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Pixel-level detection of expansion joints on complex pavements is signifcant for trafc safety and the structural integrity of highway
bridges. Tis paper proposed an improved HRNet-OCR, named as expansion joints segmentation network (EJSNet), for automated
pixel-level detection of the expansion joints on asphalt pavement. Diferent from the high-resolution network (HRNet), the proposed
EJSNet modifes the residual structure of the frst stage by conducting a Conv.+BN+ReLU (convolution+batch normal-
ization+ rectifed linear unit) operation for each shortcut connection, which can avoid the network degradation. Te feature selection
module (FSM) and receptive feld block (RFB) module are incorporated into the proposed EJSNet model to learn and extract the
contexts at diferent resolution levels for enhanced latent representations. Te convolutional block attention module (CBAM) is
introduced to enhance the adaptive feature refnement of the network. Moreover, the shared multilayer perceptron (MLP) architecture
of the channel attention module (CAM) is also modifed in this paper. Experimental results demonstrate that the F-measure and
intersection-over-union (IOU) attained by the proposed EJSNet model on 500 testing image sets are 95.14% and 0.9036, respectively.
Comparedwith four state-of-the-artmodels for semantic segmentation (i.e., SegNet, DeepLabv3+, dual attention network (DANet), and
HRNet-OCR), the proposed EJSNet model can yield higher detection accuracy on both private and public datasets.

1. Introduction

In the feld of highway and bridge engineering, expansion
joints are generally used as a special connection device to
accommodate the structural deformation of highway bridges
under multiple loads [1]. However, due to the repetitive
efects of heavy vehicle loads and environmental conditions,
expansion joints are generally one of the weakest structures
of highway bridges. Once damages, such as the restriction of
free movements or unexpected movements occur, signif-
cant secondary stress will be imposed on the structure, which
will lead to the performance degradation of the expansion
joints faster than expected [2]. Te common types of ex-
pansion joint damage include “subsidence of expansion
joints,” “cracking/lack of concrete around the expansion

joints,” and “narrowing of expansion joint gaps.” When
a vehicle passes through a damaged expansion joint, it causes
additional stress on the structure due to jumping behaviour,
which afects the service life of bridges and roads, reduces the
quality of road service, and even causes serious trafc ac-
cidents [3, 4]. Terefore, timely and accurate acquisition of
damage information of expansion joints is signifcant for the
structural integrity and trafc safety.

With the development of structural health monitoring
(SHM) techniques, many efective solutions for expansion
joint damage detection and evaluation based on long-term
monitoring data have been developed with various suc-
cesses. For instance, based on the temperature and dis-
placement data of the Ting Kau Bridge, Ni et al. [5] presented
an expansion joint condition assessment procedure and
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suggested using the cumulative displacement to assess the
health status of expansion joints. Miao et al. [6] developed
a technique for the expansion joints damage alarm and
utilized an X-bar control chart to detect the abnormal
changes in the displacement in expansion joints. Ni et al. [7]
proposed a Bayesian-based probabilistic method for con-
dition assessment and damage alarm of bridge expansion
joints with the regression between bridge longitudinal dis-
placement and temperature. However, Zhou et al. [8] noted
that due to the randomness of temperature variation and
three-dimensional characteristics of temperature distribu-
tions in the bridge, unreliable damage warnings may be
issued when the temperature-displacement relationship is
described by a linear or nonlinear regression model. In
addition, some other methods that combine intelligent al-
gorithms are also proposed, which show great potential in
modeling temperature-induced displacement. Ding et al. [9]
implemented improved backpropagation neural networks
(BPNNs) to model the correlations between modal fre-
quencies of the Runyang Suspension Bridge and environ-
mental conditions. On the basis of the LSSVM technique,
Chen et al. [10] established a temperature-displacement
learning model integrated with the PCA and HMFA (an
improved frefy algorithm), which was used to detect
damages in expansion joints of the road-rail cable-stayed
bridge. However, due to the limitations of traditional in-
telligent algorithms, there are still many challenges to
achieve high precision and better robustness concerning the
damage detection and evaluation of expansion joints.

Intelligent pixel-level pavement survey has gained
breakthroughs with the aid of advanced deep-learning
models in recent years. Particularly, deep-learning-based
pavement distress (e.g., cracks) detection has attracted
much attention [11–13]. However, current studies have paid
insufcient attention to the intelligent detection of surface
design features (e.g., expansion joints), especially expansion
joints. Kim et al. [4] developed an automatic image
recognition-based survey system for highway bridges that
combines the machine vision (M/V) technology and deep
learning models. Such a survey system can monitor the
expansion joints gap abnormalities through image analysis
while driving at high speed. Based on the integrated ar-
chitecture of pyramid scene parsing network (PSPNet) [14]
and U-Net [15], Wen et al. [16] proposed an end-to-end
pavement distress segmentation network (PDSNet) for si-
multaneous pixel-level detection of multiple asphalt pave-
ment distresses (e.g., cracks, patches, and bridge joints).
Moreover, Zhang et al. [17] proposed a deep-learning model
named ShuttleNet for simultaneous pixel-level detection of
multiple distresses (e.g., cracks and patches) and surface
design features (e.g., expansion joints and markings) on
asphalt pavements. Te ShuttleNet model can perceive the
global context as well as fner details many times by re-
peating the encoding-decoding round.

