal size to evaluate the learning model’s performance.

Ninety percent of the dataset was used for training and 10%
was used as validation data for testing. Te process was
repeated ten times, and the fnal result was calculated using
the average of the tenfold results.

3.4.3. Inference Settlement Evaluation and Error Indices.
Tis study proposes SOS-LSSVM as the inference model,
which only requires setting up the number of iterations for
SOS and the range of LSSVM parameters.Te LSSVM serves

Table 1: Descriptions of factors in the dataset.

Variable Factor Type Description
X1 Shear strength of soils Input Te strength of the soil and its resistance to deformation
X2 Groundwater level Input Te level at which the soil is saturated
X3 Depth of tunnel center line Input Te distance between the tunnel center line and the soil surface
X4 Tunneling distance Input Te distance of the segmental joint set in the shield tunnel
X5 Chamber pressure Input Te pressure applied to counterbalance the lateral earth
X6 Total thrust force Input A reactive force exerted on the shield tunneling
X7 Tunneling speed Input Te speed of the cutting head on total torque
X8 Backfll quantity Input Amount of material difused behind the segmental lining
X9 Quantity of excavated soil Input Amount of soil excavated during the tunneling process
X10 Water pressure Input Te pressure of the water distributed on the tunnel wall
Y Settlement Output Subsidence due to tunneling activity

Table 2: Results of correlation analysis.

Infuential factor Pearson Kendall’s tau-b Spearman’s rho

Shear strength of soils
Coefcient − 0.810∗∗ − 0.682∗∗ − 0.593∗∗
P values (ρ) <0.001 <0.001 <0.001

N data 999 999 999

Groundwater level
Coefcient 0.046 − 0.622∗∗ − 0.541∗∗
P values (ρ) 0.142 0.001 0.003

N data 999 999 999

Depth of tunnel center line
Coefcient − 0.227∗∗ − 0.037 − 0.045
P values (ρ) <0.001 0.076 0.158

N data 999 999 999

Tunneling distance
Coefcient 0.607∗∗ 0.510∗∗ 0.593∗∗
P values (ρ) <0.001 <0.001 <0.001

N data 999 999 999

Chamber pressure
Coefcient − 0.003 − 0.792∗∗ − 0.681∗∗
P values (ρ) 0.916 <0.001 <0.001

N data 999 999 999

Total thrust force
Coefcient − 0.605∗∗ − 0.504∗∗ − 0.564∗∗
P values (ρ) <0.001 <0.001 <0.001

N data 999 999 999

Tunneling speed
Coefcient − 0.056 − 0.588∗∗ − 0.683∗∗
P values (ρ) 0.079 <0.001 <0.001

N data 999 999 999

Backfll quantity
Coefcient 0.564∗∗ 0.080 0.511∗∗
P values (ρ) 0.002 0.074 0.003

N data 999 999 999

Quantity of excavated soil
Coefcient 0.018 − 0.343∗ − 0.061
P values (ρ) 0.577 0.041 0.054

N data 999 999 999

Water pressure
Coefcient 0.529∗∗ 0.646∗∗ 0.569∗∗
P values (ρ) <0.001 <0.001 <0.001

N data 999 999 999
∗Correlation signifcant at the 0.05 level (two-tailed). ∗∗Correlation signifcant at the 0.01 level (two-tailed).
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Figure 6: Case study site.

Table 3: Monitoring setups.

Position of tunnel
surface and monitoring
section

Monitoring instrument Monitoring frequency

CL
INSTRUMENTATION
CROSS SECTIONGL

d1

Subsidence observation points
(SB, SM, and SSI) d1> 50m Initial value measurement

Multipoint borehole
extensometer (EXM)

d1≤ 25m Every 5m
Inclinometer (TI)

CL
INSTRUMENTATION
CROSS SECTIONGL

d2

Crack meter (CG and CM) d2≤ 25m

Once every 5m.
At least once a day for 3
consecutive days since

crossing the observation surface
Water level observation
well and piezometer

(OW and PZS) d2> 25m Once a week

Soil inclination pipe (SIS)

Table 4: Shield monitoring dataset.

