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Camera-enabled unmanned aerial vehicles (UAVs) provide a promising technique to considerably speed up the inspection and
visual data collection from regions that may otherwise be inaccessible. In addition, the technology of image-based 3D re-
construction can generate a point cloud model using images captured by UAVs. However, the performance of the point cloud
modeling may be afected by multiple factors, such as the modeling software, ground control points (GCPs), and UAV fight
modes. In this study, three common software packages were compared, and Pix4Dmapper was considered a suitable software for
point cloudmodeling for earthquake-damaged buildings.Te accuracy and resolution of point cloudmodels are usually evaluated
by root mean square error (RMSE) and ground sampling distance (GSD).Te efects of the main factors, including the number of
GCPs, distribution of GCPs, fight manner of the UAV, and distance from the UAV to the target, were investigated on the basis of
two real-world multistory earthquake-damaged structures. Te infuence rules of the main factors revealed that a close range,
automatic fight mode of the UAV, a large number of GCPs, and a relatively wide distribution of the GCPs may generate a point
cloud model with low computational costs, high accuracy, and high resolution. In the particular illustration example here, the
RMSE is 6.78mm while the GSD is 1.60mm. Finally, rapid structural damage inspection was demonstrated using an accurate
point cloudmodel and compared with the inspection results of a total station and terrestrial laser scanner point cloud models.Te
comparison of diferent inspection results showed that the relative errors were relatively acceptable within 4%.

1. Introduction

Most buildings are becoming susceptible to losing their
designed functions as they deteriorate from use. Once they
experience earthquakes, buildings may lose more functions
and become dangerous. Tis process signifes urgent
maintenance and inspection issues. Because of this, many
research groups have proposed computer vision-based
structural health monitoring and structural damage in-
spection techniques [1–6]. For example, the vision-based
method using a deep architecture of convolutional neural
networks [1] and the faster region-based convolutional
neural network-based structural visual inspection method
[2] were proposed for detecting multiple types of damages in
extensively varying situations. In addition, the unmanned

aerial vehicle (UAV) surveying technology provides an ef-
fcient and convenient way to acquire visual information.

In recent years, UAVs have been widely applied in civil
engineering [7]. With the rapid development of UAV
technology [8], low-altitude UAV surveying and mapping
technology provides a new efcient multidimensional in-
formation acquisition method for structural digitization [9],
daily maintenance [10, 11], and postdisaster emergency
assessment [12] of engineering structures. For example, the
autonomous UAV system integrated with a modifed faster
region-based convolutional neural network was proposed to
identify various types of structural damage and map the
detected damage in a GPS-denied environment [13]. Te
autonomous UAV-based damage detection method using
ultrasonic beacons was proposed for indoor environments
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and areas in which GPS was denied or unreliable [14].
Terefore, UAVs play an important role in the entire life
cycle of engineering structures. Te daily maintenance of
various structures, such as dams [15], bridges [16], roads
[17], and buildings [18], can be realized by UAVs, which
collect visual data from inaccessible regions [19]. In addition,
UAVs can accomplish faster structural damage inspection
and assessment in disaster areas because of the in-
convenience of trafc after an emergency [20]. Structural
digitization is the basis of daily maintenance and post-
disaster emergency assessment [21–25], and image-based 3D
reconstruction using images captured by UAVs is one of the
prominent techniques for digitization of engineering
structures [26].

Some studies have investigated the accuracy of the point
cloud model of image-based 3D reconstruction. Because the
diferent fight parameter combinations of UAVs have an
important impact on the accuracy of the point cloud model
[27], an appropriate fight and image capture strategy ad-
equate to the quality requirements of the modeling can save
time and resources [28]. Te UAV observations obtained
under diferent light conditions can be evaluated using
terrestrial laser scanner acquisitions, which show the efect
of light conditions on the accuracy of the point cloud model
[29]. Te distribution and quantity of ground control points
(GCPs) can also impact the accuracy of point cloud models
[30]. In addition, an overview of UAV and image-based 3D
reconstruction discussed the major factors that infuence
accuracy and demonstrated the accuracy and limitations of
UAV-based topographic surveying [31]. Te fve infuence
factors (fight height, average image quality, image overlap,
GCP quantity, and camera focal lengths) [32] and seven
indices (including proximity to key-point features, distance
to GCPs, angle of incidence, camera stand-of distances,
number of overlapping images, brightness index, and
darkness index) [33] impacting 3D modeling accuracy have
been investigated. Moreover, the diferent software for
surveying and 3D reconstruction could also afect the ac-
curacy of point cloud models [9].

Te point cloud model of engineering structures is
mostly reconstructed with centimeter accuracy using images
captured by the UAV, which is used for structural damage
inspection [34]. Moreover, the region-scale point cloud
model can be reconstructed with centimeter accuracy using
image-based 3D reconstruction [33]. Te millimeter-scale
resolution of the point cloud model is displayed for in-
frastructure condition assessment using an image-based
systematic and adaptive reconstruction technique [35].
Even when compared with the point cloud model acquired
by a terrestrial laser scanner, the point cloud model
reconstructed by multiview images is sufciently accurate
for structural damage inspection and state assessment
[35, 36]. Te accuracy of the point cloud model is the
foundation of engineering applications such as structural
health monitoring, damage inspection, and state assessment.