Pixel-level detection accuracy can provide precise geo-
metric features of damages for the quantitative evaluation of
expansion joint conditions on highway bridges. In the feld
of computer vision, themeaning of semantic segmentation is
to assign a class label to each image pixel, so semantic

segmentation can be regarded as pixel-level detection.
Presently, numerous robust deep-learning networks have
been developed for semantic segmentation and applied in
various industries, including the U-Net, PSPNet, SegNet
[18], DeepLabv3+ [19], and high-resolution network
(HRNet) [20]. To solve the loss of edge information problem,
the encoder-decoder architecture was developed and pro-
gressively became a prevalent solution for semantic seg-
mentation. It has been adopted in many state-of-the-art
models, such as U-Net, U2-Net [21], and DeepLabv3+.
Encoder-decoder networks normally use a skip connection
or similar shortcut structures to fuse low-level semantic
features with high-level semantic features to improve edge
segmentation [22]. Unfortunately, Xu et al. [23] pointed out
that the fusion method of skip connection can destroy high-
level semantic representation, resulting in an over-
segmentation problem. In view of the over-segmentation
problem, some deep learning solutions for constructing
context information have been developed, including mul-
tiscale context networks (e.g., PSPNet, DeepLabv3+) and
relational context networks (e.g., dual attention network
(DANet) [24], HRNet-OCR [25]). HRNet-OCR represents
a recent study on relational context networks, which aug-
ment the representation of a pixel by exploiting the rep-
resentation of the object region of the corresponding class.
Compared to PSPNet, DeepLabv3+, and HRNet-OCR sig-
nifcantly enhances the contribution of pixels from the same
class of object, resulting in obtaining a more targeted object
context and better segmentation performances.

Tis paper uses HRNet-OCR as the baseline and pro-
poses an improved HRNet-OCR model to detect expansion
joints with pixel-level accuracy. Considering that the OCR
ignores the correlation of channel features [26], a convolu-
tional block attention module (CBAM) [27] is also adopted
in the paper to calculate the weights of the channel and
spatial features to enhance the adaptive feature refnement.
Furthermore, the feature selection module (FSM) [28] and
receptive feld block (RFB) [29] module are also in-
corporated into the proposed modifcation to learn and
extract the contexts at diferent resolution levels for en-
hanced latent representations. In summary, the primary
contributions of this paper can be included as follows:

(1) An approach to pixel-level detection of the expan-
sion joints on asphalt pavements based on 2D
pavement images that can accomplish robust rec-
ognition without misidentifying other noise patterns
such as pavement background, cracks, patches, and
markings.

(2) A modifed residual structure of the frst stage of the
HRNet that can avoid the network degradation.

(3) A modifed channel attention module (CAM) that can
reduce noises resulting from invalid channel features.

2. Methodology

As shown in Figure 1(b), the proposed expansion joints
segmentation network (EJSNet) is an end-to-end deep
learning model with a modifed HRNetV2-W32 as the

2 Structural Control and Health Monitoring



backbone. Te proposed EJSNet frst extracts multiscale
features and summarizes latent representations through the
encoder, and then uses the decoder to retrieve object details
and output the fnal segmentation result.

For better adaptivity in pixel-level detection of ex-
pansion joints, the encoder-decoder architecture of
HRNet-OCR is modifed in this paper, and the modif-
cations to the encoder architecture can be summarized in
three aspects. First, the original residual structure of
the frst stage of HRNet is modifed by conducting
a 1× 1 Conv. + BN+ReLU (convolution + batch normal-
ization + rectifed linear unit) operation for each shortcut
connection to avoid the network degradation. Second, be-
fore rescaling the low-resolution representations through
bilinear upsampling to the high resolution, the feature se-
lection module (FSM) is added to enhance multiscale feature
aggregation (see stem2 section in Figure 1(a)). Last, the
receptive feld block (RFB) is applied at the end of feature
extraction to expand the receptive feld and summarize
latent representations. In addition, the convolutional block
attention module (CBAM) is incorporated into the original
decoder architecture of HRNet-OCR, and the representation
of RFB is frst fed into CBAM. Te noises from invalid
channels and spatial features have been successively reduced
by using channel and spatial feature maps with diferent
weights rationally and refning the intermediate features
adaptively.Te representation of CBAM is applied to predict
the coarse segmentation result (soft object regions) and used
as an input of OCR. Also, the output of the representation of
CBAM to go through a 3× 3 Conv. + BN+ReLU operation is
taken as another input of OCR. In this case, the output of
OCR means the augmented representation of features. Af-
terwards, the number of channels of the OCR output is
adjusted by a 1× 1 convolution and then the output is re-
stored to the original size by a bilinear upsampling operation
with a factor of 4. Ultimately, the fnal prediction result is
obtained by nonlinear activation using the sigmoid function.
Te following sections will analyse the backbone and each
module specifcally.

