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It is of great signifcance to identify structural state-parameters and the unknown seismic inputs using partial measurements of
structural acceleration responses for the rapid evaluation of structures after unknown seismic excitations. However, unknown
seismic inputs do not directly appear in the observation equations of measured absolute foor accelerations of building structures,
i.e., there is no direct feedthrough of unknown seismic inputs in the observation equations. Current methods for the identifcation
of joint structural systems and unknown inputs are either inapplicable or greatly infuenced by measurement noises. In this paper,
a method so-called smoothing extended Kalman flter with unknown input without direct feedthrough (smoothing EKF-UI-
WDF) is proposed.Te identifcation algorithm is derived in the framework of minimum-variance unbiased estimation (MVUE),
and the smoothing technique is adopted to introduce subsequent observation steps in the current identifcation step. Ten,
structural states, parameters, and unknown seismic excitations without direct feedthrough are simultaneously identifed re-
cursively with only a few steps delay, and the identifcation results are tolerant to measurement noises. Te proposed method is
verifed by a numerical simulation model and a practical engineering case study. Both identifcation results validate the ef-
fectiveness of the proposed method for the simultaneous identifcation of structural systems and seismic inputs without direct
feedthrough.

1. Introduction

Seismic excitation information and structural state assessment
are of great signifcance for the rapid evaluation of structural
integrity after seismic excitation [1–4]. Teoretically, ground
motion information can be obtained through seismic stations or
sensors installed on the structure bases, but in practice, not all
structures are equipped with sensors to record ground motions
due to the cost of instrumentation. Moreover, due to the in-
fuence of transmissionmedia, even the recorded datamay have
large errors [5]. Terefore, in the feld of structural health
monitoring, unknown inputs and structural states are usually
identifed through observed vibration response data of struc-
tures [6–10]. However, simultaneous identifcation of unknown
seismic excitations and corresponding structural system states
using partial responses of structures is still a challenging

problem, especially when the structural parameters are un-
known. System identifcation methods based on Kalman flter
(KF) and extended Kalman flter (EKF) methods have made
great progress [11, 12]. Trough the state and observation
equations, satisfactory identifcation results can be obtained
with model error and observation noises. Currently, there are
many joint identifcation methods for structural systems and
unknown inputs developed based on the extensions of tradi-
tional KF and EKF [13–18]. Recently, Yuen andHuangmodeled
the unknown input as modulated fltered white noise or
modulated colored noise excitation [19–21] and using EKF
combined with the Bayesian method to estimate the uncertain
flter parameters to reconstruct the unknown input. But most
methods still need to meet the condition that the unknown
inputs directly appear in the observation equation or the so-
called with direct feedthrough. It is worth noting that the
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situation of unknown seismic inputs is diferent from that of
external excitations as the monitored foor accelerations of
building structures are absolute acceleration values. In this
scope, the unknown seismic input terms do not directly appear
in the observation equations or the so-called without direct
feedthrough.

Currently, there are far fewer studies for the identifcation of
systems without direct feedthrough. In terms of known
structural parameters, Gillijns and De Moor [22] proposed
a joint input-state estimation method for the system without
direct feedthrough. Pan et al. [23] derived the Kalman fltering
method with the global optimal solution and unknown input
without direct feedthrough (KF-UI-WDF). In terms of un-
known structural parameters, Wan et al. [24] extended Gillijns
and DeMoor’s work by adding the structural parameters to the
state vector. Similar to the KF-UI-WDF, Pan et al. [25] pro-
posed the extended Kalman flter with unknown inputs without
direct feedthrough (EKF-UI-WDF). Te author has also pro-
posed some methods for the identifcation of structural systems
and unknown inputs without direct feedthrough by adopting
the assumption of frst-order hold (FOH) in adjacent steps for
unknown inputs [26, 27]. Nevertheless, identifcations are not
well performed when measurement noises increase.

In essence, identifcation results for the system without
direct feedthrough of unknown inputs are sensitive to
measurement noises [28]. Some researchers proposed the
ofine methods, [3, 29, 30] e.g. the Tikhonov regularization
and maximum a posteriori estimation (MAP) to improve the
identifcation results. Recently, Taher et al. [3] adopted a least
squares-based MAP to improve the seismic input estimation,
and the estimated input is used as known input in the
conventional KF method to obtain the unknown structural
states. However, such ofine methods cannot provide real-
time identifcation for the earthquake-excited structures.