Furthermore, structural condition inspection and
damage diagnosis based on the point cloud model have also
been studied [37]. Te health monitoring of the structural
movement can be realized by comparing the data collected

by the UAV over diferent periods [38]. Te semantic
segmentation of important structural components in the
point cloud model can be accomplished for diferent types of
structures, such as bridges [39], tunnels [40], buildings [41],
and towers [42]. Structural damage inspection of structural
components, such as beams, columns, and walls, is per-
formed easily after structural semantic segmentation in the
point cloud model [43]. Moreover, the structural damage
inspection of the accurate point cloud model can provide
accurate detection results, which can be used as the research
basis for structural state assessment [44, 45]. Terefore, the
precision of the point cloud model is critical in the processes
of structural health monitoring, semantic segmentation,
damage inspection, and state assessment. Tus, a feasible
method that can realize accurate point cloud model re-
construction of engineering structures is fundamental and
necessary.

Tis paper presents an accurate point cloud model re-
constructionmethod for earthquake-damaged structures based
on images captured by UAVs; the efects of diferent factors on
the precision of the point cloud model are examined. First, the
methodologies of image-based 3D point cloud model re-
construction and point cloud model quality evaluation are
detailed. Tereafter, two real-world multistory earthquake-
damaged building structures, corresponding to moderate
damage and near-collapse conditions, are illustrated. Te in-
fuence rules of the main factors, including the number of
GCPs, distribution of GCPs, fight manner of the UAV, and
distance from the UAV to the target, on the precision of the
point cloudmodel are presented. Finally, the structural damage
inspection and state assessment are presented using an accurate
point cloud model. In addition, the inspection results of the
image-based point cloud model are quantitatively compared
with those of the total station and terrestrial laser scanner point
cloud model.

Generally, this paper may be distinguished from the
existing studies with the following remarks: (1) the selection
and distribution of feld GCPs are studied to analyze the
accuracy and computational efciency of UAV-based point
cloud models for seismic damaged structures; (2) diferent
UAV fight modes, such as automatic and manual fights and
close and far fights, are studied to analyze the accuracy and
resolution of UAV-based point cloud models; and (3) the
residual deformation measured by three methods, including
the total station, image-based point cloud model, and ter-
restrial laser scanner point cloud model, is compared for
performance validation on structural damage inspection of
point cloud models. Practically, the proposed method could
accelerate the feld inspection of seismically damaged
structures in a digital and efcient manner with UAV
equipment and computer vision techniques.

2. Methodology

Te proposed methodology of image-based 3D point cloud
model reconstruction involves a workfow with four funda-
mental steps, as shown in Figure 1. (1) First, GCPs aremanually
placed around the physical structure according to the cir-
cumstances. Traditional surveying instruments, such as total
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stations, are usually used to measure the coordinates of the
GCPs for accurate reconstruction. (2) Tereafter, data col-
lection is conducted. Critical image data from diferent views
are captured by photography using UAVs after path planning.
To ensure data precision, high-resolution images must be
captured. (3) Image-based 3D reconstruction algorithms [46],
such as structure frommotion (SFM) [31] andmultiview stereo
(MVS) [33], are adopted to generate a dense point cloudmodel
of the object from multiple images captured by the UAVs. (4)
Finally, the main factors afecting the precision of the point
cloud model are presented. Te resolution and accuracy of the
point cloud model are analyzed and shown for later structural
inspection and monitoring.

2.1. GCPs Layout. Te GCPs are points on the ground with
known coordinates. In an aerial mapping survey, the GCPs
are points that a surveyor can precisely pinpoint; with
a handful of known coordinates, it is possible to accurately
map large areas. GCPs play an important role in point cloud
modeling and are used to locate the position, constrain the
size, and check the accuracy. A point that is evidently
distinguished in the surrounding environment can be used
as a natural GCP. In addition, artifcially designed special
point patterns, such as white and black papers, can be
employed as artifcial GCPs because they easily display high-
contrast visual characteristics. Te quantity and distribution
of GCPs may have signifcant efects on the accuracy of the
point cloud model [30], and the edge distributions of GCPs
may obtain a better accuracy of the point cloud model [47].
In addition, it is recommended that GCPs be evenly dis-
tributed over the interest area [48]. Figure 2 illustrates the
uniform, concentrated, and linear distribution of GCPs.
Geometrically uniform distribution means GCPs are uni-
formly distributed in the whole area of interest, as shown in
Figure 2(a), and the majority of the target area is covered by
GCPs. Concentrated distribution means GCPs are located in
a relatively small region, as shown in Figure 2(b); obviously,
a small portion of the target area is covered by GCPs. Linear
distribution means GCPs are approximately distributed in
the area of interest, as shown in Figure 2(c).

2.2. Data Collection. Camera-enabled UAVs provide
a method that can signifcantly facilitate inspection and
collect image data from inaccessible regions. UAV path
planning allows accurate acquisition of high-quality image
data groups for point cloud modeling. Common UAV fight
paths include the scan and surround paths (as shown in
Figure 3), which are available for regional fight mapping
and building fight mapping, respectively. Te scan fight
paths (as shown in Figure 3(a)) of UAVs collect the visual
information of the region from one direction and are
suitable for regional fight mapping. Te surrounding fight
paths (as shown in Figure 3(b)) of UAVs collect the visual
information of the target from all directions and are suitable
for building fight mapping. Moreover, it is necessary to
perform supplementary photography outside the UAV fight
paths to ensure the completeness of the data. Adjacent
images require a sufcient overlap area to ensure that
a reliable connection can be established between the images
in the point cloud reconstruction. Te accuracy of point
cloud models would be improved when increasing the image
overlap [32]. Appropriate high values for the forward and
side-overlap parameters can satisfactorily improve the ac-
curacy of the results, such as about 80% overlap [49].
Furthermore, the manner of fight of the UAV and the
distance from the UAV to the target may afect the accuracy
of the point cloud model.

