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Accurate and reliable prediction on structural deformation is a powerful means to evaluate the safety state of dams during long-
term operation.Tis work is a contribution to the quantifcation of the cognitive and stochastic uncertainties in predictionmodels
for the dam performance using measured time series, through constructing the prediction interval (PI) by an innovative model
combined with the gradient boosting decision tree (GBDT) and the bootstrapmethod.Te constructed PI, improved by the kernel
density estimation (KDA), consists of an upper bound and a lower bound of the interval to provide a confdence level for dam
deformation prediction. Te bootstrap method combined with multiple GBDT is utilized to estimate the variance of the model
bias, mainly derived from the cognitive uncertainties. Te variance of random noise can be furtherly estimated through training
the combinedmodel to ft the residuals so as to indicate the stochastic uncertainties.Te efectiveness of the newly proposedmodel
is validated employingmeasured data of the Jinping Ι arch Dam.Te results indicate that the methodology can obtain high-quality
PIs and accurate prediction values and thus can provide strong support for better appraising dam performance during long-term
operation.

1. Introduction

Safety monitoring of dams is essential for identifying their
performance and managing risks during long-term operation.
Possible anomalies or potential hidden dangers can be di-
agnosed in time through appraising the practical status of dams
[1, 2]. Tey are vital to eliminate abnormal behavior and
prevent catastrophic accidents. Hence, according to the causal
mechanism between measured efects and environmental
quantities of dams, it has been a hot research topic to establish
accurate predictionmodels with historicalmeasured time series
through multivariate statistical analysis, machine-learning
methods, etc., to judge whether their performance normal
or not. Trough constantly integrating with new technologies
in the feld of big data mining and artifcial intelligence, various
prediction methods have emerged in recent years [3].

Among all the measured efects, dam deformation can
indicate its operating performance efectively, so it is usually
regarded as the most reliable indicator to predict the dam
behavior [4, 5]. Traditional modeling methods for dam
deformation include the hydrostatic-seasonal-time (HST)
model and the hydrostatic-temperature-time (HTT) model
[6–9]. Among machine-learning methods, BPNN [10], long-
and short-term memory neural networks [11], extreme
learning machine (ELM) [12], and radial basis function
neural networks [13] are all used in dam safety modeling to
indicate the nonlinear causal mechanism. However, these
machine-learning models are a “black box,” since the
physical relationships between the measured efects and
environmental variables cannot be expressed explicitly by
them [14]. Te gradient boosting decision tree (GBDT) is an
iterative decision tree algorithm [15], which consists of
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multiple decision trees. Te conclusions of all trees are
accumulated to make the appraisement results. Compared
with other machine-learning methods, the GBDT can in-
dicate the importance of each infuence factor when mod-
eling. Furthermore, because dam monitoring systems are
often infuenced by multiple factors, the multicollinearity
problem [16, 17] referring to two or more highly correlated
factors probably happens in the traditional HST and HTT
models [18]. Dimensionality reduction can usually alleviate
covariance through principal component analysis (PCA)
[19]. In addition, the stochastic and uncertain response of
dam structures under various factors can be indicated by
interval prediction, such as the Bayesian method, mean
squared deviation estimation, upper and lower bound es-
timation, and bootstrap method [20]. Chen et al. [13]
combined a correlation vector machine for probability
prediction, providing the confdence interval to quantify the
uncertainty of the dam deformation behavior. Ren et al. [21]
built an interval prediction model through integrated
learning to indicate the uncertainty and the variability of the
predicted deformation. Ren et al. [22] integrated non-
parametric bootstrap, least squares support vector machine
and artifcial neural network algorithms to generate high-
quality prediction intervals and identifed data noises and
model noises. However, in the Bayesian and mean square
estimation methods, the sample distribution needs to be
artifcially assumed in advance [20]. By contrast, the upper
and lower bound estimation can construct the intervals
directly, though the reliability of its prediction results is
insufcient [20]. Te defciency can also be improved by the
bootstrap method, through constructing prediction intervals
with high coverage and low width to obtain accurate pre-
diction results [23].

Dam deformation has various uncertainties, divided into
cognitive uncertainties and stochastic uncertainties [22, 24],
which may weaken modeling accuracy. Te uncertainties
caused by the environmental factors and subjective as-
sumptions when establishing prediction models can be
classifed as cognitive as the former. Te latter is usually
caused by random noises in the measured time series
[22, 25]. Hence, the present work is a contribution to the
quantifcation of these uncertainties for dams during long-
term operation. First, the prediction interval (PI) is con-
structed and improved by the kernel density estimation
(KDA) [26] to provide a confdence level for dam de-
formation prediction. Second, an innovative interval pre-
diction model for dam deformation is established by
integrating the bootstrap and GBDT methods with the
improved PI to quantify the two uncertainties mentioned
above. Finally, model validation is implemented on an arch
dam to evaluate its development trend during long-term
operation.