Shear strength
of soil

Groundwater
level

Tunneling
distance

Chamber
pressure

Total thrust
force

Tunneling
speed

Backfll
quantity

Water
pressure Settlement

5 98.525 2.044 2.294 10131 44 0 49.45 − 4.45
5 98.798 1.4 2.345 10276 36 0.66 48.9 − 6.3
5 98.618 0.964 2.549 10958 35 2.12 47.91 − 10.19
. . . . . . . . . . . . . . . . . . . . . . . . . . .

9 99.083 1.009 2.289 1448 20 2.12 15.49 − 29.73
10 99.1 1.009 2.396 13956 20 2.08 19.71 − 30.52

Table 5: Sample sizes: imbalanced and balanced datasets.

Dataset Method
Total number of samples

Ratio (MA/MI)
Majority (MA) Minority (MI)

Imbalanced — 924 75 12.32

Balanced

PDDBS oversampling 924 924 1.00
PDDBS median sampling 499 499 1.00
SMOTE oversampling 924 918 1.01

SMOTE median sampling 499 495 1.01
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as a supervised-learning-based predictor to accurately build
the input and output variables relationship. Te SOS al-
gorithm is used as a metaheuristic search to fnd the optimal
parameters of LSSVM. Tis hybrid system enhanced the
learning process through the mutualism, commensalism,
and parasitism phases. Te search process stops when the
stopping condition is fulflled. Te model will proceed to the
next iteration if the criteria remain unsatisfed. Te training
and testing data were fed to SOS-LSSVM; and the output
values were then denormalized for the mean performance
index, which indicated the accuracy of the forecasts. Error
indices are detailed in this section.

Errors are inevitable in forecasts; therefore, efective
indices are required to appraise errors; this is to determine
the accuracy of an inference model and how the inference
model fares are compared with other inference models. In
this study, fve such indices were used (as listed in Table 6):
mean absolute percent error (MAPE), correlation coefcient
(R), mean absolute error (MAE), root mean squared error
(RMSE), and reference index (RI). RI served as the index for
comprehensive evaluation. Such performance measures
allowed for more accurate results and a fairer test [24].

Tis study also used ROC curves and AUC values to
evaluate the accuracy of classifcation. Te ROC curve is
a coordinate-based diagram for the sensitivity of a classifer. It
has gained increasing popularity inmachine learning and data
mining. Te basic concepts of the ROC curve are the fol-
lowing four scenarios: (1) true positive (TP), (2) false positive
(FP), (3) true negative (TN), and (4) false negative (FN).

Only the true positive rate (TPR) and false positive rate
(FPR) are required for plotting the ROC curve. TPR stands
for the rate of actual positive samples being accurately
identifed as such. On the other hand, FPR stands for the rate
of actual negative samples being erroneously identifed as
positive. Consequently, the ROC space defnes FPR as the x-
axis and TPR as the y-axis, and the ROC curve is made up of
FPR and TPR coordinate points. No doubt, the perfect
classifcation point is 0 and 1, and the AUC value is exactly
the area under the curve of the ROC.

4. Results, Discussion, and System Applications

4.1. Training and Testing Results. Trough the training and
testing of SOS-LSSVM, the following information was ob-
tained. Te SOS-LSSVM training and testing results of the
dataset, both before and after being balanced, were com-
pared to determine the accuracy of SOS-LSSVM.Te results
of BPNN, LSSVM, ELSIM, and SVM were also presented as
references to illustrate the relative accuracy of SOS-LSSVM.
Te training and testing results of SOS-LSSVM with the
various indices are shown in Figure 7. Both PDDBS and
SMOTE methods increased the accuracy of settlement
prediction. Compared with the original data, the MAPE,
MAE, RMSE, and R values were improved by both the
methods. Overall, this study provides an alternative ap-
proach to data balancing that enhances the accuracy of SOS-
LSSVM. Te average value of the performance evaluation is
shown in Table 7. In terms of MAPE and MAE, SMOTE
median sampling was superior, achieving the smallest error

values in both training and testing. SMOTE oversampling
achieved the highest correlation (R) value for testing (0.988),
while PDDBS oversampling achieved the best training
performance, with a correlation value (R) and RMSE of
0.996 and 0.7852, respectively. It should be noted that al-
though the original data exhibited acceptable performance
of settlement estimation, the accuracy of classifcation de-
termining the safe or alert level of the settlement condition
was still unknown.