2.3. Point Cloud Reconstruction. SfM is a photogrammetric
range-imaging technique for estimating three-dimensional
structures from image sequences with a sufciently coupled
area. SfM photogrammetry with MVS can provide hyper-
scale point cloud models using image sequences acquired
from UAV cameras and a network of GCPs. Te complete
reconstruction of point cloud models is accomplished by
performing an entire SfM-MVS workfow, which employs
multiple algorithms based on 3D computer vision and
photogrammetry techniques. Diferent algorithms are used
for each step of the SfM-MVSmethod.Te typical SfM-MVS
workfow implemented by most software packages includes
the following sequential steps [50]: feature detection,
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Figure 1: Workfow of image-based 3D point cloud models reconstruction.
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identifcation of correspondences, identifying geometrically
consistent matches and fltering key-point correspondences,
structure from motion, scale, and georeferencing, optimi-
zation of camera alignment using known GCPs, and point
cloud densifcation.

Te computational cost of the SfM-MVS workfow varies
depending on various factors such as the number of input
images, image resolution, and matching algorithm used.
Generally, the computational cost of SfM-MVS can be di-
vided into two main parts: the SfM stage and the MVS stage.
(1) Te SfM stage involves estimating the camera poses and
sparse 3D point clouds from a set of input images. Te
computational cost of this stage is primarily dependent on
the number of images and the complexity of the scene. For
example, if the scene has a lot of texture and features, then
the number of extracted features and the number of matches

will be high, which will increase the computational cost. On
the other hand, if the scene is relatively simple and has fewer
features, the computational cost will be lower. (2) Te MVS
stage involves dense reconstruction of the scene from the
sparse 3D point cloud obtained from the SfM stage. Tis
stage involves computing the depth for each pixel in the
images and fusing them to create a dense 3D model. Te
computational cost of the MVS stage is primarily dependent
on the number of pixels in the images and the resolution of
the output point cloud.

In addition, the number of GCPs used in SfM-MVS
workfows can impact the computational cost in several
ways: (1) Adding GCPs can increase the overall number of tie
points, which may increase the computational cost of feature
extraction and matching algorithms. (2) GCPs can be used to
scale the model and improve its accuracy, which may require
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Figure 2: Diferent distributions of GCPs in the feld experiment. (a) Uniform distribution of GCPs. (b) Concentrated distribution of GCPs.
(c) Linear distribution of GCPs.
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Figure 3: Common UAV fight paths. (a) Scan path. (b) Surround path.
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additional computation time during bundle adjustment and
dense reconstruction steps. (3)Te number and distribution of
GCPs can also afect the computation cost of the SfM-MVS
workfow. Using a larger number of well-distributed GCPs can
lead to faster convergence times during bundle adjustment,
whereas using a smaller number of poorly distributed GCPs
may result in longer computation times.

Te number of GCPs used in SfM-MVS workfows has
a signifcant impact on the accuracy of point cloud models. In
general, the more GCPs that are used, the more accurate the
reconstruction of the point cloudmodel will be.Tis is because
more GCPs provide more information for the software to use
in calculating the transformation between the point cloud
models and the real world. However, it is important to note that
there is a point of diminishing returns with addingmore GCPs.
Beyond a certain number, the additional GCPs may not sig-
nifcantly improve the accuracy of the point cloud model.
Additionally, the accuracy of the GCPs themselves also plays
a role in the overall accuracy of the point cloud model.

Tis technique is not limited by a temporal frequency
and can provide point cloud data comparable in density and
accuracy to those generated by terrestrial and airborne laser
scanning at a fraction of the cost. Recently, several existing
commercial software packages, such as Pix4Dmapper,
Agisoft Metashape, and ContextCapture, have realized
image-based point cloud reconstruction. Several existing
literature [51, 52] have studied the performance of diferent
software in terms of accuracy and speed of point cloud
models reconstruction and show that diferent software has
its own advantages. Agisoft Metashape and Pix4Dmapper
were found to have better performance than Con-
textCapture, which had a worse accuracy of point cloud
models reconstruction than other software due to limita-
tions in the performance of the image matching algorithm
[51, 52]. In addition, Pix4Dmapper was found to have
similar performance [51, 53–55] with Agisoft Metashape in
accuracy of point cloud models reconstruction and have
better density [51] than Agisoft Metashape.

2.4. Model Quality Evaluation. Te average Ground Sam-
pling Distance (GSD) [48] and Root Mean Square Error
(RMSE) [56], common indicators for the quality evaluation
of point cloud models, indicate the resolution and accuracy
of the point cloud models, respectively. GSD is a measure of
one sampling limitation to spatial resolution, which is the
distance between two consecutive pixel centers measured on
the ground.Te larger the value of GSD, the lower the spatial
resolution of the image and the less visible the details. Te
calculation of GSD is shown in equations (1)–(3):

GSDh �
H × Sheight

f × Imgheight
, (1)

GSDw �
H × Swidth

f × Imgwidth
, (2)

GSD � max GSDh,GSDw( , (3)

where f denotes the focal length of the camera. H is the
UAV’s fight altitude. Sheight and Swidth are the height and
width of the camera sensor, respectively. Imgheight and
Imgwidth are the image height and width in pixels,
respectively.