In the traditional fltering method, the estimation of the
(k+1) th step is based on the measurements from 1st step to
(k+1) th step. If a certain time delay is allowed for the esti-
mation that is the estimation of the (k+1) th step is based on the
measurements from 1st step to (k+N) th (N>1) step. In this
way, the measurements from (k+2) th step to (k+N) th step is
the added observation information compared to traditional
methods.Tis addition improves the quality of the estimation at
the current step since the addition is from the later steps.
Actually, such a technique is the so-called smoothing that has
been adopted by researchers [28, 31–35]. Recently, Ebra-
himzadeh et al. [35] proposed a method for joint identifcation
of structural state and unknown inputs by combining
smoothing technique, but structural parameters need to be
known prior. Maes et al. [31] proposed a method of joint
identifcation of input, state and parameter by combining
smoothing and a two-step fltering for linear structural systems.

In this paper, a smoothing EKF-UI-WDF method is
proposed in the framework of minimum-variance unbiased
estimation (MVUE) to identify structural systems and un-
known inputs without direct feedthrough. Te main con-
tributions of this paper include: (1) structural states,
parameters of the structural systems and the unknown in-
puts without direct feedthrough can be simultaneously
identifed, and the identifcation is tolerant to the

measurement noises supported by the smoothing technique;
(2) compared with current ofine identifcation methods,
real-time identifcation is less sacrifced in the proposed
method, which better meets the requirements of rapid
evaluation and timely warning under seismic conditions.
Te validation of the proposedmethod in this paper includes
a numerical example and a real-world application. Diferent
observation situations, displacements for numerical example
and absolute accelerations for real-world structure, which
both lead to the systems and unknown inputs without direct
feedthrough, are used to validate the proposed method.

2. The Proposed Smoothing EKF-
UI-WDF Method

Te proposed smoothing EKF-UI-WDF method is derived
under the framework of MVUE in state-space by combing
the smoothing scheme.

2.1. Structural State and Observation Equations. Te equa-
tion of motion of an earthquake-excited structure with n
DOFs can be formulated as:

M€x + F(x, _x, θ) � −ML€xg , (1)

where M is structural mass matrix, F(x, _x, θ) is structural
restoring force vector, x, _x, €x denote the vectors of structural
displacement, velocity and acceleration, respectively. θ de-
notes unknown structural parameters, e.g. stifness, damp-
ing ratio and nonlinear parameters, L is the infuence vector
of seismic input, and €xg represents the unknown seismic
acceleration.

Let structural state vector Z � [xT, _xT, θT]T, equation (1)
can be converted into the state-space as follow:

_Z �
_x

−M− 1F(x, _x, θ) − L€xg

0⎡⎣ ⎤⎦ � g(Z) + Bu
€xg , (2)

where g(Z) � _xT (−M− 1F(x, _x, θ))T 0T􏽨 􏽩
T

and
Bu � 0T −LT 0T􏼂 􏼃

T.
Based on the smoothing scheme, the estimation of Zk

can be denoted as 􏽢Zk|k+N−1, in which the subscript
“k|k + N − 1” denotes the estimation of Zk given the ob-
servation sequence yT

1 yT
2 · · · yT

k · · · yT
k+N− 1􏽨 􏽩

T
. Ten,

based on the linearization in the EKF procedure, equation
(2) is linearized as:

_Z � g(Z) + Bu
€xg ≈ g Ẑk|k+N−1􏼐 􏼑 + Uk Z − 􏽢Zk|k+N−1􏼐 􏼑 + Bu

€xg

� UkZ + Bu
€xg + uk,

(3)

where Uk � zg(Z)/zZT|
Z�􏽢Zk|k+N−1

and uk � g(􏽢Zk|k+N−1)

−Uk
􏽢Zk|k+N−1.
Ten, equation (3) can be discretized as:

Zk+1 � AkZk + Bk €xg + gk + wk, (4)

in which, Ak � eUk∆t, Bk � (Ak − I)(Uk)− 1Bu,
gk � (Ak − I)(Uk)− 1uk, ∆t is the sampling interval and wk is
the modeling error with the zero average and Qk variance.
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When observed responses are absolute accelerations or
displacements of the earthquake-excited structure, the ob-
servation equation can be formulated as:

yk+1 � h Zk+1( 􏼁 + vk+1, (5)

where the function h(Zk+1) is only related to the state vector,
vk+1 is the measurements noises term with the zero mean
value and Rk covariance. Te determination of the values of
Qk and Rk has been investigated by some researchers
[36, 37], so it is not discussed in this papers.

Te expression of h(Zk+1) can be written as follows
according to diferent observations:

(1) Absolute accelerations observations (yk+1 � Sa €xa
k+1)

h Zk+1( 􏼁 � Sa €xk+1 + L€xg,k+1􏼐 􏼑

� −SaM
− 1F xk+1, _xk+1, θk+1( 􏼁.