2. Improved PI for Dam Deformation

Te PIs are efective for quantifying the uncertainties in
prediction models for dam performance [22]. For a set of the
measured time series,D � Xi, yi 

n

i�1, where Xi is a set of the
environmental factors, yi represents the measured

deformation at the ith moment, and n is the total monitoring
number. Te conventional PI consists of an upper bound
and a lower bound to provide a confdence level for the
prediction target:

I
(α) Xi(  � L

(α) Xi , U
(α) Xi  , (1)

where I(α)(Xi) is the PI generated by the interval prediction
model, α is the signifcance level, and U(α)[Xi] and L(α)[Xi]

are the upper and lower bounds of the ith PI, respectively.
Te upper and lower limits of the interval can be ob-

tained as follows:
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where yi is the point prediction result, z1−α/2 is the 1− α/2
percentile of the standard normal distribution, and σ2(Xi) is
the variance of the whole errors.

Te whole errors σ2(Xi) include the model bias and
random noises. Assuming that they are independent of one
another, the corresponding linear combination of variances
between the errors can be constructed:

σ2 Xi(  � σ2∆ Xi(  + σ2ε Xi( , (3)

where σ2∆(Xi) is the variance of themodel bias, indicating the
cognitive uncertainties, and σ2ε(Xi) is the variance of the
random noises, indicating the stochastic uncertainties.

Te residuals of the interval prediction model are usually
assumed to obey the standard normal distribution, easily
leading to some deviation from the actual distribution and
probably reducing the validity of the constructed PI. Hence,
KDA is taken to ft the residual distribution to accurately
estimate the actual probability density function (PDF):

f(ε) �
1
th



t

i�1
K

ε − εi

h
 , (4)

where f(ε) is the PDF of the actual residual distribution, t is
the size of the residual, h is the window width, εi is the
sample point, and K(·) is the kernel function.

Te accuracy of KDA is dependent on K(·) and h. For
the long-measured time series, the Gaussian kernel function
is usually taken to estimate the kernel density:

K
ε − εi

h
  �

1
���
2π

√ exp −
ε − εi( 

2

2h
2 . (5)

According to equation (4), z1−α/2 can be replaced by the
inverse of the PDF of the actual residual distribution. In this
case, the upper and lower limits of the interval in equation
(2) can be improved as follows:
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,
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(6)

where p and q are the 1− α/2 upper percentile and the 1− α/2
lower percentile of the PDF, respectively.
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In equation (6), the key to constructing the PI is the
calculation of the variance of the whole errors σ2(Xi) and the
percentiles p and q. Tey can be obtained by the bootstrap-
GBDT model established in Section 3.3.

3. Interval Prediction Model Establishment for
Dam Deformation

Dam performance is often afected by various internal and
external factors during long-term operation, presenting
complex uncertainties. An innovative interval prediction
model will be constructed by integrating the bootstrap
method and the GBDT, where the high-quality PI can be
obtained with guaranteed prediction accuracy.

3.1. Estimation of the Overall Distribution by the Bootstrap
Method. Te bootstrap method can obtain the distribution
characteristics of the samples only by repeatedly resampling
the original data, without artifcial assumptions. It has the
advantages of high robustness and accuracy [20]. Te
nonparametric bootstrap method can be well for resampling
the infuence variables and efects from the original
dataset [27].

For the original data D � Xi, yi 
n

i�1, the statistical es-
timate of overall Θ can be calculated by using the bootstrap
method as follows.

Step 1. Te original data are resampled with B times to
obtain the B sets of the pseudodata set D∗.

Step 2. Te unknown parameters (including the mean and
the variance) of these B sets of the pseudodata are calculated
based on statistical theory.

Step 3. Te calculated mean and variance are both taken to
estimate the parameters of the overall distribution Θ.