Te RMSE is the square root of the mean of the square of
the error between the coordinates of the GCPs and the
corresponding points in the point cloud model. RMSE is
commonly applied, and it is considered an excellent general
metric for the accuracy of point cloud models. Te three
dimensions and total RMSE are calculated using equations
(4)–(7):
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where Xp, Yp, and Zp represent the three-dimensional
coordinates in the point cloud model; Xt, Yt, and Zt rep-
resent the three-dimensional coordinates measured by
surveying instruments; and n is the number of GCPs.

3. Experimental Study

In this study, two earthquake-damaged buildings, which
experienced the MS 8.0 Wenchuan earthquake on May 12,
2008, were selected to study the image-based 3D re-
construction technology. Both structures were located in
Beichuan County, Sichuan Province. In the frst example,
a four-story masonry structure with moderate damage, is
used for investigating the efect of UAV fight manner,
distance from UAV to target, and quantity of GCPs on the
accuracy of the point cloud model. Te second example is
a three-story reinforced concrete frame structure with
a near-collapse status for examining the efect of the dis-
tribution of GCPs on the accuracy of the point cloud model.

3.1. Four-Story Masonry Building. Because of the open en-
vironment around the four-story masonry building struc-
ture, the surrounding fight path of UAVs is suitable for the
collection of images. Considering the duration of feldwork
and accuracy of point cloud models [30], 13 GCPs are se-
lected for controlling the accuracy of point cloudmodels and
researching the quantity of GCPs. Te actual scene of the
four-story masonry building with 13 GCPs layouts is shown
in Figures 4(a) and 4(b) from two directions: the east and
west sides. Te selected 13 GCPs are evenly distributed on
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the structure surface, in which GCPs Nos. 1–5 laid near the
ground are artifcial with black and white patterns identifed
in Figure 4(c). In addition, GCPs Nos. 6–13 on the building
surface, such as points in corners and edges, are natural and
clearly distinguished in the surrounding environment. Since
the damaged building is inaccessible, the fve artifcial GCPs
covering all directions of the structure are uniformly laid
near the ground on the building surface. It is difcult to
identify multiple corners with distinct colors as natural
GCPs on the dark west side of the building. Tus, three
natural GCPs are laid on the west side of the target building,
and fve natural GCPs are utilized on the east side of the
building. Te TOPCON GPT-7502 total station was used as
a surveying instrument to measure the coordinates of the
GCPs, as shown in Figure 4(d). Te coordinates of the GCPs
measured by the total station were adjusted to a range of
10∼30m for better calculations, as shown in Table 1.

Te DJI Phantom 4 Pro drone was used for feld pho-
togrammetry with camera angles of 0° and −30° in diferent
fight modes to ensure that 2000 images with approximately

75% front and side overlap area were captured with an image
resolution of 5472× 3648 pixels, as shown in Figure 5(a).
Four UAV fight modes were selected because of the fight
manner and surrounding radius of the UAV, including
automatic close surround path, automatic far surround path,
manual close surround path, and manual far surround path,
as shown in Figures 5(b) and 5(c). Te images taken by the
automatic surround path were uniformly distributed in
space and had a consistent overlap area ratio. Te images
captured by the manual surround path were relatively
scattered in space and had diverse overlap area ratios.
Subsequently, the point cloud models were reconstructed by
image-based 3D reconstruction based on images from dif-
ferent UAV fight modes: a manual surround path with
surround radii of 15m and 20m, an automatic surround
path with surround radii of 15m and 20m, and a combi-
nation of manual and automatic surround paths with sur-
round radii of 15m and 20m, as shown in Table 2.
Figure 5(d) illustrates the point cloud model from four
directions: front, back, and two side views. Te point cloud

(a) (b)

(c) (d)

Figure 4: Layout and feld measurement of GCPs in the four-story masonry building. (a) GCPs layout: east side. (b) GCPs layout: west side.
(c) Artifcial GCPs. (d) Field survey.
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model was reconstructed based on images taken by an
automatic close surround path. Te real-life images and
processed point cloud models were further compared with
two illustrative damaged regions, as shown in Figure 5(e).
Te point cloud model can favorably digitalize the original
appearance of the physical object, and most of the ap-
pearance details can be restored. However, slight deviations
may be observed in the color and lighting.

Diferent software was compared for selecting the
software that is most suitable for reconstruction of point
cloud models. Te computer with the main specifcations
(CPU: Intel (R) Core (TM) i7-12700 CPU; RAM: 64GB;
GPU: NVIDIA GeForce RTX3060) was used for selection of
suitable software. Te comparison of point cloud models
generated by images captured by UAV (automatic close
surround path) between three software (ContextCapture,

Table 1: Coordinates of the GCPs measured by the total stations in the four-story masonry building.