2.1. Backbone: HRNetV2-W32. HRNetV2-W32 is employed
as the backbone of the proposed EJSNet. As illustrated in
Figure 1(a), the main body of HRNetV2-W32 contains four
stages, and the number of the corresponding parallel con-
volution streams are 1, 2, 3, and 4, respectively [25]. As
shown in Figure 1(a) and Figure 2, each convolution stream
contains four residual units. Te residual unit of the frst
stage is formed by a bottleneck which contains two 1× 1
convolutions and one 3× 3 convolution, and the residual
unit of other stages contains two 3× 3 convolutions. Batch
normalization (BN) and rectifed linear unit (ReLU) are
applied sequentially after each convolution to normalize
hidden features and address nonlinear activation. In addi-
tion, the number of channels of the four parallel branches are
C, 2C, 4C, and 8C, respectively, and the corresponding scales
are 1/4, 1/8, 1/16, and 1/32, respectively. In particular,
channel number C is 32 in this paper. Given the input image,
the original resolution is reduced to 1/4 of the original

resolution, while the number of channels of the convolu-
tional layer is increased to 64 through two 3× 3 Con-
v. + BN+ReLU operations (see stem1 section in Figure 1(a),
and Conv. stands for convolution). In the same stage, the
high-to-low resolution convolution streams are connected
in parallel. Between adjacent stages, the branch expansion
and feature fusion of the high-to-low resolution convolution
streams are performed. By connecting the high-to-low
resolution convolution streams in parallel and repeatedly
fusing the multiscale resolution information, the high-
resolution representation can be well boosted with the
help of the low-resolution representations, and vice versa.

Te proposed EJSNet model modifes the residual ar-
chitecture of the frst stage. As illustrated in Figure 3, the
1× 1 Conv. + BN+ReLU is performed for each shortcut
connection to avoid network degradation. Furthermore, at
the end of the modifed HRNetV2-W32 model, a bilinear
upsampling operation with a factor of 2 is performed 1, 2,
and 3 times, respectively, for three low-resolution repre-
sentations from top to bottom, to let the feature map size of
the three low-resolution representations be the same as the
feature map size of the high-resolution representation (see
stem2 section in Figure 1(a)). Moreover, as the unlearnable
nature of bilinear upsampling and the repeated bilinear
upsampling operations will cause a redundant feature map,
the FSM is introduced before each bilinear upsampling
operation to enhance multiscale feature aggregation. Ulti-
mately, fusing the feature map outputs of four resolution
representations through channel connections yields the
backbone output.

2.2. Feature Selection Module. Skip connection can avoid
any particular channel responses to be over-amplifed or
over-suppressed [28]. As discussed previously, the repeated
bilinear upsampling operation will result in a redundant
feature map. Te feature selection module (FSM) is thus
introduced before each bilinear upsampling operation in this
paper to extract the feature maps containing more spatial
details and enhance multiscale feature aggregation (see
stem2 section in Figure 1(a)). General architecture of the
FSM is illustrated in Figure 4.

First, the global information of each input feature map
Ki is extracted by a global average pooling operation, fol-
lowed by a 1× 1 Conv. + BN+ sigmoid (convolution + batch
normalization + sigmoid activation function) operation to
model the importance of each feature map and output an
importance vector u. Second, scaling the original input
feature maps Ki with the importance vector u, and adding
the scaled feature maps to the Ki using a skip connection,
named as rescaled feature maps. Last, a feature selection
layer fs(·) (i.e., a 1× 1 convolution) is applied on the
rescaled feature maps to reserve important feature maps.

2.3. Receptive Field Block Module. Abundant object-
contextual information can be efectively obtained by
expanding the receptive feld. Te receptive feld of the
network is generally increased by adopting larger con-
volutional kernels or greater pooling strides. However, the
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former increases the computational cost, and the latter loses
information. To solve such problems, the dilated convolu-
tion was developed and applied in some receptive feld
modules with various successes (e.g., atrous spatial pyramid
pooling (ASPP) [30] and receptive feld block (RFB) [29]).
By comparing the relevant experiments, the RFB module is
introduced in this paper to capture more contexts while
minimizing the information loss. Te general architecture of
the RFB module is illustrated in Figure 5. RFB is a multi-
branch convolutional block consisting of a multibranch
convolution layer with diferent kernels and a trailing dilated
pooling with diferent dilation rates. To begin with, the
number of channels of the input feature map is decreased by
a 1× 1 convolution to aggregate information, and then
a series of convolution and dilated convolution operations
are performed in parallel for the frst three branches. Next,
the feature maps of the above three-branch representations
are fused through channel connection, followed by a 1× 1
convolution to restore the channel number of the feature
map. Last, scaling the above output by a factor of 1.0 and
adding the scaled feature map to the shortcut output using
an element-wise addition. Ultimately, the feature map goes
through nonlinear activation ReLU to yield the fnal output.