4.2. Comparison of Inference Models and Resampling
Methods. To determine whether SOS-LSSVM could be
superior to other AI-based inference models, the dataset was
balanced separately with PDDBS and SMOTE and then used
to train BPNN, LSSVM, ELSIM, and SVM. Subsequently, the
corresponding RI values were calculated for comparison,
and the performance of each algorithm was then ranked
accordingly. Based on Tables 8 and 9, the RI values indicated
that SOS-LSSVM was superior to other models. Te com-
parison revealed that the RI value of SOS-LSSVM was su-
perior to the other AI-based inference models, regardless of
whether the data were left unbalanced or balanced by either
PDDBS or SMOTE.

Unexpectedly, RI values also indicated that SMOTE was
superior. Te RI values of data balanced by SMOTE appear
to be superior to PDDBS. Tis is because RI is an index for
general performance instead of a specifc index for classi-
fcation accuracy. Moreover, this highlights the requirement
for introducing a ROC curve and AUC to evaluate the
performance of SOS-LSSVM in classifying the level of set-
tlement status (i.e., safe or alert).

Te ROC curves are shown in Figures 8 and 9, and the
average FPR, TPR, and AUC values are shown in Table 10.
Judging from the average AUC values, if the original im-
balanced settlement data were used, the classifcation ac-
curacy would be the lowest. Both PDDBS oversampling and
PDDBS median sampling achieved a slightly higher classi-
fcation accuracy than SMOTE in training and testing. Also,
both the sampling methods achieved a better oversampling
performance than the median sampling method. Tese re-
sults support a positive relationship between the amount of
sample data added in the minority class and the classifcation
accuracy. Tus, the proposed resampling method is a com-
petitive alternative to currently popular approaches that
both solve the problem of data imbalance and enhance the
accuracy of AI-based forecasting.

4.3. System Development and Implementation. Te appli-
cation of the developed shield-tunnel settlement prediction
system is shown in Figure 10. In this system, data loggers
with built-in sensors record settlement data regularly, which
are transferred to a computer storage system in the control
center via wireless Internet. Te stored data are then pre-
processed and transformed for further analysis. Te oper-
ating process of the SOS-LSSVM system features a graphical
user interface that allows users to interact easily with the
algorithm. Te system automatically trains a model and
performs accurate prediction analysis using the input data.
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Table 6: Error indices.

Performance measure Formula
Mean absolute percentage error (MAPE) 1/n􏽐

n
i�1(|y − y′|/y) × 100%

Coefcient of correlation (R) n 􏽐y ∙y′ − (􏽐y) ∙ (􏽐y′)/
���������������

n ∙(􏽐y2) − (􏽐y)2
􏽱

∙
����������������

n ∙(􏽐y′
2
) − (􏽐y′)2

􏽱

Mean absolute error (MAE) 1/n􏽐
n
i− 1|y − y′|

Root mean squared error (RMSE)
��������������

1/n􏽐
n
i− 1(y − y′)2

􏽱

Reference index (RI) (1 − MAPE) + R + (1 − MAE) + (1 − RMSE)/4
y is the actual value. y′ is the predicted value. n is the number of data samples.
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Figure 7: Continued.
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Te results provide engineers with a decision-making tool
for creating project-specifc, real-time monitoring solutions.
System implementation may be integrated into regular

tunneling management, providing a centralized and a handy
platform integrated with state-of-the-art technologies, in-
cluding data mining techniques and artifcial intelligence.

Table 7: Performance evaluation summary.

Method
Average

MAPE RMSE MAE R
Training Testing Training Testing Training Testing Training Testing

PDDBS oversampling 3.000 4.820 0. 85 1.537 0.530 0.841 0.996 0.986
PDDBS median sampling 2.400 3.670 0.905 1.385 0.524 0.796 0.993 0.986
SMOTE oversampling 2.610 4.150 0.846 1.444 0.447 0.665 0.995 0.988
SMOTE median sampling 2.090 3.090 0.834 1.229 0.420 0.628 0.994 0.987
Best value 2.090 3.090 0. 85 1.229 0.420 0.628 0.996 0.988
Te bold values indicate the best value.
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Figure 7: Comparison of SOS-LSSVM performance using diferent sampling methods. (a) MAPE % comparison. (b) RMSE comparison.
(c) MAE comparison. (d) R comparison.
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Table 8: Comparison with data balanced by PDDBS.