3.2. Procedure of the GBDT for Prediction of Dam
Deformation. Te GBDT is an integrated learning method,
whose results generated by all base learners can be integrated
through certain processing methods [28]. Te base learner
can adopt the classifcation and regression tree (CRT) [29].
For the regression problem, the CRTmodel divides the input
space into two subregions and determines the output value
of each subregion and then constructs a binary decision tree.
Te input variables are divided, and the optimal shared
variable s and the shared point j are selected to make the
diference between the measured value and the output mean
value minimized as follows:

min
s,j

min
c1


xi∈R1(j,s)

yi − c1( 
2

+ min
c2


xi∈R2(j,s)

yi − c1( 
2⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(7)

We traverse the variable s and the point j to minimize
equation (7). Selected (s, j) is used to determine the output
value of the corresponding region:

R1(s, j) � x|x
s ≤ j ,

R2(s, j) � x|x
s > j ,

cm �
1

Nm


xi∈Rm(j,s)

yi, m � 1, 2,

(8)

where Rm is a region generated by the (s, j), Nm is the total
number of the samples in the mth region, and cm is the
output value of the mth region.

Te specifed conditions can be met through repeating
the above operations for the subregion. Te input space is
assumed to be divided into K regions, denoted as
R1, R2 . . . RK. Each region corresponds to the output variable
ck. Ten, the regression tree is represented as follows:

T(x,Θ) � 
K

k�1
ckI x ∈ Rk( , (9)

where T(x,Θ) represents the decision tree, Θ is the decision
tree’s parameter, and I(x ∈ Rk) is an indicator function:

I x ∈ Rk(  �
1, x ∈ Rk,

0, otherwise.
 (10)

Te GBDTmodel can be expressed as an additive model
of the CRT:

fm(x) � 
M

m�1
T x,Θm( , (11)

where M represents the number of the decision trees.
Te GBDT model adopts the forward distribution al-

gorithm. Te initial decision tree f0(x) � 0 is determined,
and the mth decision tree model is

fm(x) � fm−1(x) + T x,Θm( , (12)

where fm−1(x) is a previous tree model.
Te parameter Θm of the mth tree model can be de-

termined through prediction accuracy minimization
argminΘm


N
i�1L[yi, fm−1(xi) + T(xi,Θm)]. Te squared er-

ror loss function S is generally adopted to indicate the
prediction accuracy:

S � 
N

i�1
L yi, fm−1 xi(  + T xi,Θm(   � 

N

i�1
yi − fm−1 xi(  − T xi,Θm(  

2
. (13)
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To avoid overftting, the regularization parameter, i.e.,
the learning rate ], is adopted:

fm(x)� fm−1(x) + ]T x,Θm( , ] ∈ [0, 1]. (14)

TeGBDTcan appraise the importance of each infuence
factor for dam deformation and regard each factor as a cut-
of variable to indicate its importance:

Ji �
1
N



N

n�1
Ii Tn(  �

1
N



N

n�1


j−1

j�1
Ij xi( , (15)

where Ji is the overall degree of the importance of xi,N is the
number of the tree models, Tn is the nth tree model, j is the
number of internal nodes containing j− 1 nonterminal
nodes in the Tn tree model, Ii(Tn) is the importance of xi in
the Tn tree model, and Ij(xi) denotes that if xi is the cut

variable of the jth node, then it equals to 1; otherwise, it
equals to 0.

3.3.Te Establishment of the CombinedModel. During long-
term operation, the main infuence factors of dam de-
formation are hydrostatic pressure, temperature change,
aging, and other unknown factors. It is often divided into

δ � δH + δT + δθ + ε, (16)

where δ is the dam deformation, δH is the hydraulic
component, δT is the temperature component, δθ is the
aging component, and ε is the random residual.

According to traditional regression models for dam
safety monitoring [30, 31], the environmental variables,
regarded as the model input factors for an arch dam, are
listed as follows:

X � x1, x2, x3, x4, x5, x6, x7, x8, x9, x10  � H, H
2
, H

3
, H

4
, sin

2πt

365
, cos

2πt

365
, sin

4πt

365
, cos

4πt

365
, θ, ln θ , (17)

where H is the upstream water depth, t is the number of
monitoring days, and θ � t/100.