2.4. Convolutional Block AttentionModule. Relevant studies
have proven the efectiveness of the attention mechanism in
improving the feature representation ability of the network
[27, 31, 32]. Given that the object-contextual representations
(OCR) module ignores the correlation of channel features,
a convolutional block attention module (CBAM) is in-
troduced in this paper to help the network focus on im-
portant features and enhance adaptive feature refnement.
As illustrated in Figure 6, the general architecture of the
CBAM consists of two submodels: channel attention module
(CAM) and spatial attention module (SAM). First, the
channel attention feature Mc of each input feature map F is
extracted with the CAM, and then the Mc and F are operated
by element-wise multiplying to output the new attention
feature F1. Ten, F1 is fed into SAM, and the spatial at-
tention feature Ms is obtained with the SAM. Last, Ms and
F1 are operated by element-wise multiplying to output the
fnal refned feature map.

Moreover, the proposed EJSNet model also modifes the
shared multilayer perceptron (MLP) architecture of CAM.
Specifcally, as illustrated in Figure 7, an extra dense layer
(this layer operates the same as the original frst dense layer)
is added to the middle of the MLP such that the noise efect
of invalid channel features can be further decreased.

2.5. Object-Contextual Representations Module. Te funda-
mental idea of object-contextual representations (OCR) is to
augment the representation of a pixel by utilizing the rep-
resentation of the object region of the corresponding class
[25]. Te general architecture of the OCR module is illus-
trated in Figure 8. Te OCR mainly consists of soft object
regions, object region representations, and object-contextual
representations. In addition, the OCR is normally imple-
mented in three steps. First, the contextual pixels are divided

into a set of soft object regions with each corresponding to
a class. Particularly, the soft object region is a coarse se-
mantic segmentation output that is utilized as an input in
OCR, where a loss named as Loss1 is introduced to monitor
the convergence direction of the network and assist in the
completion of the fnal semantic segmentation result. Sec-
ond, k sets of vectors are calculated according to the coarse
semantic segmentation results and the pixel representations
(the number of k is 2 in this paper). Finally, the relationship
matrix between the pixel representations and the object
region representation is computed, and then the object-
contextual representation with the weighted summation is
obtained according to the value of each pixel and the object
region features expressed in the relationship matrix.

3. Data Preparation

Te 3,229 sets of expansion joints data used in the paper are
acquired by the PaveVison3D system, which can collect 2D and
3D pavement images at a maximum speed of 60MPHwith full
coverage for a 4-meter-wide lane. In this paper, the 3229 data
sets are randomly split into 2129 training data sets, 600 vali-
dation data sets, and 500 testing data sets, serving as the source
data to train and evaluate diferent deep-learning networks.

Figure 9 illustrates several representative matched sets of
2D images, 3D images, and ground-truth images. It can be
observed that both 2D and 3D images can well refect the gap
features of expansion joint. However, compared with 2D
images, the features of the expansion joint on 3D images are
relatively unapparent (shown in the dashed circles in Fig-
ure 9), especially serrated expansion joints, and the elevation
representation of expansion joints on 3D images is invisible
(shown in the dashed rectangles in Figure 9). Considering
that the purpose of this research is to accurately segment the
expansion joint on asphalt pavement; therefore, the 2D
pavement images are used to train each network model.

In addition, the size of 2D images is 256× 512 (H × W).
Each expansion joints data set contains a 2D pavement image
and a ground-truth image that are matched in a pixel-to-pixel
manner, and all the ground-truth images were manually
labelled using the GIMP tool (https://www.gimp.org/
downloads/). Specifcally, importing a 2D pavement image
in GIMP, frst creating a single channel black layer (bottom
layer) and a single channel transparent layer, then labelling all
expansion joint features on the transparent layer, and setting
the pixel value of the labelled area to 255. Finally, the an-
notated ground-truth image that matches the 2D pavement
image in a pixel-to-pixel manner is saved in PNG format.

4. Training

4.1. TrainingDetails. To ensure the fairness of evaluating the
overall performances of all trained networks, all the net-
works are treated identically with the training setting
elaborated in Table 1 and trained under the TensorFlow 2.5
environment using the aforementioned training data and
validation data. In addition, the optimal parameters are
saved by monitoring the network performances on valida-
tion data. Specifcally, during the whole training process,
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when the value of intersection-over-union (IOU) on vali-
dation data reaches a higher value, the corresponding pa-
rameters will thus be saved dynamically to obtain the
optimal parameters eventually.

4.2.PerformanceMetrics. Tis paper adopts recall, precision,
F-measure, and intersection-over-union (IOU) as the fun-
damental indicators of network performance. Te four in-
dicators can be expressed in the following equations.