(6)

(2) Displacements observations (yk+1 � Sdxk+1)

h Zk+1( 􏼁 � Sdxk+1. (7)

If equation (5) is a nonlinear function, it is linearized by
Taylor expansion at the defned point Z

⌢

k+1|k+N−1,

Z
⌢

k+1|k+N−1 � 􏽢Zk|k+N−1 + 􏽚
(k+1)∆t

k∆t
g 􏽢Zt|k+N−1􏼐 􏼑􏽨 􏽩dt + Bk

􏽢€xg,k−1|k+N−1,

(8)

where 􏽢€xg,k−1|k+N−1 is the estimation of the €xg,k−1. Ten, the
linearized observation equation is derived as:

yk+1 � h Zk+1( 􏼁 + vk+1 ≈ h Z
⌢

k+1|k+N−1􏼒 􏼓 + Hk+1 Zk+1 − Z
⌢

k+1|k+N−1􏼒 􏼓 + vk+1 � Hk+1Zk+1 + hk+1 + vk+1,

Hk+1 �
zh Zk+1( 􏼁

zZT
k+1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌Zk+1�Z
⌢

k+1|k+N−1

,

hk+1,k+1 � h Z
⌢

k+1|k+N−1􏼒 􏼓 − Hk+1Z
⌢

k+1|k+N−1

(9)

According to the smoothing scheme [31], a new ex-
panded observation equation can be derived as:

Yk+1 � Hk+1Zk+1 + Dk+1F
u
k+1 + Lk+1gk+1 + Lk+1Wk+1 + hk+1 + Vk+1, (10)

in which,

Yk+1 �

yk+1

yk+2

⋮

yk+N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;Hk+1 �

Hk+1

Hk+1Ak

⋮

Hk+1A
N−1
k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;Dk+1 �

0 0 · · · 0

0 Hk+1Bk · · · 0

⋮ ⋮ ⋱ ⋮

0 Hk+1A
N−1
k Bk · · · Hk+1Bk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; Fu
k+1 � €xg,k €xg,k+1⋮€xg,k+N−1􏽨 􏽩;

Lk+1 �

0 0 · · · 0

0 Hk+1 · · · 0

⋮ ⋮ ⋱ ⋮

0 Hk+1A
N−1
k · · · Hk+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; gk+1 �

gk

gk

⋮

gk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; hk+1 �

hk+1

hk+1

⋮

hk+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;Wk+1 �

wk

wk+1

⋮

wk+N−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;Vk+1 �

vk+1

vk+2

⋮

vk+N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(11)
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2.2. Joint Input-State-Parameter Estimation

2.2.1. Recursive Filter. Te proposed method aims to si-
multaneously identify the unknown seismic input and
structural system based on the derived state equation (4) and
the observation equation (10).

First, the state Z
̆
k+1|k+N−1 is defned as

Z
̆
k+1|k+N−1 ≜Ak

􏽢Zk|k+N−1 + gk. (12)

Based on equation (10), the input estimation is given by

􏽢Fu

k+1|k+N � Mk+1 Yk+1 − Hk+1Z
̆
k+1|k+N−1 − Lk+1gk+1 − hk+1􏼠 􏼡,

(13)

where Mk+1 is the input gain matrix to be solved.
According to the relationship between €xg,k and Fu

k+1 in
equation (11), one can obtain the transfer equation by de-
fning IF ≜ 1 0􏼂 􏼃.

􏽢€xg,k|k+N � IF
􏽢Fu

k+1|k+N. (14)

Also, the predicted state 􏽥Zk+1|k+N−1 is given based on
equation (4) as:

􏽥Zk+1|k+N−1 � Ak
􏽢Zk|k+N−1 + Bk

􏽢€xg,k|k+N + gk. (15)

Ten, the estimated state 􏽢Zk+1|k+N can be obtained by
updating the 􏽥Zk+1|k+N−1 with equation (10):

􏽢Zk+1|k+N � 􏽥Zk+1|k+N−1 + Kk+1 Yk+1 − Hk+1
􏽥Zk+1|k+N−1 − Dk+1

􏽢Fu

k+1|k+N − Lk+1gk+1 − hk+1􏼐 􏼑, (16)

where Kk+1 is the state gain matrix to be solved.
Equations (12)–(16) are the adopted forms of the re-

cursive flter, in which the unknown gain matricesMk+1 and
Kk+1 is estimated in the framework of minimum-variance
unbiased estimation (MVUE).

2.2.2. Input Estimation

(1) Unbiadeness Condition. Based on the equation (13), one
can defne

eYk+1 ≜Yk+1 − Hk+1Z
̆
k+1|k+N−1 − Lk+1gk+1 − hk+1.