Algorithm
Training Testing

MAPE
(%) RMSE MAE R RI Rank MAPE (%) RMSE MAE R RI Rank

Original dataset
BPNN 10.75 2.2276 1.4593 0.9023 0.7201 4 12.16 2.3635 1.6551 0.8874 0.7844 3
LSSVM 8.49 1.9266 1.3073 0.9648 0.8250 2 10.12 2.2621 1.5159 0.9442 0.8322 2
ELSIM 8.49 1.9088 1.3308 0.9264 0.7885 3 11.59 5.5700 1.8920 0.7807 0.6331 4
SVM 25.84 6.7033 4.8161 0.8136 0.1090 5 32.51 7.1774 5.6747 0.1400 0.0000 5
SOS-LSSVM 5.00 1.2579 0.8031 0.9811 0.9188 1 7.63 2.0467 1.2002 0.9567 0.8828 1
PDDBS oversampling
BPNN 6.13 1.6970 1.0244 0.9823 0.8805 4 6.68 1.8302 1.1335 0.9768 0.9160 2
LSSVM 6.24 1.5540 1.0117 0.9867 0.8936 3 6.88 1.9755 1.2018 0.9776 0.9099 3
ELSIM 3.43 0.8927 0.6062 0.9890 0.9431 2 5.38 1.9476 1.1413 0.8242 0.8652 4
SVM 54.29 10.0046 7.2173 0.9045 0.0521 5 59.24 10.7365 8.1600 0.2768 0.0000 5
SOS-LSSVM 3.00 0.7852 0.5296 0.9963 0.9664 1 4.82 1.5374 0.8405 0.9859 0.9438 1
PDDBS median sampling
BPNN 5.29 1.6314 1.0664 0.9797 0.8795 4 5.07 2.0343 1.1767 0.9590 0.8897 4
LSSVM 4.77 1.5050 0.9884 0.9833 0.8937 3 5.47 1.8360 1.1282 0.9746 0.8993 3
ELSIM 3.80 1.3211 0.8187 0.9728 0.9015 2 4.65 1.7172 0.9844 0.9566 0.9069 2
SVM 40.12 8.5787 6.0746 0.8896 0.1407 5 43.18 9.2834 6.9853 0.1943 0.0000 5
SOS-LSSVM 2.39 0.9048 0.5243 0.9930 0.9566 1 3.66 1.3851 0.7959 0.9856 0.9385 1

Table 9: Comparison with data balanced by SMOTE.

Algorithm
Training Testing

MAPE (%) RMSE MAE R RI Rank MAPE (%) RMSE MAE R RI Rank
Original dataset
BPNN 10.75 2.2276 1.4593 0.9023 0.7201 4 12.16 2.3635 1.6551 0.8874 0.7844 3
LSSVM 8.49 1.9266 1.3073 0.9648 0.8250 2 10.12 2.2621 1.5159 0.9442 0.8322 2
ELSIM 8.49 1.9088 1.3308 0.9264 0.7885 3 11.59 5.5700 1.8920 0.7807 0.6331 4
SVM 25.84 6.7033 4.8161 0.8136 0.1090 5 32.51 7.1774 5.6747 0.1400 0.0000 5
SOS-LSSVM 5.00 1.2579 0.8031 0.9811 0.9188 1 7.63 2.0467 1.2002 0.9567 0.8828 1
SMOTE oversampling
BPNN 5.53 1.5974 0.9583 0.9845 0.9175 4 5.84 1.7868 1.0125 0.9809 0.9691 2
LSSVM 5.32 1.4877 0.8906 0.9873 0.9317 3 6.29 1.8163 1.0116 0.9806 0.9662 3
ELSIM 3.49 1.1910 0.6035 0.9850 0.9529 2 5.24 2.9411 1.0921 0.8949 0.9078 4
SVM 29.71 5.6932 4.1081 0.8697 0.0000 5 32.81 6.4231 4.8021 0.8062 0.0000 5
SOS-LSSVM 2.61 0.8461 0.4467 0.9950 1.0000 1 4.15 1.4436 0.6654 0.9879 1.0000 1
SMOTE median sampling
BPNN 4.11 1.4605 0.8513 0.9823 0.8995 3 4.39 1.5473 0.9093 0.9802 0.9540 2
LSSVM 4.50 1.4727 0.9336 0.9830 0.8907 4 5.09 1.7091 1.0575 0.9759 0.9293 3
ELSIM 3.44 1.2499 0.7272 0.9956 0.9469 2 4.69 1.9611 0.9669 0.9322 0.8862 4
SVM 25.60 6.2592 4.3272 0.8483 0.0000 5 34.69 6.7349 5.3017 0.7116 0.0000 5
SOS-LSSVM 2.09 0.8341 0.4202 0.9943 0.9977 1 3.09 1.2293 0.6277 0.9871 1.0000 1
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Figure 9: ROC curves of the testing dataset.