Since PCA can convert multiple correlated components
into several uncorrelated PCs by the orthogonal exchange, it
can ensure higher accuracy and be less likely to be patho-
logical of the proposed model. Tus, the PCA method is frst
used to alleviate the multicollinearity issue of the environ-
ment variables. For X in equation (17), it is normalized to
obtain X′. Te correlation matrix R of X′ is

R �
1

n + 1
X′

T
· X′ . (18)

According to equation (18), the eigenvalues, eigenvec-
tors, corresponding contribution rates, and cumulative
contribution rates of R can all be calculated. Eigenvalues are
usually sorted in descending order. Once the cumulative
contribution rate of new components exceeds the threshold,
they will be selected to form new principal elements. Teir
corresponding eigenvectors will form the principal com-
ponent matrix T. Ten, the PCs L can be obtained as follows:

L � X′ · T. (19)

Principal components (PCs) can reduce the di-
mensionality for the dataset of the environmental factors.
Ten, the B pseudosamples D∗ are constructed by the
bootstrap method, and a total of BGBDTmodels are trained,
respectively. Te PDF of the residual distribution is esti-
mated by the KDA to calculate p and q:

p �
1
B



B

i�1
pi, (20)

q �
1
B



B

i�1
qi, (21)

where pi and qi are the 1− α/2 upper percentile and the
1− α/2 lower percentile obtained in the ith training,
respectively.

Te seagull optimization algorithm (SOA) [32] is taken
to obtain optimal parameters of the GBDT, where the
number of trees, the learning rate, and the tree depth are all
optimization parameters. Te predicted MSE is the ftness
function:

MSE �
1
n



n

i�1
yi − yi( 

2
, (22)

where yi is the measured value and yi is the predicted value.
Te expectation of the B pseudosample prediction result

is regarded as the point prediction result in equation (23),
and the output variance of the B GBDT model is taken to
estimate the variance of the model errors in equation (24):

y Xi(  �
1
B



B

l�1
yl Xi( , (23)

σ2∆ Xi(  �
1

B − 1


B

l�1
yl Xi(  − y Xi(  

2
, (24)

where yl(Xi) is the prediction result of the lth model and
y(Xi) is the predicted result of the B models, i.e., the point
prediction result.

Te noise variance can be estimated by equation (25). In
the residual dataset Dr2 � (Xi, r2(Xi)), i � 1, 2, . . . , n , the
residual r2(Xi) can be determined by equation (26):

σ2ε Xi( ≃E y − y Xi(  
2

  − σ2∆ Xi( , (25)

r
2 Xi(  � max y − y Xi(  

2
− σ2∆ Xi( , 0 . (26)
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Te B+ 1st GBDT model is trained to ft the residuals.
CB+ 1 (omitting the constant term) is regarded as the loss
function to train the B+ 1st GBDT model to estimate the
noise variance:

P r
2 Xi( , σ2ε Xi(   �

1
��������

2πσ2ε Xi( 

 exp −
r
2 Xi( 

2σ2ε Xi( 
 

CB+1 �
1
2



N

i�1

r
2 Xi( 

σ2ε Xi( 
+ ln σ2ε Xi(   .

(27)

Finally, the PI for dam deformation can be constructed
using the combined model. Te variance of the model errors
σ2∆(Xi) can be obtained by the B GBDT model in equation
(24). Te variance of the random noise σ2ε(Xi) can be es-
timated by training the B+ 1st GBDTmodel in equation (25).
Te 1− α/2 percentile p and q can be calculated by the KDA
in equations (20) and (21). On this basis, the improved PI
can be obtained using equation (6).

4. Validation and Application

Te proposed model is validated and applied into the
Jinping Ι Arch Dam, located on the Yalong River in
southwest China. Its dam foundation elevation is
1580.0 m, and the maximum dam height is 305.0 m. Te
normal water level of the reservoir is 1880.0 m. Te dam
consists of 26 dam sections. As shown in Figure 1(a), three
monitoring points PL9-5, PL13-5, and PL16-5 in the
perpendicular line monitoring system are taken for il-
lustration. Te measured time series of the three points
and the reservoir water level are shown in Figure 1(b). Te
measured values of the three points increase and decrease
accordingly when the reservoir water level rises and falls,
and the efect of the temperature change is also included,
indicating signifcant correlations with the environmental
factors. Te measured time series from June 16, 2013, to
December 23, 2018, with data length 2017, are selected for
modeling, setting June 16, 2013, to November 1, 2017, as
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Figure 1: Te measured time series of dam radial deformation and the reservoir water level: (a) location of the three monitoring points; (b)
measured time series.
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the training set and November 2, 2017, to December 23,
2018, as the testing set, respectively.