(17)

By substituting equation (4) into equation (10) and using
equations (12) and (17) can be derived as follows:

eYk+1 � Dk+1F
u
k+1 + Hk+1Bkf

u
k + Hk+1Ak􏽢eZk + Hk+1wk + Lk+1Wk+1 + Vk+1, (18)

where the estimated error of the state is denoted as
􏽢eZk ≜Zk − 􏽢Zk|k+N−1.

Based on the relationship between wk and Wk+1 in
equation (11), it is derived:

wk � IWWk+1, (19)

where IW ≜ I 0􏼂 􏼃.
To obtain a simpler form of equation (18), some terms

are defned as:

Γk+1 ≜Hk+1Ak, L
̆
k+1 ≜ Lk+1 + Hk+1IW,D

̆
k+1 ≜Dk+1 + Hk+1BkIF; ek+1 ≜ Γk+1􏽢e

Z
k + L

̆
k+1Wk+1 + Vk+1.

(20)

Ten, equation (18) can be rewritten as:

eYk+1 � D
̆

k+1F
u
k+1 + ek+1.

(21)

One can directly get the least-square estimation (LSE) of
unknown input from equation (21), however, the variance of
the estimated error is not minimum.

To make estimation (equation (13)) unbiased, an un-
biased condition for the input gain matrix Mk+1 is derived.

According to the unbiasedness of input estimation,
E[􏽢Fu

k+1|k+N] � Fu
k+1, one can get:

E 􏽢Fu

k+1|k+N􏽨 􏽩 � Mk+1E eYk+1􏽨 􏽩 � Mk+1D
̆

k+1F
u
k+1 � Fu

k+1.

(22)

From equation (22), an unbiasedness condition forMk+1
is obtained:
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Mk+1D
̆

k+1 � I. (23) (2) Minimum-Variance Condition. Furthermore, a weighted
least-square estimation (WLSE) for the equation (21) is used
to estimate the unknown input satisfed MVUE. By defning
􏽥Rk+1 ≜E[(ek+1)(ek+1)

T],

􏽥Rk+1 � Γk+1
􏽢PZ

kΓ
T
k+1 + L

̆
k+1QkL

̆ T

k+1 + Rk+1 + S Γk+1
􏽢PZW

k L
̆ T

k+1􏼠 􏼡 + S Γk+1
􏽢PZV

k􏼒 􏼓, (24)

where

Qk � E Wk+1( 􏼁 Wk+1( 􏼁
T

􏽨 􏽩,Rk+1 � E Vk+1( 􏼁 Vk+1( 􏼁
T

􏽨 􏽩, S(X)≜X + XT
, 􏽢PZ

k � E 􏽢eZk􏼐 􏼑 􏽢eZk􏼐 􏼑
T

􏼔 􏼕, 􏽢PZV
k � E 􏽢eZk􏼐 􏼑 Vk+1( 􏼁

T
􏽨 􏽩. (25)

Te weighting matrix 􏽥S−1
k+1 is obtained from the non-

singular matrix 􏽥Sk+1 which satisfes 􏽥Sk+1
􏽥ST

k+1 � 􏽥Rk+1. Ten,
a weighted form of equation (21) is formulated as:

􏽥S−1
k+1e

Y
k+1 � 􏽥S−1

k+1D
̆

k+1F
u
k+1 + 􏽥S−1

k+1ek+1,
(26)

and

E 􏽥S−1
k+1ek+1􏼒 􏼓􏼔 􏼕 � 0; E 􏽥S−1

k+1ek+1􏼒 􏼓 􏽥S−1
k+1ek+1􏼒 􏼓

T

􏼢 􏼣 � 􏽥S−1
k+1E ek+1( 􏼁 ek+1( 􏼁

T
􏽨 􏽩􏽥S−T

k+1 � I. (27)

Te least-square estimation (LSE) of equation (26) is
unbiased and hasminimum-variance. So the unknown input
is estimated as:

􏽢Fu

k+1|k+N � D
̆ T

k+1
􏽥R−1

k+1D
̆

k+1􏼠 􏼡

− 1

D
̆ T

k+1
􏽥R−1

k+1 Yk+1 − Hk+1Z
̆
k+1|k+N−1 − Lk+1gk+1 − hk+1􏼠 􏼡. (28)

By comparing with equation (13), the input gain matrix
Mk+1 is obtained by the minimum-variance condition as:

Mk+1 � D
̆ T

k+1
􏽥R−1

k+1D
̆

k+1􏼠 􏼡

− 1

D
̆ T

k+1
􏽥R−1

k+1. (29)

To check the unbiased condition, it is noted that

equation (29) automatically satisfes Mk+1D
̆

k+1 � I.