Recall �
TP

TP + FN
, (1)

Precision �
TP

TP + FP
, (2)

F − measure �
2 × Precision × Recall
Precision + Recall

, (3)

Input 
feature

H×W×C

Channel Attention

Mc

Spatial
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Refined 
feature

Multiply Multiply H×W×C
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Figure 6: General architecture of the convolutional block attention module.
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IOU �
TP

TP + FN + FP
, (4)

where TP, FP, and FN are the numbers of true positives, false
positives, and false negatives corresponding to the pixel-level
prediction, respectively.

Te recall represents the ratio of relevant instances re-
trieved to all relevant instances, serving as an important
indicator of false-negative errors. Te precision stands for
the ratio of relevant instances retrieved to all retrieved in-
stances, serving as an important indicator of false-positive
errors. Te F-measure means the harmonic mean of pre-
cision and recall, refecting the balanced accuracy of an
algorithm.Te IOU represents the ratio of the intersection of
prediction and ground truth to the union of prediction and
ground truth, defning the accuracy of an algorithm in
a unifed manner [17]. Te recall and precision are con-
tradictory in most cases, while both the F-measure and IOU
can accurately refect the accuracy of the algorithm. For
balanced evaluations, the F-measure and IOU are adopted as
two primary indicators in this paper to evaluate the overall
performances of trained networks.

4.3. Loss FunctionSelection. Binary cross-entropy (BCE) loss
is employed as the loss function in HRNet-OCR [25], which
is expressed in (5). Compared with the background pixels,
the expansion joint pixels generally account for a smaller
proportion in pavement images, resulting in the quantity
imbalance between positive (expansion joint pixels) and
negative (background pixels) samples. Milletari et al. [33]

introduced a dice loss to help the network avoid getting
trapped in the local minima of the loss function during the
learning process so that the network prediction will not be
strongly biased towards the background pixels. Tis is un-
doubtedly benefcial to solving the quantity imbalance
problem. Hence, this paper adopts the dice loss as the loss
function, which can be expressed in equation (6).

LossBCE � −
1
N

􏽘

N

i�1
yilog􏽢yi + 1 − yi( 􏼁log 1 − 􏽢yi( 􏼁, (5)

where yi and 􏽢yi are the true value and predicted value of the
pixel i, respectively. N is the fnal output size (H × W) used
to calculate the loss for the network.

LossDice � 1 −
2 × 􏽐

N
i�1yi · 􏽢yi

􏽐
N
i�1yi + 􏽐

N
i�1 􏽢yi

, (6)

where yi and 􏽢yi are the true value and predicted value of the
pixel i, respectively. N is the total number of pixels of a mini-
batch of images.

To further verify the rationality of the choice of dice loss
as the loss function, both dice loss and BCE loss are utilized
to train the proposed EJSNet, respectively. Te results are
illustrated in Table 2 and Figure 10.

Figure 10 illustrates the F-measure and intersection-
over-union (IOU) on validation data observed during the
training process. Compared to dice loss, BCE loss can result
in comparatively stable network performances throughout
the whole training. However, the optimal network perfor-
mance that BCE loss can achieve is inferior to that yielded by

2D Images

Ground-truth Images

3D Images

Figure 9: Representative matched sets of 2D images, 3D images, and ground-truth images.

Table 1: Hardware and hyper-parameter settings for the training.

Hardware
Hyper parameters

Optimizer Batch size Epochs Learning rate
GPU: RTX 3060 (6GB)

Adam 3 60 0.0001CPU: i7-10870H
RAM: 16.0GB
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Dice loss. Furthermore, as illustrated in Table 2, the dice loss
outperforms BCE loss in both F-measure and IOU on
training data and validation data. BCE loss generally handles
positive and negative samples fairly. When positive samples
account for a relatively small proportion, they will be
overwhelmed by numerous negative samples. Dice loss is
a region-related loss, which tends to help the network focus
on the foreground area during training. Tis is undoubtedly
benefcial to solving the quantity imbalance between positive
and negative samples. In summary, the dice loss is more
suitable as a loss function for binary-classifcation tasks
compared to the BCE loss. Terefore, the dice loss is used as
the loss function for all trained networks in this paper.

4.4. Loss1 Auxiliary Efect Analysis. HRNet-OCR has two
outputs, namely, soft object regions of the coarse segmen-
tation output and fnal representations of the fne seg-
mentation output. Te two outputs correspond to loss1 and
loss2, respectively. Particularly, loss1 and loss2 are, respectively,
multiplied by scale factors of 0.4 and 1.0, and their sum is used
in backpropagation to guide the optimization of network
parameter training. Yuan et al. [25] pointed out that the in-
troduction of loss1 in soft object regions can improve network
performance to some extent. However, for the binary-
classifcation task with small positive samples, the result may
be contrary to the above. Hence, loss1 is multiplied by diferent
scale factors (i.e., 0, 0.3, 0.4, and 0.5) in this paper to explore
whether loss1 has a positive auxiliary efect in improving the
segmentation accuracy. Te results are shown in Table 3.