4.1. Calculating the Input Vector of the Combined Model.
Taking the monitoring point PL13-5 for illustration, in order
to indicate the multicollinearity among the infuence factors
in equation (17), the correlation coefcients among them are
calculated using the Pearson correlation coefcients, and the
thermodynamic diagram is shown in Figure 2(a). Te
correlation coefcients among these factors are large, in-
dicating signifcant multicollinearity, which probably lead to
poor accuracy of the established model and weakness of
modelling efectiveness. According to equation (18), the
contribution rate and the cumulative contribution rate of
each PC are calculated and shown in Figure 2(b). Te
contribution rate of the frst 5 PCs (f1, f2, f3, f4, and f5)
calculated by equation (19) reaches 96.2%, which has
exceeded a threshold value of 95%. Hence, these PCs are
selected to replace the original factors as the input vector to
reduce data dimensionality. According to Figure 1(b), PCs
are divided into the training set and test set, as shown in
Figure 3(a).

In addition, as shown in Figure 3(b), PCA-MLR and the
MLR are both built to further indicate the efect of the
adopted PCA on model performance. Te MSE and the
calculation time of the PCA-MLR model are 2.92 and 2.31 s,
while those of the MLRmodel are 3.01 and 4.53 s.Te results
indicate that PCA can not only improve prediction accuracy
but also enhance computational efciency.

4.2. Comparison of Diferent Point Prediction Methods. To
compare with the point prediction results of the bootstrap-
GBDT method, other 4 prediction models are also con-
structed by using multiple linear regression (MLR) [33],
BPNN, ELM, and SOA-GBDT, respectively. Te input
factors in each model are the 5 PCs mentioned above. Te
following evaluation indexes are taken to compare the

prediction accuracy of these established models, including
MAE, MAPE, and RMSE:

MAE �
1
n



n

i�1
yi − yi


,

MAPE �
1
n



n

i�1

yi − yi




yi




,

RMSE �

������������

1
n
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i�1
yi − yi( 

2




.

(28)

Te measured radial deformation of PL13-5 is still
taken for illustration. SOA, the grey wolf optimizer (GWO)
[34], and particle swarm optimization (PSO) [35] are all
utilized to search the optimal parameters of the GBDT,
respectively, including the number m of trees, the tree
depth h, and the learning rate v. Te search space of these
parameters is [50, 400], [1, 4], and [0, 1], respectively. Te
maximum iteration number and the population size of the
three algorithms are set to 400 and 30. Te convergence
curves of the GBDT optimized by these algorithms are
shown in Figure 4, where the ftness value quickly reaches
the minimum value of 0.201 of SOA, which is better than
that of the other two algorithms. Te optimal parameter
values are fnally obtained by SOA, m � 189, h � 2, and
v � 0.157. In the BPNN model, the number of hidden
layers, the learning rate, the amount of training, and the
training objective for the MSE are set as 10, 0.01, 1000, and
10−3, respectively. For the ELM model, the number of the
hidden layers is taken as 30. Te sigmoid function is
regarded as an activation function for these models. For
these neural network models, the number of nodes in the
input layer and the number of nodes in the output layer are
set as 5 and 1, respectively. Since the weights are randomly
initialized, the averages of these two models trained fve
times are taken as their fnal results.
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Figure 2: Principal component analysis results: (a) thermodynamic diagram of the features; (b) feature importance ranking.
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Te point prediction results of each model are shown in
Figure 5, in which the bootstrap-GBDT model is shown in
Figure 5(a), the SOA-GBDTmodel is shown in Figure 5(b),
the GBDTmodel is shown in Figure 5(c), the ELM model is
shown in Figure 5(d), the BPNNmodel is shown in Fig. 5(e),
and the MLR model is shown in Figure 5(f). Table 1 lists the
quantitative evaluation results. Compared with MLR, the
corresponding MAE, MAPE, and RMSE of the GBDTmodel
are reduced by 54.4%, 59.4%, and 60.6%, respectively, in-
dicating the efectiveness of the GBDTmodel. Te predicted
MAE, MAPE, and RMSE indexes of the SOA-GBDTmodel
can provide reasonably better results, indicating that the
accuracy of the optimized GBDT model by SOA has been
improved. Te prediction accuracy of the bootstrap-GBDT
model is highest in Table 1, and the values of MAE, MAPE,
and RMSE are 0.2975, 1.06%, and 0.4170, respectively. Tey
all indicate the superiority of the proposed model.

Moreover, the GBDTmodel has not only high prediction
accuracy but also high explanatory ability. As shown in
Figure 6, the importance degree of the input 5 PCs is 53.6%,
20%, 12.9%, 9.2%, and 4.3%, respectively. Te results in-
dicate that the physical relationships between the measured
efects and the environmental factors can be expressed ex-
plicitly through the GBDT model.