2.2.3. State Estimation. Te unknown state can be estimated
once the state gain matrix Kk+1 is estimated. Similar to the

input estimation, the unbiased and minimum-variance
conditions are used for the derivation of Kk+1.

(1) Unbiased Condition. By defning the error of predicted
state 􏽥eZk+1 ≜Zk+1 − 􏽥Zk+1|k+N−1 and error of estimated input
􏽢efk ≜ €xg,k − 􏽢€xg,k|k+N, the error of estimated state 􏽢eZk+1 � Zk+1 −
􏽢Zk+1|k+N can be derived based on equations (4) and (15) as:

􏽥eZk+1 � Ak􏽢eZk + Bk􏽢efk + wk. (30)

Also, by defning the error 􏽢eFk+1 ≜ F
u
k+1 − 􏽢Fu

k+1|k+N, the
estimated error 􏽢efk can be derived from equations (13), (14)
and (21) as:

􏽢efk � IF􏽢eFk+1 � −IFMk+1ek+1 � −IFMk+1 Γk+1􏽢e
Z
k + L

̆
k+1Wk+1 + Vk+1􏼠 􏼡. (31)
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With some terms defned as Gk+1 ≜BkIFMk+1,
Jk+1 ≜ − Gk+1L ̆k+1 + IW, A∗k ≜Ak − Gk+1Γk+1 and
w∗k ≜ Jk+1Wk+1 − Gk+1Vk+1, a simple form of equation (30)
can be derived by substituting equation (31) into equation
(30) as:

􏽥eZk+1 � A∗k􏽢eZk + w∗k . (32)

Ten, the explicit function between 􏽢eZk+1 and 􏽢eZk can be
established by using equations (4), (16) and (32):

􏽢eZk+1 � 􏽥eZk+1 − Kk+1 I − D
̆

k+1Mk+1􏼠 􏼡ek+1 � 􏽢Ak+1􏽢e
Z
k + 􏽢Jk+1Wk+1 + 􏽢Gk+1Vk+1, (33)

where

􏽢Ak+1 ≜A
∗
k − Φk+1Γk+1,

􏽢Jk+1 ≜ Jk+1 − Φk+1L
̆
k+1,

􏽢Gk+1 ≜ − Gk+1 − Φk+1,

Φk+1 ≜Kk+1 I − D
̆

k+1Mk+1􏼠 􏼡.

(34)

For the unbiased condition E[􏽢eZk+1] � 0, it is derived that

E 􏽢eZk+1􏽨 􏽩 � E 􏽢Ak+1􏽢e
Z
k + 􏽢Jk+1Wk+1 + 􏽢Gk+1Vk+1􏽨 􏽩 � 􏽢Ak+1E 􏽢eZk􏽨 􏽩.

(35)

From equation (35), it is found that any value of Kk+1 is
acceptable for the unbiased condition once 􏽢Zk|k+N−1 is un-
biased, i.e., (E[􏽢eZk ] � 0).

(2) Minimum-Variance Condition. From equation (33), the
variance 􏽢PZ

k+1 � E[(􏽢eZk+1)(􏽢eZk+1)
T] is derived as:

􏽢PZ
k+1 � Kk+1Ψk+1K

T
k+1 + S Kk+1Υk+1( 􏼁 + 􏽥PZ

k+1, (36)

where

Ψk+1 ≜E I − D
͝

k+1Mk+1􏼠 􏼡ek+1􏼠 􏼡 I − D
͝

k+1Mk+1􏼠 􏼡ek+1􏼠 􏼡

T

⎡⎣ ⎤⎦ � I − D
͝

k+1Mk+1􏼠 􏼡􏽥Rk+1 I − D
͝

k+1Mk+1􏼠 􏼡

T

,

Υk+1 ≜E − I − D
͝

k+1Mk+1􏼠 􏼡ek+1􏼠 􏼡 􏽥eZk+1􏼐 􏼑
T

􏼢 􏼣 � − I − D
͝

k+1Mk+1􏼠 􏼡 􏽥PZe
k􏼒 􏼓

T

,

􏽥PZe
k ≜E 􏽥eZk+1􏼐 􏼑 ek+1( 􏼁

T
􏽨 􏽩 � A∗k 􏽢PZ

k + Jk+1
􏽢PZWT

k − Gk+1
􏽢PZVT

k􏼒 􏼓ΓTk+1 + A∗k 􏽢PZW
k L

͝
T

k+1 + A∗k 􏽢PZV
k + Jk+1QkL

͝
T

k+1 − Gk+1Rk+1.