As illustrated in Table 3, compared to only using loss2 in
the backpropagation, using both loss1 and loss2 simulta-
neously indeed can improve network performance. When

the scale factor is set as 0.4, the proposed EJSNet attains the
highest performance metrics. Te F-measures achieved by
the EJSNet on training data and validation data are 97.16%
and 94.96%, respectively, while the IOUs are 94.47% and
90.19%, respectively. However, when the scale factor is set to
be greater (0.5) or less (0.3) than 0.4, the performance of the
EJSNet will be degraded, implying that loss1 can have
auxiliary impacts on the segmentation accuracy of the
network, and the scale factor of loss1 is set as 0.4 in
this paper.

4.5. Ablation Experiments. To verify the validity of modules
used in the proposed network, Table 4 shows the diferent
combinations of modules used for the ablation experiments,
and all models are trained under the same training setting
shown in Table 1, and the dice loss is used to train all
networks. Moreover, for simplicity, the modifed residual
structure of the frst stage of the HRNet, the convolutional
block attention module (CBAM) contained original CAM,
and the convolutional block attention module (CBAM)
contained modifed CAM are, respectively, referred to as
Stage1 M, CBAM O, and CBAM M.

Figure 11 illustrates the F-measure and IOU achieved by
all networks with diferent combinations of modules on
training data and validation data. It can be observed in
Figures 11(a) and 11(c) that the HRNet-OCR S outperforms
the original HRNet-OCR, indicating the success of the
modifed residual structure of the frst stage of the HRNet.
Compared to the HRNet-OCR S, the networks obtained by
incorporating each module individually into the HRNet-
OCR S have better performance, and the efect of in-
corporating FSM is the best. It illustrates that reducing the

Table 2: Network performances on training data and validation data.

Loss functions
Training data Validation data

F-measure (%) IOU F-measure (%) IOU
LossDice 97. 6 0.9447 94.96 0.90 9
LossBCE 96.87 0.9422 94.65 0.8984
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Figure 10: Network performances with Dice loss and BCE loss. (a) F-measure. (b) IOU.
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Table 3: Network performances on training data and validation data.

Scale
factors of loss1

Training data Validation data
F-measure (%) IOU F-measure (%) IOU

0 96.02 0.9234 94.41 0.8941
0.3 96.34 0.9293 94.60 0.8975
0.4 97. 6 0.9447 94.96 0.90 9
0.5 96.25 0.9277 94.52 0.8960

Table 4: Networks with diferent combinations of modules.

Models Code names
Module selection

Stage1 M FSM RFB CBAM M CBAM O
HRNet-OCR HO
HRNet-OCR S HO-S √
HRNet-OCR F HO-F √ √
HRNet-OCR R HO-R √ √
HRNet-OCR CM HO-CM √ √
HRNet-OCR CO HO-CO √ √
HRNet-OCR F R HO-F-R √ √ √
HRNet-OCR F CM HO-F-CM √ √ √
HRNet-OCR R CM HO-R-CM √ √ √
HRNet-OCR F R CM HO-F-R-CM √ √ √ √

HO HO-S HO-F HO-R HO-CM HO-CO
F-measure 0.9601 0.9606 0.9665 0.9618 0.9646 0.9624
IOU 0.9233 0.9242 0.9351 0.9264 0.9317 0.9275
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F-measure 0.9393 0.9399 0.9451 0.9412 0.9428 0.9408
IOU 0.8855 0.8866 0.8959 0.889 0.8918 0.8882
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Figure 11: Performances of networks with diferent combinations of modules. (a) Performances of networks integrating a single module on
training data. (b) Performances of networks integrating multiple modules on training data. (c) Performances of networks integrating single
module on validation data. (d) Performances of networks integrating multiple modules on validation data.
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redundant feature map of the model may be better than
increasing the receptive feld of the model and improving the
attention of the model. In addition, the F-measure and IOU
achieved by HRNet-OCR CM on training data and val-
idation data are 96.46%, 0.9282, 94.33%, and 0.8918, re-
spectively, which are higher than those yielded by HRNet-
OCR CO, which validates that an extra dense layer is
added to the middle of the MLP of the CAM can decrease
the noise efect of invalid channel features. It can be seen
from Figure 11 that the networks obtained by in-
corporating each module in pairs into HRNet-OCR S
perform better than combining them individually.
Figures 11(b) and 11(d) illustrate the performance
ranking of networks with diferent combinations of two
modules on training data and validation data: HRNet-
OCR F CM >HRNet-OCR F R >HRNet-OCR R CM.
It can be concluded that on the basis of reducing the
redundant feature map of the model, both increasing the
receptive feld of the model and improving the attention of
the model can further improve the performance of the
network, while the latter has a better efect.

It can be observed in Figure 11 that the F-measure
achieved by the HRNet-OCR F R CM on training data
and validation data is 97.16% and 94.96%, respectively and
the IOU is 0.9447 and 0.9019, respectively, which are all
higher than other networks with diferent combinations of
modules. It illustrates that the complementary efects can be
provided for improving the recognition accuracy of the
model by the combination of reducing the redundant feature
map of the model, increasing the receptive feld of themodel,
and improving the attention of the model. Terefore, FSM,
RFB, and modifed CBAM modules are added to the pro-
posed EJSNet model in this paper for automated pixel-level
detection of the expansion joints.