GCPs
Coordinates (m)

X Y Z
1 19.2387 10.3590 10.5266
2 15.2061 16.8940 10.8716
3 11.2177 24.7296 11.0074
4 19.0987 25.8111 10.0000
5 24.4490 13.1980 10.6207
6 10.0000 26.9793 18.9569
7 19.0484 10.0000 21.9171
8 16.6691 29.7544 21.0896
9 16.6197 29.8530 22.0654
10 10.4809 26.0054 17.3211
11 24.1948 12.9820 21.0853
12 17.7426 28.2454 20.6279
13 19.0189 25.5135 17.6225

Image-based 3D reconstruction

(a) (b) (c)

(e)(d)

Real imagesFront view

Back view

Side view 1

Side view 2

Point cloud

Figure 5: Point cloud model reconstruction of the four-story masonry building. (a) Overview of physical structure. (b) Automatic surround
path. (c) Manual surround path. (d) Point cloud model. (e) Local comparison.

Structural Control and Health Monitoring 7



Agisoft Metashape, and Pix4Dmapper) is shown in Table 3,
which also shows the version and website of the three
software. Figure 6 illustrates the comparison of computa-
tional time and model quality between diferent software.
ContextCapture was found to have worse accuracy and
speed of point cloud model reconstruction than other
software, but more dense point clouds with 546,951,496
points in the model was generated by ContextCapture. Te
faster speed and better resolution of the point cloud model
reconstruction were found in Agisoft Metashape, but more
sparse point clouds with 10,713,043 points in the model were
generated. Pix4Dmapper was found to have better accuracy
of point cloud models reconstruction than other software.
Additionally, the moderate speed and density of point cloud
modeling were found in Pix4Dmapper. Terefore, Pix4D-
mapper, with its balanced performance between efciency
and accuracy, was selected to establish the point cloudmodel
using feld-captured image sequences for the current
research.

Subsequently, several point cloud models were recon-
structed to investigate the infuence of the diferent fight
modes on the accuracy of the point cloud model. Te dif-
ferent fight modes include a manual surround path with
surround radii of 15m and 20m, an automatic surround
path with surround radii of 15m and 20m, and a combi-
nation of manual and automatic surround paths with sur-
round radii of 15m and 20m, as shown in Table 2. Te GSD
and RMSE of the point cloud model under any fight mode
were less than 20mm, some of which even reached the
millimeter level. Figure 7 shows the efects of the fight
manner and surround radius of the UAV on the GSD and
RMSE. Noticeably, the GSD of the manual surround path is
smaller than that of the automatic surround path, and the
GSD of the close surround path is smaller than that of the far
surround path, as shown in Figure 7(a).Tis ensures that the
spatial resolution of the reconstructed point cloud model is
higher, indicating that the precision of the point cloudmodel
is better. Furthermore, the RMSE of the automatic surround
path is smaller than that of the manual surround path owing
to the more consistent overlap area ratio of the images, as
shown in Figure 7(b), where the fight surround radius has
no efect on the RMSE. Te point cloud model based on
image combinations captured by automatic and manual
surround paths does not have better resolution and accuracy
owing to the confused overlap area ratio of the images.

Subsequently, because the selected GCPs are evenly
distributed on the structure surface, a series of point cloud
models are reconstructed using a variable number of GCPs
to study the efect of the number of GCPs on the accuracy of

the point cloud model. Te importance of the GCP is
presented in Figures 8(a) and 8(b), which show a compari-
son between the point cloud model with and without GCPs.
Signifcant diferences in the point cloud model size can be
identifed, such as the distances from GCP 4 and GCP 11 to
GCP 5 in the two point cloudmodels being diferent bymore
than 1m.Te signifcant diference in the point cloud model
size indicates that GCPs are indispensable in image-based
point cloud reconstruction owing to the size controls. Te
four randomly selected work groups on the additive order of
the variable number of GCPs are shown in Table 4, which is
used for the reconstruction of a series of point cloud models.
Te RMSE of the point cloud models in the four groups
revealed the efect of the number of GCPs on the accuracy of
the point cloud model, as shown in Figure 8(c).Te 13 GCPs
yielded the smallest RMSE of 10.084mm, indicating the
highest accuracy of the point cloud model, whereas the least
three GCPs produced the largest RMSE of 25.995mm, in-
dicating the lowest accuracy of the point cloud model.
Evidently, the larger the number of GCPs, the smaller the
RMSE of the point cloud model. Te RMSE is limited by the
accuracy of the GCPs and image quality; there is in-
signifcant change for a number of GCPs exceeding seven.

Additionally, the impact of the GCPs quantity on
computational cost was studied. Te computer with the
main specifcations (CPU: Intel (R) Core (TM) i7-12700
CPU; RAM: 64GB; GPU: NVIDIA GeForce RTX3060) was
used for reconstruction of point cloud models. Group I in
Table 4 was selected for studying the impact of the GCPs
quantity on computational cost. Te computational time for
each reconstruction is recorded, as shown in Figure 9. A
small amount of GCPs does not signifcantly afect the
computational cost. However, a large number of GCPs
signifcantly reduce computational time, as shown in
Figure 9(a). Te signifcant correlation between the accuracy
of the point cloud model and computational time is shown
in Figure 9(b). Te larger quantity of GCPs leads to better
accuracy of point cloudmodels and faster efciency of model
reconstruction.

3.2. Tree-Story Frame Structure. Tere are many trees and
buildings around the seismically damaged three-story
concrete frame structure; therefore, the scan fight path
of the UAVs is selected to collect image data. Te visible
and diferent inclination conditions were observed on the
second foor of the three-story frame structure, providing
a unique opportunity for studying point cloudmodel-based
structural damage detection. Terefore, two natural GCPs

Table 2: Diferent UAV fight modes and number of images for 3D reconstruction.