(37)

Terefore, Kk+1 is estimated with the minimum-variance
condition by minimizing the trace of 􏽢PZ

k+1. However, the
nonsingular matrix Ψk+1 leads to the solution of Kk+1 not
unique [19]. If the singular value decomposition (SVD) is
performed onΨk+1, and the row vector of Sk+1 is the singular
vector corresponding to the non-zero singular value ofΨk+1.
Ten, Sk+1Ψk+1ST

k+1 is invertible and Kk+1 is fnally obtained:

Kk+1 � −ΥT
k+1S

T
k+1 Sk+1Ψk+1S

T
k+1􏼐 􏼑

− 1
Sk+1. (38)

2.2.4. Covariance Matrices Derivation. However, the co-
variance matrices 􏽢PZW

k+1 and 􏽢PZV
k+1 are still unknown. A

recursive form for their expressions are derived with ref-
erence to the method by Maex et al. [31].

By defning the matrix I
̆
W ≜

0(N−1)n×n I(N−1)n

0n×n 0n×(N−1)n
􏼢 􏼣 and

IW ≜
0(N−1)n×n 0(N−1)n×n

0n×(N−1)n In
􏼢 􏼣,

Wk+2 � I
̆
WWk+1 + IWWk+2,

(39)

and a similar form can be established for the Vk+2 with the

similar defnitions of I
̆
V and IV.

Finally, the covariance matrices 􏽢PZW
k+1 and 􏽢PZV

k+1 are ob-
tained based on equations (33) and (39) as:
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􏽢PZW
k+1 � E 􏽢Ak+1􏽢e

Z
k + 􏽢Jk+1Wk+1 + 􏽢Gk+1Vk+1􏼐 􏼑 I

̆
WWk+1 + IWWk+2􏼠 􏼡

T

⎡⎣ ⎤⎦ � 􏽢Ak+1
􏽢PZW

k I
̆ T

W + 􏽢Jk+1Qk+1I
̆ T

W,

􏽢PZV
k+1 � E 􏽢Ak+1􏽢e

Z
k + 􏽢Jk+1Wk+1 + 􏽢Gk+1Vk+1􏼐 􏼑 I

̆
VVk+1 + IVVk+2􏼠 􏼡

T

⎡⎣ ⎤⎦ � 􏽢Ak+1
􏽢PZV

k I
̆ T

V + 􏽢Gk+1Rk+1I
̆ T

V.

(40)

3. Numerical Investigation

3.1. Numerical Model. To show the tolerance to measure-
ment noises and efciency of the proposed method, a six-
storyshear-type building is adopted as the numerical vali-
dation model.Te structural parameters are selected as: each
mass mi � 100kg, inter-story stifness
ki � 1000kN/m(i � 1, 2, . . . , 6), and Rayleigh damping is
assumed with the coefcient
α � 1.0795  s− 1, β � 6.3139 × 10− 4   s. Te structure is excited
by the El-Centro N-S earthquake with a peak ground ac-
celeration (PGA)� 0.1 g. In this numerical model, the ob-
served response data are inter-story displacement of all
stories. All the used response data are polluted by Gauss-
white noises with 10% root-mean-square (RMS), to show the
tolerance to measurement noises of the proposed smoothing
EKF-UI-WDF.

3.2. Identifcation of Unknown Seismic Input. As shown in
Figure 1, the identifcation results under the conditions of
one step delayed (N� 1) and fve steps delayed (N� 5) are
given in Figures 1(a) and 1(b) respectively. It can be seen
from Figure 1(a) that the seismic acceleration identifed by
the traditional approach results in an obvious error, as the
estimated unknown input is sensitive to measurement noise.
On the other hand, the estimation of unknown input by the
proposed has been greatly improved as shown in Figure 1(b).
Te main reason is that more information increases make
the identifcation of unknown input more accurate.
Figure 1(b) shows the identifed seismic acceleration with 5
steps delayed, and the real value is tracked well.

In addition, it is discussed the efect of time delay to
exchange for the improvement of identifcation. Figure 2
shows the relationship between the number of delayed time
steps and the error covariance of the estimated unknown
input. As the number of delayed steps increases, the error
tends to be stable, which indicates that the improvement
efect is fnite and only a certain number of delayed steps
(fve steps in this case) has a very signifcant efect to
measurement noises.

3.3. Identifcation of Structural States. Since the structural
displacement response has been monitored, the identifed
velocity, taking the 1st story as an example, is selected to
validate the proposed method for the identifcation of
structural states. From Figure 3, it is known that the pro-
posed method also plays a signifcant role in improving the
state identifcation efect. When structural displacement
observations are polluted by noises, there are many “burrs”
in the identifcation result in Figure 3(a), However, these

“burrs” are greatly reduced when fve steps delayed is
adopted in Figure 3(b).