4.3. Comparison of Diferent Interval Prediction Methods

4.3.1. Comparative Analysis of Diferent Methods.
According to Section 3.3, the bootstrap-GBDT interval
prediction model is constructed. Te 10 pseudosamples are
obtained by the bootstrapmethod to train the GBDTmodels.
To calculate the 1− α/2 percentile of the PDF of training
residual distribution p and q, its distribution is frst tested
whether obeying the normal distribution or not. Te frst
training is taken as an example. Te distributions of the
training residuals are shown in Figure 7(a). Te quantile-
quantile (Q-Q) plot technique is applied to measure the
normality of distributions, as shown in Figure 7(b). In
Figure 7(b), the residual distribution deviates from the
normal distribution at the tail. Te quality of the PI is ex-
tremely sensitive to the tail deviation of the PDF. For the
bandwidth h, the lager h is chosen, the smoother the ftted
PDF is, but the lower the accuracy is. Conversely, the smaller
h is chosen, the higher the ftting accuracy is, but the lower
the smoothness of the PDF is. Hence, the PDF of the residual
distribution is ftted by the KDA with diferent bandwidths
(including h� 0.1, 0.5, and 1). In Figure 7(a), the bandwidth
setting of 1 is more appropriate. Te B pseudosamples are
trained in turn to obtain their respective residuals. Te
results indicate that the residuals do not obey the normal
distribution with a zero mean, so the KDA is utilized to ft
their actual distribution, where h is set to 1. Te upper and
lower percentiles are listed in Table 2. p and q are calculated
as 0.94 and 0.82, respectively.

Te improved PI is constructed based on the bootstrap-
GBDTmodel to quantify the uncertainties for the arch dam
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during long-term operation. PICP, MPIW, and CWC are all
taken to evaluate the efectiveness of interval prediction [21].
Te confdence level α is taken as 5%, which means that the
measured values in Figure 1(b) are considered to have 95%

probability to fall within the prediction interval. Te penalty
parameter η is set as 10 in this work. Te PI constructed by
diferent methods is shown in Figure 8, including the
LUBE-BPNN model [36], the LUBE-GBDTmodel using the

36
34
32
30
28

Measured errors
Bootstrap-GBDT
Residual errors

Ra
di

al
 d

ef
or

m
at

io
n 

(m
m

)

26
24
22

17
/1

1/
01

18
/0

1/
10

18
/0

3/
21

18
/0

5/
30

18
/0

8/
08

Year/Month/Day

18
/1

0/
17

18
/1

2/
26

0
-2

(a)

Measured values
SOA-GBDT
Residual errors

17
/1

1/
01

18
/0

1/
10

18
/0

3/
21

18
/0

5/
30

18
/0

8/
08

18
/1

0/
17

18
/1

2/
26

Year/Month/Day

36
34
32
30
28

Ra
di

al
 d

ef
or

m
at

io
n 

(m
m

)

26
24
22

0
-2

(b)

36
34
32
30
28

Measured values
GBDT
Residual errors

Ra
di

al
 d

ef
or

m
at

io
n 

(m
m

)

26
24
22

17
/1

1/
01

18
/0

1/
10

18
/0

3/
21

18
/0

5/
30

18
/0

8/
08

Year/Month/Day

18
/1

0/
17

18
/1

2/
26

0
-2

(c)

Measured values
ELM
Residual errors

Year/Month/Day

36
34
32
30
28

D
ef

or
m

at
io

n 
(m

m
)

26
24
22

17
/1

1/
01

18
/0

1/
10

18
/0

3/
21

18
/0

5/
30

18
/0

8/
08

18
/1

0/
17

18
/1

2/
26

0
-2

2

(d)

Year/Month/Day

Measured values
BPNN
Residual errors

17
/1

1/
01

18
/0

1/
10

18
/0

3/
21

18
/0

5/
30

18
/0

8/
08

18
/1

0/
17

18
/1

2/
26

36
34
32
30
28

Ra
di

al
 d

ef
or

m
at

io
n 

(m
m

)

26
24
22
20

0
-2

2

(e)

Year/Month/Day

Measured values
MLR
Residual errors

17
/1

1/
01

18
/0

1/
10

18
/0

3/
21

18
/0

5/
30

18
/0

8/
08

18
/1

0/
17

18
/1

2/
26

38
36
34
32
30
28

Ra
di

al
 d

ef
or

m
at

io
n 

(m
m

)

26
24
22
20

0
-2

2

(f )

Figure 5: Point prediction results of diferent models: (a) bootstrap-GBDTmodel; (b) SOA-GBDTmodel; (c) GBDTmodel; (d) ELMmodel;
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GBDT instead of the BPNN, the bootstrap-ELM model, and
the bootstrap-GBDTmodel.Te PI constructed in Figure 8(a)
is wider and cannot contain most of the measured values.Te
PI in Figure 8(b) is narrower, but its PI width is fxed, which is

not conducive to the uncertainty analysis. In contrast, the PI
constructed by the bootstrap method is more reasonable. As
shown in Figures 8(c) and 8(d), the interval width of the
bootstrap-GBDT model is narrower than that of the

Table 1: Evaluation results of the six models.