4.6. Training Results. Figure 12 illustrates the performance
of the proposed EJSNet and HRNet-OCR on validation data
during the training process. For the proposed EJSNet and
HRNet-OCR, the values of the loss-value, F-measure, and
IOU of them all present small fuctuations in the early stage
and tend to stabilize in the later stage during the training
process. In the early stage, the network learns fewer object
features, and the correct convergence direction is difcult to
be obtained, resulting in foating network performance.
When the network learns sufcient object features, it fnds
and adaptively converges in the optimal gradient direction,
resulting in increased detection accuracy. Particularly
compared with HRNet-OCR, the proposed EJSNet ulti-
mately attains smaller loss-function values and higher
performance metrics.

It can be observed from Table 5 that although the
processing speed (frames per second (FPS)) of EJSNet is
slightly slower than HRNet-OCR, the overall performance of
EJSNet is better. Te F-measure achieved by the EJSNet on
training data and validation data are 1.15% and 1.03% higher
than those yielded by HRNet-OCR, respectively, and the
IOU are 2.14% and 1.64% higher than those produced by
HRNet-OCR, respectively.Te processing speed of EJSNet is

slightly slower than HRNet-OCR (11.16FPS vs. 11.92FPS). It
can be concluded that the proposed EJSNet achieves better
accuracy/FPS trade-ofs compared to HRNet-OCR.

5. Evaluation

5.1. Evaluation Using Testing Data. Te proposed EJSNet is
compared with four state-of-the-art models (SegNet [18],
DeepLabv3+ [19], DANet [24], and HRNet-OCR [25]) in
this paper. All the four models are trained under the same
training setting shown in Table 1, and the Dice loss is used to
train all networks. In this paper, DeepLabv3+ and HRNet-
OCR employ ResNet-101 and HRNet-W32, respectively, as
the backbone networks for feature extraction.

Table 6 illustrates the network performances of SegNet,
DeepLabv3+, DANet, HRNet-OCR, and the proposed
EJSNet on 500 testing image sets. Compared to other net-
works, the processing time of the SegNet is the fastest while
the proposed EJSNet is the slowest. It can be observed in
Table 6 that DeepLabv3+ behaves better than SegNet,
DANet, and HRNet-OCR. However, the proposed EJSNet
outperforms all other networks noticeably. Te F-measure
and IOU achieved by the proposed EJSNet on 500 testing
image sets are 95.14% and 0.9036, respectively. In addition,
the F-measure and IOU of the EJSNet are 1.11% and 1.63%
higher than those attained by HRNet-OCR, respectively,
which validates the success of the proposed method of the
modifcation of the HRNet-OCR.

Figure 13 illustrates the typical segmentation results of
all the fve networks. It can be perceived that all the fve
networks can perform efciently on easy images (i.e.,
without noise objects on pavement surfaces). Nevertheless,
as can be seen from the last three comparison result images
(counting the images from left to right in landscape ori-
entation) in Figure 13, only the proposed EJSNet can yield
superior detections on complex images while the other four
networks yield more detection errors, which reveals the
proposed EJSNet has a stronger capability in compre-
hending global context than the other four networks.
Compared with other networks, the proposed EJSNet seems
to detect expansion joints in a more reasonable way.

5.2. Evaluation Using Public Dataset. To further validate the
generalization performance of the proposed EJSNet, a public
dataset CRACK500 [34] is used to retrain SegNet, Deep-
Labv3+, DANet, HRNet-OCR, and the proposed EJSNet.
Te CRACK500 dataset consists of 3368 pavement crack
images, including 1896 training images, 348 validation
images, and 1124 testing images. Te size of the original
crack images is mostly 360× 640 (H × W). To better match
the expansion joint image size (256× 512) used in this paper,
both 3368 crack images and ground-truth images that are
matched in a pixel-to-pixel manner are center-cropped to
a fxed size of 320× 640.

Te SegNet, DeepLabv3+, DANet, HRNet-OCR, and the
proposed EJSNet are trained under the same training setting
shown in Table 1, and the dice loss is used to train all
networks. Table 7 illustrates the network performances of all
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the fve networks on 1124 testing image sets. It can be
observed that the F-measure and IOU achieved by the
proposed EJSNet on 1124 testing image sets are 71.62% and
0.5579, respectively, which outperform all other networks. In

addition, Figure 14 illustrates the typical segmentation re-
sults of all the fve networks on the CRACK500 dataset. It
can be seen that compared to other networks, the proposed
EJSNet can better capture the details of crack features and
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Figure 12: Network performances on validation data during training. (a) Loss-value. (b) F-measure. (c) IOU.

Table 5: Network performances on training data and validation data.

Models
Training data Validation data

FPS
F-measure (%) IOU F-measure (%) IOU

HRNet-OCR (HRNetV2-W32) 96.01 0.9233 93.93 0.8855   .92
EJSNet (HRNetV2-W32) 97. 6 0.9447 94.96 0.90 9 11.16

Table 6: Network performances on testing data.