Similarly, Figure 4 shows the estimated velocity error-
reduction using diferent delayed steps. With fve steps
delayed, the improvement of the identifcation efect tends to
be stable.

3.4. Identifcation of Structural Parameters. It is of great
signifcance to identify structural parameters. In this sub-
section, the proposed smoothing EKF-UI-WDF is used to
identify structural stifness parameters. From Figure 5, it is
noted that when the number of delayed steps increases, the
identifed parameters converge fast to the true value, in
which the initial values of structural parameteres are selcted
as 1.2MN/m based on engineering experience. However, the
resuctsive identiftion of structural parameters may be
disconvenrgenced if the initial values are set far away from
their true values.

4. Real-World Application

4.1. A Brief Introduction to the Burbank Building. Te
identifcation of the six-story commercial building (Burbank
building) in Burbank, California, USA (Figure 6) is in-
vestigated as a real-world application. Te building built in
1976 is a steel structure building.Te lateral loads are mainly
carried by the perimeter frame, and the internal frame
structure carries the vertical loads. So the analyzed structural
system under the earthquake excitation is the perimeter
frame structure, and the Burbank building can be simplifed
into a two-dimensionalsix-storysix-bay plane frame model
as shown in Figure 7. More details of the Burbank building
can be found in reference [32].

4.2. Model Updating Using EKF Method. Before the system
identifcation of the Burbank building, model updating is
used to know the real value of the structural parameters,
especially the structural stifness. Terefore, this subsection
frstly updates the model based on the response data and
seismic data recorded by the Center for Engineering Strong
Motion Data (CESMD). Te Burbank building was excited
by the Sierra Madre earthquake in 1991. Te sensors in the
building (Figure 8) recorded the absolute acceleration re-
sponse data. Because the seismic energy is low and the
structure did not enter the nonlinear stage, the data can be
used for model updating. In addition, only the frst two
natural frequencies of the structure can be identifed, so it is
more accurate to use time-domain data for model
updating [38].

Te EKF method is used for model updating using the
horizontal absolute acceleration responses of the 1st and 6th
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stories, and the 1991 Sierra Madre earthquake is used as
known seismic input. Te accuracy of model updating is
checked by comparing the 2nd story horizontal acceleration
responses.

4.2.1. Updating Beam and Column Stifness. Te six-
storysix-bay plane frame model in Figure 7 has 36 beam

and 42 column elements, among which the sixth bay beam is
shear connected to the side column, and the rest are fxed.
Terefore, there are 54 DOFs, including 6 horizontal DOFs
and 48 rotational DOFs, when axial deformations of ele-
ments are ignored.

A major purpose of model updating is to determine the
actual values of the structural parameters. Te design in-
formation of beam and column components of each story
can be obtained from the design information in Table 1. Te
ASTM A36 steel is used for all beam and column elements
with the yield strength of 255MPa [39]. Based on the design
information, the design value of the stifness of the beam and
column elements in each story can be calculated and taken as
the initial value of the EKF method. Table 2 shows the
comparison of beam and column stifness of each story after
updating. Te updated results obtained in Table 2 are used
later as compared values for the identifcation in this
case study.

4.2.2. Updating Structural Damping. Te frst two damping
ratios identifed by the Eigensystem Realization Algorithm
(ERA) are 3.37% and 6.61% [40]. Herein, Rayleigh damping
with the damping coefcients before updating as
α0 � 0.0920s− 1 and β0 � 0.0098  s is adopted. Tese two
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Figure 1: Identifcation of unknown seismic input. (a) EKF-UI-WDF (N� 1). (b) Smoothing EKF-UI-WDF (N� 5).
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values are used as the initial values of damping coefcients in
the EKF method, and the updated values are
αEKF � 0.0500  s− 1 and βEKF � 0.0229  s.

4.2.3. Comparison of the 2nd Story Accelerations. To refect
the efect of model updating, the comparison of the 2nd
story horizontal absolute accelerations is shown in Fig-
ure 9, in which Figure 9(a) shows the acceleration before
model updating while Figure 9(b) shows the acceleration
after model updating by the EKF method. Te compared
acceleration is the horizontal absolute acceleration,
however, the directly obtained states from EKF are rel-
ative to the ground. As can be seen from Figure 9, the
time-domain history of the 2nd story horizontal absolute
acceleration response after model updating has a better
agreement with the monitored data than that before
model updating, which proves the accuracy of model
updating through the EKF method.

4.3. Identifcation of Unknown Seismic Input and Structural
System. Tis subsection will validate the efectiveness of
the smoothing EKF-UI-WDF method in unknown seis-
mic input and Burbank building system identifcation.