Evaluation indexes MLR BPNN ELM GBDT SOA-GBDT Bootstrap-GBDT
MAE 1.2716 1.0661 0.8720 0.5797 0.4013 0.2975
MAPE (%) 4.83 3.64 2.91 1.96 1.38 1.06
RMSE 1.7355 1.4652 1.0889 0.6844 0.5021 0.4170
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Figure 6: Feature importance evaluation results.
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Figure 7: Te normal distribution test of the residuals: (a) histogram and diferent bandwidths; (b) Q-Q plot.

Table 2: Te upper and lower percentile.

Number
of training First Second Tird Fourth Fifth Sixth Seventh Eighth Ninth Tenth

pi 0.93 0.91 0.98 1.01 0.88 1.00 1.02 0.98 0.95 0.75
qi −0.84 −0.83 −0.78 −0.70 −0.91 −0.81 −0.72 −0.95 −0.81 −0.83
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bootstrap-ELMmodel, mainly due to diferent approximation
levels of the function of diferent algorithms, also indicating
the diferences in the cognitive uncertainties. Te results
indicate that the proposed model can better estimate the
variance of model bias. It is worth noting that the MAE,
MAPE, and RMSE of the bootstrap-ELM model are 0.7142,
2.46%, and 0.9280, respectively. Combining Figure 5(d) and
Table 1, it can be observed that its point prediction perfor-
mance is better than that of the ELM model.

Te quantitative indexes and the computation cost for the
interval prediction of diferent models are listed in Table 3.
Te PICP of the LUBE-BPNN model, the LUBE-GBDT
model, and the bootstrap-ELM model is 68.8%, 82.2%, and
67.8%, respectively. Teir PIs cannot cover most of the
measured values. However, the coverage of the bootstrap-
GBDTmodel for the measured values reached 100%, and its
CWC is the smallest, 1.22; i.e., the bootstrap-GBDTmodel can
quantify the above uncertainties by the PI efectively. Fur-
thermore, as shown in Figure 8(d), during the rising and
falling periods of the measured time series, caused by the
environmental factors, the width of the PI is always larger

than that of other periods.Te variation in the PI can indicate
the efect of the change in the reservoir water level and other
factors of the arch dam; i.e., the above uncertainties are well
characterized by the PI through its widths.

Te interval prediction for the whole selected period of the
arch dam is shown in Figure 9. During the periods of drastic
changes of the dam radial deformation and fuctuating pe-
riods, the PI widths are larger, indicating considerable in-
fuence of various uncertainties. Moreover, the reliability of
the proposed model can also quantify these uncertainties
during the smooth periods of the measured time series.

4.3.2. Exploration of the Stochastic Uncertainties. In order to
explore the stochastic uncertainties of the arch dam, the
bootstrap-GBDT model is trained again by adding the
Gaussian noise into the measured time series. Te results are
further taken to investigate the robustness of the proposed
model. As shown in Figure 10, the testing set remains
unchanged when only the Gaussian noise is added into the
training set to reduce the infuence of other factors.
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Figure 8: Prediction results for diferent interval prediction methods: (a) LUBE-BPNNmodel; (b) LUBE-GBDTmodel; (c) bootstrap ELM;
(d) bootstrap GBDT.
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Following the aforementioned parameter settings, the
bootstrap-GBDT model is trained using the noise data to
implement the interval prediction for dam deformation, as
shown in Figures 11(a) and 11(b). Te width of the PI after
adding noises has a certain increase, while the point pre-
diction results do not change visibly. When the noise data
have increased the stochastic uncertainties, the certain
change in CWC indicates that added low noises can be
identifed by the interval prediction. Te constructed model
can also estimate the variance of added noises, which is
feasible.