Models Number of
parameters Precision (%) Recall (%) F-measure (%) IOU FPS

SegNet 11, 549,379 93.38 94.60 93.99 0.8866 26.14
DeepLabv3+ (ResNet-101) 36, 812, 071 93.78 94.85 94.31 0.8924 16.63
DANet 11, 229, 763 93.82 94.62 94.22 0.8907 23.56
HRNet-OCR (HRNetV2-W32) 32, 998, 946 95.79 92.34 94.03 0.8873 11.92
EJSNet (HRNetV2-W32) 34, 854, 404 95.27 95.01 95. 4 0.9036 11.16
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yield superior detections. Tese results reveal the proposed
EJSNet has a good generalization performance.

6. Discussion

As shown in Table 6, compared with lightweight networks
(e.g., SegNet [18], DANet [24], etc), the processing speed
(frames per second (FPS)) of the proposed EJSNet is the
lowest, indicating that the EJSNet has certain challenges in
supporting real-time detection of pavement expansion

joints. In addition, Figure 15 shows several representative
detection errors yielded by the proposed EJSNet. Te false-
positive errors are highlighted in the dashed rectangles,
whereas the false-negative errors are indicated in the dashed
circles. Te false-negative errors generally are caused by the
local and complex noises (e.g., uneven illumination and
markings), while the false-positive errors normally occur at
noise patterns similar to the expansion joints. It is dem-
onstrated in Figures 13 and 15 that there are still consid-
erable challenges to perfectly detect the expansion joints

2D Images

Ground-truth Images

EJSNet (Result Images)

HRNet-OCR (Result Images)

SegNet (Result Images)

DeepLabv3+ (Result Images)

DANet (Result Images)

Figure 13: Typical performances of all fve networks in detecting the expansion joints.

Table 7: Network performances on testing images from the CRACK500 dataset.

Models Precision (%) Recall (%) F-measure (%) IOU
SegNet 67.55 69.24 68.39 0.5196
DeepLabv3+ (ResNet-101) 69.41 73.59 71.44 0.5556
DANet 66.46 68.59 67.51 0.5095
HRNet-OCR (HRNetV2-W32) 68.12 71.67 69.85 0.5367
EJSNet (HRNetV2-W32) 69.68 73.68 7 .62 0.5579

12 Structural Control and Health Monitoring



2D Images

Ground-truth Images

EJSNet (Result Images)

HRNet-OCR (Result Images)

SegNet (Result Images)

DeepLabv3+ (Result Images)

DANet (Result Images)

Figure 14: Typical performances of all fve networks on the CRACK500 dataset.

2D Images

Ground-truth Images

Result Images

Figure 15: Representative detection errors of the proposed EJSNet on testing data.
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with high accuracy due to the complexity of the pavement
surfaces. For the above challenges, in the future, the
research team will focus on model structure simplifca-
tion, while also planning to combine self-attention
mechanisms to achieve a higher detection accuracy and
a faster processing speed.

7. Conclusions

Aiming at pixel-level detection of the expansion joints on
asphalt pavements, this paper proposes an improved
HRNet-OCR model named as expansion joints segmenta-
tion network (EJSNet). In short, the encoder-decoder ar-
chitecture of the original HRNet-OCR was optimized and
adjusted such that more contexts at diferent scales could be
learned and the network segmentation capability can be
improved. Specifcally, the residual structure of the frst stage
of the high-resolution network (HRNet) was modifed to
avoid the network degradation; the feature selection module
(FSM) and receptive feld block (RFB) were introduced to
enhance the feature extraction and summarize latent rep-
resentations; and the modifed convolutional block attention
module (CBAM) was also introduced to help the network
retrieve more object details.

Te experimental results show that compared to four
state-of-the-art models for semantic segmentation (i.e.,
SegNet, DeepLabv3+, dual attention network (DANet), and
HRNet-OCR), the proposed EJSNet can yield superior
performances and higher detection accuracy on both private
and public datasets. Specifcally, the F-measure and IOU
achieved by the proposed EJSNet on 500 private testing
image sets are 95.14% and 0.9036, respectively, and those
achieved by the proposed EJSNet on 1124 public testing
image sets (CRACK500) are 71.62% and 0.5579, respectively,
both of which outperform four other networks.Tese results
indicate that the proposed EJSNet has a better capability of
feature refnement, superior performances in semantic
segmentation, and good generalization performance.

In addition, although the processing time of the pro-
posed EJSNet is relatively slow and cannot detect de-
formation of expansion joints, it can segment the features of
expansion joints with pixel-level accuracy, providing a data
basis for subsequent detection of expansion joint de-
formation. In the future, the encoder architecture of the
proposed EJSNet will be further optimized to achieve better
accuracy/processing speed trade-ofs, and the collected 3D
image data will be used to train the network to develop
a method that can segmentate expansion joint features and
detect expansion joint deformation.
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