Te 1991 Sierra Madre earthquake is also selected here as
the unknown seismic input, and the used observations are
the 2nd and 6th story horizontal absolute acceleration
monitored by the sensors shown in Figure 7. Te iden-
tifed states and parameters are compared with those
from the EKF method. And the satisfactory identifcation
is obtained as follows when the 10 steps are delayed
(N � 10).

4.3.1. Identifcation of Seismic Input. Figure 10 shows the
identifcation of the ground acceleration. In the case of 10
steps delayed, the overall identifed values are in good
agreement. Considering the complexity of this practical
structural engineering, the identifed result is acceptable.

4.3.2. Identifcation of Displacement. Figures 11(a) and
11(b) show the identifcation of horizontal relative dis-
placement of the 2nd and 6th story respectively. Since
there are no monitored displacement response data, it is
compared with the identifed displacement by the EKF
method. Te identifcation results are in a reasonable
range and can be further used in structural condition
assessment.
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Figure 3: Identifcation of velocity response. (a) EKF-UI-WDF (N� 1). (b) Smoothing EKF-UI-WDF (N� 5).
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4.3.3. Identifcation of Structural Stifness. Te updated
structural stifness kEKF is taken as the comparative ref-
erence herein. Figures 12(a) and 12(b) show the identifed

stifness of the 5th and 6th story columns respectively.
Te identifed parameter values converge quickly, which
verifes the efectiveness of the proposed method.
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Figure 4: Efect of delayed steps on identifed velocity error covariance.
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Figure 6: Exterior elevation of Burbank building.
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Figure 8: Sensor locations. (Figures 6 and 8 are from https://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=
CE24370&network=CGS).

Table 1: Design information of beam and column.

Elements Designation Section area (m2) Elastic property (10− 8m− 4) Elemental length (m)
B1 W30×116 22064.47 205202.09 6.10
B2 W27×102 19354.80 150675.78 6.10
B3 W27× 84 15999.97 118625.96 6.10
B4 W24× 84 15935.45 98646.85 6.10
B5 W24× 84 15935.45 98646.85 6.10
B6 W24× 68 12967.72 76170.35 6.10
C1 W14×184 34937.31 94166.24 5.18
C2 W14×184 34937.31 94166.24 3.96
C3 W14×136 25784.90 65764.57 3.96
C4 W14×136 25784.90 65764.57 3.96
C5 W14× 95 18028.64 44148.28 3.96
C6 W14× 95 18028.64 44148.28 3.96
Note. “B1” represents all beams of the 1st story and “C1” represents all columns of the 1st story.
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Table 2: Stifness of beam and column.

Elements Design
value k0 (N/m) Updated value kEKF(N/m)

B1 85781 85445
B2 62987 64127
B3 49590 52071
B4 41238 38237
B5 41238 42326
B6 31842 32043
C1 46356 46241
C2 60637 60611
C3 42348 42541
C4 42348 42476
C5 28429 28891
C6 28429 28607
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Figure 9: Comparison of the 2nd story accelerations before and after model updating. (a) Before model updating. (b) After model updating.
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5. Conclusions

Most of the current identifcation methods are not suitable for
the simultaneous identifcation of structural systems and un-
known seismic inputs using partial observations of absolute

acceleration response of structures, and the identifcation results
are greatly afected by the measurement noises. In this paper,
a newmethod namely smoothing EKF-UI-WDF is proposed to
solve the problem. Tis method can not only achieve the si-
multaneous identifcation of structural states, parameters of the
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Figure 11: Identifcation of horizontal relative displacement. (a) 2nd story displacement. (b) 6th story displacement.
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Figure 12: Identifcation of structural stifness. (a) Stifness of the 5th story column. (b) Stifness of the 6th story column.
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structural system, and unknown seismic inputs without direct
feedthrough but also reduce the infuence ofmeasurement noise
on the identifcation results.

Te efectiveness and practicability of the proposed
method are verifed by a numerical model case and
a practical engineering case. In the numerical model case,
monitored dynamic displacement response polluted by
a quite high level of noise is used. Te proposed method
gives satisfactory identifcation results and shows toler-
ance to measurement noises. Te real-world application
case is based on the Burbank building in California, USA.
Using the measured absolute acceleration response of
some foors in the 1991 Sierra Madre earthquake, the
unknown seismic input together with structural states
and parameters are identifed by the proposed method.
Te identifcation results show the applicability of the
proposed method in practical engineering.

However, the presented smoothing EKF-UI-WDF in this
paper is only suitable for the identifcation of time-invariant
structure systems. Te extension work for the identifcation
of time-variant structure systems is undertaken by the
authors.
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