Flight modes Surround radius (m) Number of images

Manual surround path 15 612
20 439

Automatic surround path 15 503
20 194

Manual + automatic surround path 15 1115
20 633
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are laid on each column of the second foor to control the
accuracy of point cloud models. In addition, in order to
study the distribution of GCPs, three natural GCPs are
uniformly laid on the distinguished corners of the upper
part of the frame structure, and four artifcial GCPs are laid
on the accessible part of the frame structure. Te seismi-
cally damaged three-story concrete frame structure with
multiple GCPs, as shown in Figure 10, was reconstructed
based on images for examining the efect of the distribution
of GCPs on the point cloud model. Numerous GCPs were
regularly distributed on the structure surface, and the

coordinates of the GCPs measured by the TOPCON
GPT-7502 total station were adjusted to a range of 10∼40m
for improved calculation, as shown in Table 5. GCPs 1–23
located on the building surface were natural and clearly
distinguished in the surrounding environment. In addition,
GCPs No. 24–27 laid near the ground were artifcial with
black and white patterns. Furthermore, 348 images with
approximately 75% front and side overlap areas were
captured with an image resolution of 5472 × 3648 pixels
using the DJI Phantom 4 Prodrone in the scan path with
camera angles of 0° and −30°.
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Figure 6: Comparison of performance between diferent software. (a) Comparison of computational time between diferent software. (b)
Comparison of model quality between diferent software.
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Figure 7: Efect of fight modes on the GSD and RMSE. (a) Efect of fight modes on the GSD. (b) Efect of fight modes on the RMSE.

Table 3: Comparison of three software and point cloud models reconstructed.

Software Computational time (min) Points Version Website
Pix4Dmapper 52.33 26, 314, 604 4.7.5 https://www.pix4d.com
Metashape 20.97 10, 713, 043 2.0.1 https://www.agisoft.com
ContextCapture 132.77 546, 951, 496 10.20.0 https://www.bentley.com
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Te point cloud model of the seismically damaged three-
story frame structure was reconstructed using the SfM and
MVS techniques based on 27 GCPs and 348 images. Te
GSD and RMSE of the point cloud model were 2.4 and
6.78mm, respectively. Figure 11(a) illustrates the point
cloud model from three directions (front view and two side
views) with complete structural members, such as beams,
columns, and walls. Te local damage in the point cloud
model is clear for structural inspection, although non-
structural members, such as glasses, are not completely

reconstructed. Te real-life images and processed point
cloud models were further compared with two illustrative
regions, as shown in Figure 11(b). It can be observed that the
point cloud model can digitalize the original appearance
with slight deviations regarding color and lighting.

Because numerous GCPs are regularly distributed on the
structure surface, the diferent spatial distributions of the
GCPs can be used for point cloud reconstruction, as shown
in Table 6, with fve work groups, including four 4GCPs
groups and one 27GCPs group. Te GCPs in work groups
4GCPs-I and 4GCPs-II were widely distributed in themodel,
and the GCPs in work groups 4GCPs-III and 4GCPs-IV
were locally distributed in the model. Te errors of the GCPs
in each spatial distribution are shown in Figure 12. No-
ticeably, the error of the GCPs is afected by their diferent
spatial distributions. For the selected GCPs (marked with
black squares) for reconstruction and the GCPs around
them, the error is equal to or smaller than the model error of
27 GCPs for reconstruction. In contrast, there are larger
errors in the GCPs that are further from the selected GCPs
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Figure 8: Efect of GCPs on the accuracy of the point cloud model. (a) Point cloud model without GCPs. (b) Point cloud model with
GCPs. (c) Efect of the number of GCPs on the RMSE.

Table 4: Four work groups about additive order of the variable
number of GCPs.

Work groups Selected 3 GCPs Additive GCPs order
Group I 1, 2, 3 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
Group II 11, 12, 13 10, 9, 8, 7, 6, 5, 4, 3, 2, 1
Group III 3, 7, 11 1, 5, 9, 13, 12, 10, 8, 6, 4, 2
Group IV 6, 7, 9 11, 13, 5, 2, 8, 4, 10, 12, 1, 3
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for reconstruction. Te error of the point cloud model
reconstructed using GCPs widely distributed in the model,
such as the work groups 4GCPs-I and 4GCPs-II, is similar to
that of the 27 GCPs reconstruction model, as shown in
Figures 12(a) and 12(b). Te error of the model that is
reconstructed using GCPs distributed in the model local
area, such as the work groups 4GCPs-III and 4GCPs-IV, is
larger than that of the 27 GCPs reconstruction model, as
shown in Figures 12(c) and 12(d). In particular, the error of
the GCPs further from the local area is larger, such as GCPs
9, 10, 19, 20, 23, and 27 in the 4GCPs-III group and GCPs 21,
22, and 23 in the 4GCPs-IV group.