Evaluation indexes of the interval prediction after adding
the Gaussian noises are listed in Table 4. Comparison with
Table 1, the diference is not signifcant in the point

prediction results whether there are the noise data or not.
Te results indicate that the constructed model on the point
prediction is not sensitive to these noises; i.e., the point
prediction fails to indicate the negative efect of additional
noises. Since PIs can ofer more information than the point
prediction, the reasonable results can be achieved through
combining the point prediction and the interval prediction
to appraise the dam performance during long-term
operation.

4.3.3. Exploration of the Cognitive Uncertainties. Te degree
of the cognitive uncertainties varies for diferent dams. Hence,
the cognitive uncertainties are further explored by the interval
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Table 3: Evaluation results for diferent interval prediction methods.

Evaluation indexes LUBE-BPNN model LUBE-GBDT model Bootstrap-ELM model Bootstrap-GBDT model
PICP (%) 68.8 82.2 67.8 100
PINAW 1.439 1.15 1.99 1.22
CWC 13.39 5.28 8.85 1.22
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prediction results of PL9-5 and PL16-5 with diferent loca-
tions. Te results of their interval prediction are shown in
Figures 12(a) and 12(b), respectively. Te evaluation indexes
are listed in Table 5. Combined with Figure 8(d), it can be
observed that the PI of the two points is similar to that of
PL13-5, which can cover most of the original measured values
and obtain smaller CWC to construct a high-quality PI. In the
interval prediction of PL9-5, PICP reaches 100%, indicating
full coverage of the measured values, and CWC is 0.70, which

is smaller than all other points due to the closeness to rock
foundation. In these areas, the efect of the above uncertainties
is smaller, since the change in the reservoir water level and
temperature have relatively less infuence than the other two
points. Te interval prediction results of PL16-5 are similar to
those of PL13-5 due to semblable cognitive uncertainties. Te
above results show that the interval prediction model can
reasonably estimate the cognitive uncertainties of the whole
arch dam.

Table 4: Evaluation indexes of the interval prediction after adding the Gaussian noises.

Evaluation indexes PICP (%) PINAW CWC MAE MAPE (%) RMSE
Dam deformation 100 1.63 1.63 0.52 1.8 0.73
Reservoir water level 98.7 1.53 1.53 0.31 1.1 0.39
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Figure 11:Te interval prediction results after adding the Gaussian noises: (a) noisy deformation time series; (b) noisy upstream water level.
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Figure 12: Te interval prediction results of other monitoring points with diferent locations: (a) PL9-5; (b) PL16-5.
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5. Conclusions

Te present work explored the impact of uncertainties in
prediction models on the structural deformation behavior of
dams using the measured time series, by proposing an in-
novative interval prediction model that combines the GBDT
and the bootstrap method. Te GBDTmodel is suitable for
the prediction of dam deformation behavior since it can
accurately indicate the nonlinear relationship between the
measured efects and the environmental factors. In partic-
ular, compared with other prediction models, the GBDT
model can also quantify the importance of input variables.
Diferent from the regression tree approach, the GBDT
model adopts the forward distribution algorithm, and the
learning rate is taken to avoid overftting. Te established
model is general and can successfully quantify the un-
certainties in the form of the improved PIs, where high-
quality PIs can be obtained including the majority of the
measured values and with smaller PINAW. Tey can also
provide accurate point prediction results.

Te methodology was validated and applied herein to
the Jinping Ι Arch Dam, whose performance was char-
acterized via the structural deformation of a set of mon-
itoring points in the perpendicular line monitoring system.
Teir measured time series were postprocessed by PCA to
reduce multicollinearity and data dimensionality. Struc-
tural performance prediction was carried out using dif-
ferent point prediction methods and interval prediction
methods, in order to investigate the impact of stochastic
and cognitive uncertainties of the arch dam. SOA was
taken to search the optimal parameters of the GBDT. Te
results show that the variation in the improved PI can
indicate the efect of the change of the environmental
factors. During periods of dramatic changes in the mea-
sured time series, the width of PIs is always larger than that
of other periods; thus, the PI can reasonably quantify the
uncertainties caused by these complex factors. Further-
more, the PI based on the bootstrap-GBDT model plays
a key role in quantifying the uncertainties for the arch dam
during long-term operation, since it indicates the model
errors and random noises. Te results of the case study
proved that the proposed model can appropriately account
separately for the stochastic or cognitive uncertainties,
which are refected in predicted values for each monitoring
point closer to the measured values. Te increased level of
the stochastic or cognitive uncertainties can be better
identifed by the constructed PI. In future works, since
uncertainty quantifcation is very practical and of current
interest during dam operation, panel data models or other
suitable models are still required to improve the gener-
alization ability of the bootstrap-GBDT model.
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