Table 10: Average FPR, TPR, and AUC values.

Dataset
Training Testing

FPR (X) TPR (Y) AUC FPR (X) TPR (Y) AUC
Original 0.002172 0.921618 0.959722 0.006503 0.864318 0.928907
PDDBS oversampling 0.008211 0.987896 0.989842 0.009798 0.982104 0.986153
PDDBS median sampling 0.010442 0.988281 0.988919 0.011312 0.982462 0.985574
SMOTE oversampling 0.034273 0.990761 0.978243 0.014878 0.984997 0.985060
SMOTE median sampling 0.015613 0.98888 0.986633 0.015781 0.985788 0.985003
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Figure 8: ROC curves of the training dataset.
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 . Conclusions

Settlement monitoring and estimation are essential for
underground construction. Tis study applied SOS-LSSVM
as the basis for an inference model for settlement in shield
tunneling of the Taipei Mass Rapid Transit system, using
historical case data for training and infuential factors of
settlement as input variables. Tis study contributes to
developing an AI system integrated with metaheuristic and
data balancing methods to predict ground settlement and
facilitate appropriate response measures to prevent urban
geotechnical hazards. Te proposed model remarkably
outperforms other AI models (BPNN, LSSVM, ELSIM, and
SVM) and accurately predicts settlement to help engineers
anticipate settlement status over the course of tunnel con-
struction projects.

PDDBS and SMOTE methods were applied to solve the
data imbalance problem. Tenfold cross-validation was used
to evaluate the performance of the developed model,
showing that applying SOS-LSSVM to data balancing using
PDDBS and SMOTE achieved the highest RI value in both
training and testing. In addition, the ROC curve and AUC
were used in this study to assess combinations of SOS-
LSSVM with various balancing dataset methods (PDDBS
and SMOTE) in terms of their respective abilities to accu-
rately classify settlement status as either safe or alert. A

comparison of average AUC values demonstrated that the
classifcation accuracy of PDDBS was higher than that of
SMOTE. In addition, the accuracy of PDDBS oversampling
was found to be superior to PDDBS median sampling. Tese
results demonstrate that the proposedmethod can efectively
balance an imbalanced dataset and can enhance the AI-
based forecast accuracy.

Tis study is a pioneering efort to develop an auton-
omous system that integrates monitoring sensors for data
collection, wireless data transmission functionality, and
settlement prediction for disaster warning prevention. Te
system was tested on data from a real MRT construction
project in Taiwan to demonstrate its novelty and practicality
in real-world applications. Moreover, due to the limited time
available to conduct structural analyses and technical ex-
pertise inadequacies in the feld, most project-site engineers
are challenged to make the timely and correct decisions
necessary to efectively prevent soil-settlement disasters. Te
system developed and proposed in this study can be easily
and quickly used by engineers to facilitate appropriate
preemptive actions to avoid disasters, construction failures,
and their associated losses in terms of property and life.

Te fndings of this study provide two directions for
future research. First, the diferences in soil characteristics,
as well as the quantity and completeness of the data, may
directly infuence the accuracy and reliability of estimation

Shield Tunneling

Data logger Wireless transmitter Control Center

SOS-LSSVM system

Engineer

Decision-Making

Dataset

User interface

Prediction

SOS-LSSVM

Figure 10: System application.
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results. Future researchers are advised to collect other types
of settlement monitoring data for training and testing, to
determine if this makes a diference. Second, the PDDBS
method was only compared with SMOTE. Future re-
searchers are advised to include more resampling methods
for comparison to learn their relative efectiveness. Fur-
thermore, only one imbalanced dataset was used in the
present study. Future researchers are advised to collect
a wider variety of imbalanced data for training and testing
more resampling methods and to compare their classifca-
tion accuracy as well as improve the practicality and ac-
curacy of the inference models.

Data Availability

Te data used to support the fndings of the study are
available from the corresponding author upon request.
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