PCA can be used to interpret the spatial distribution
characteristics of GCPs. Te products of the eigenvalues of
the PCA, shown in Table 6, represent the spatial distribution
characteristics, and their efect on the RMSE is shown in
Figure 13(a). Tere are diferent eigenvalues in the diferent

GCPs distributions, and a larger product of the eigenvalues
of the PCA results in a smaller RMSE. For the same number
of GCPs, the maximum product of eigenvalues (606.122) in
4GCP-I corresponds to a minimum RMSE of 8.48mm, and
the minimum product of eigenvalues (0.001) in 4GCP-IV
corresponds to a maximum RMSE of 32.88mm. Moreover,
the error distribution of the diferent work groups is shown
in Figure 13(b); larger products of eigenvalues of the PCA
result in small errors of more quantities, such as 70%
error≤5mm, and large errors of fewer quantities, such as 7%
error≥10mm, in the 27GCPs group. Correspondingly,
smaller products of eigenvalues of PCA lead to large errors
in more quantities, such as 70% error≥10mm, and small
errors in fewer quantities, such as 22% error≤5mm, in the
4GCPs-IV group. Terefore, a better spatial distribution
with a larger product of eigenvalues of PCA can result in
higher accuracy of the point cloud model.
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Figure 9: Efect of the GCP quantity on the computational time. (a) Efect of the number of GCPs on computational time. (b) Efect of
RMSE on computational time.

Figure 10: Overview of the three-story frame structure and layout of GCPs.
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Additionally, the impact of the GCPs distribution on
computational costs was studied. Te computer with the
main specifcations (CPU: Intel (R) Core (TM) i7-12700
CPU; RAM: 64GB; GPU: NVIDIA GeForce RTX3060) was

used for reconstruction of point cloud models. Te com-
putational time for each reconstruction is recorded as shown
in Table 6. Tere is a signifcant trend between GCPs dis-
tribution and computational time, as shown in Figure 14(a).

Table 5: Coordinates of the GCPs measured by the total station in the three-story frame structure.

GCPs
Coordinates (m)

X Y Z
1 27.3375 38.5120 17.4481
2 25.3773 35.2906 17.7761
3 23.3401 31.9497 17.8342
4 21.3050 28.6382 18.3299
5 19.5552 25.6982 18.4016
6 17.5018 22.1745 18.2681
7 15.3437 18.7225 18.1234
8 13.9724 16.4583 18.1619
9 12.0018 13.2312 18.6124
10 10.0444 10.0000 18.4487
11 28.0751 38.0856 14.7197
12 25.9499 34.9744 15.2006
13 23.8496 31.6710 15.0272
14 21.7602 28.3946 15.0978
15 19.8801 25.5232 15.1341
16 17.4811 21.8047 15.6056
17 15.4405 18.6630 15.6507
18 14.0225 16.4341 15.6922
19 12.0057 13.2393 15.7407
20 10.0000 10.0079 15.7732
21 26.2346 36.9075 23.0972
22 18.2532 23.5400 23.9181
23 11.2902 12.0109 23.5430
24 26.2890 34.5713 10.7282
25 21.2082 28.6444 10.0000
26 17.8271 21.8895 11.4134
27 11.9951 12.9842 11.6362

(a)

Real images Point cloud

(b)

Figure 11: Point cloud model reconstruction of the three-story frame structure. (a) Point cloud model of the frame structure. (b) Local
comparison.
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Figure 14(b) illustrates the signifcant correlation between
the accuracy of the point cloud model and computational
time.Te wider distribution of GCPs leads to better accuracy
and faster efciency of reconstruction for point cloud
models.

An accurate point cloud model can be used for structural
damage inspection. A prior study [44] realized the mea-
surement of structural inclination and deformation. Each
plane of target columns was segmented by semantic seg-
mentation method [44], as shown in Figure 15. Te diferent
colors represent points on diferent planes in 3D space.
Firstly, the point cloud model was downsampled by the
Voxel Grid method; points were approximately sampled as
their centroid in each voxel. Te distance between the
nearest two points was approximately the size of the voxel,

which was commonly set as 0.01∼0.1m. Ten, the plane
points (marked with solid dots) and noises (marked with
hollow dots) were separated in the point cloud model after
random sample consensus (RANSAC) and density-based
spatial clustering of applications with noise (DBSCAN)
methods execution. Te threshold in RANSAC was com-
monly set at 0.005∼0.05m. Finally, the point cloud model
was upsampled by the Voxel Grid method. Currently, the
sequential processes of downsampling, segmentation, clus-
tering, and upsampling are presented (Figure 15) by com-
bining the voxel grid, RANSAC, and DBSCAN methods,
which are motivated to achieve a satisfactory performance
balance between the processing efciency in computation
and the inspection accuracy in engineering. Te plane
equations of columns were calculated by the regression

Table 6: Five work groups and eigenvalues of principal component analysis (PCA).

Work groups Selected GCPs Eigenvalues of PCA Product of eigenvalues RMSE (mm) Time (min)
4GCPs-I 21, 23, 24, 27 189.2073 37.0051 0.0866 606.122 8.48 37.38
4GCPs-II 1, 4, 17, 20 19.1566 1.8654 0.0049 0.176 10.54 38.00
4GCPs-III 1, 2, 11, 12 3.6451 1.8478 0.0014 0.009 23.75 38.07
4GCPs-IV 11, 14, 17, 20 156.5007 0.0084 0.0004 0.001 32.88 38.65
27GCPs All GCPs 763.7671 77.8681 0.3898 23181.417 6.78 38.97
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Figure 12: Error of the GCPs in fve work groups. (a) 4GCPs-I vs. 27GCPs. (b) 4GCPs-II vs. 27GCPs. (c) 4GCPs-III vs. 27GCPs. (d) 4GCPs-
IV vs. 27GCPs.

Structural Control and Health Monitoring 13



method using scatter distribution on the structural surface,
and the edges of columns were identifed by using plane
intersection [44].

Figure 16 shows the details of identifcation methods for
the inclination of columns edges.Te normal vector of plane
U and V were shown in Figure 16 as u

→ and v
→, calculated by

the plane equations. Te edge vector was identifed as w
→,

which was the cross product of u
→ and v

→. Ten, the vector
sum of the edges of the column was taken as the inclination
vector of the column. Te inclination rate and angle of the

edge was calculated by decomposing the vector of the edge,
which were given as w

→
� (wx, wy, wz). Te inclination angle

θw and inclination rate kw were calculated by equations (8)
and (9):

θw � arcsin
wz




�����������
w

2
x + w

2
y + w

2
z

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, (8)

kw � cot θw. (9)
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Figure 13: Efect of the GCPs spatial distribution on the accuracy of the point cloud model. (a) Efect of the product of PCA eigenvalues on
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Figure 14: Efect of the GCPs spatial distribution on the computational time. (a) Efect of PCA on computational time. (b) Efect of RMSE
on computational time.
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Te accuracy and voxel resolution of the point cloud
model were the main factors limiting the precision of in-
clination measurement.

Figure 17(a) shows the segmentation and inclination
measurements of the structural columns. Te inclination of
the 30 columns divided manually was calculated, and the
maximum and minimum inclination rates of the columns
were 31.359% and 0.316%, respectively. Te structure was
evaluated as Damage State 4 with the danger of structural
collapse from earthquake aftershocks, referring to the code
FEMA P-58 [57]. Te ten columns on the second foor of the
building stayed at obvious and diferent inclination rates,
which ranged from about 0% to about 30%. Te column
inclination rates on the ground foor and third foor of the
frame structure were simpler than those on the second foor.
Terefore, the second-foor columns were considered the
target inspection object and then measured by the total
station. Subsequently, the point cloud model of the

seismically damaged three-story concrete frame structure
based on image reconstruction and a terrestrial laser scanner
was compared to the structural second-foor column in-
clination measurement. Figure 17(b) shows the comparison
of second-foor column inclinations measured by three
methods, including the total station measurement, the
measurement of the image-based point cloudmodel, and the
measurement of the terrestrial laser scanner point cloud
model. Te inclination rate of the 10 columns on the second
foor could be measured by the three methods from the
maximum value of approximately 32% to the minimum
value of near 0%, and the inclination rates measured by the
three methods were similar. More detailed data and relative
errors are presented in Table 7. Te inclination measured by
the total station was compared with that measured by the
two point cloud models, and the relative errors were all
within 4%. Te average values of relative error of the in-
clination of the 10 columns were also displayed as 1.543%
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Figure 15: Principles of a structural plane segmentation algorithm based on point cloud models.
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Figure 16: Identifcation method for edge inclination of columns.
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Figure 17: Segmentation and inclination comparison of structural columns. (a) Segmentation and inclination measurement of structural
columns. (b) Comparison of second foor inclination measured by three methods.

Table 7: Second-foor column inclination measured by three methods and the relative error.

Target components TSM (%) IBM (%) TLSM (%) RE of TSM and IBM (%) RE of TSM and TLSM (%)
Column 1 31.226 31.359 31.377 0.426 0.484
Column 2 25.397 25.486 25.266 0.350 0.516
Column 3 20.573 20.435 20.363 0.671 1.022
Column 4 15.273 15.285 15.226 0.079 0.306
Column 5 11.791 11.861 11.868 0.594 0.653
Column 6 7.095 6.994 6.828 1.424 3.769
Column 7 4.595 4.446 4.688 3.243 2.022
Column 8 2.253 2.168 2.306 3.773 2.330
Column 9 0.313 0.316 0.311 0.958 0.616
Column 10 1.686 1.752 1.721 3.915 2.092

Average value of relative errors: 1.543 1.381
Note. TSM, total station measurement; IBM, measurement of image-based point cloud model; TLSM, measurement of terrestrial laser scanner point cloud
model; RE, relative error.
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(image-based point cloud model) and 1.381% (terrestrial
laser scanner point cloud model). Tus, the accuracy of the
image-based point cloud model and the terrestrial laser
scanner point cloud model are similar in structural damage
inspection.

4. Conclusion

Tis study investigated the factors infuencing the point
cloud model reconstruction performance according to two
experiments on earthquake-damaged buildings. Te per-
formance of common software in point cloud reconstruction
was investigated.Temain infuencing factors, including the
fight manner of the UAV, distance from the UAV to the
target, number of GCPs, and distribution of GCPs, were
studied separately. In addition, the structural damage in-
spection of accurate point cloud models was presented. Te
main conclusions are as follows:

(1) Tree common software packages, including Con-
textCapture, Agisoft Metashape, and Pix4Dmapper,
were quantitatively compared in terms of point cloud
reconstruction performance. ContextCapture was
found to have better density, and Metashape was
found to have faster speed. Pix4Dmapper out-
performed the other packages with a relatively bal-
anced performance, including the best accuracy,
moderate speed, and moderate density. Terefore,
Pix4Dmapper can be considered a suitable software
for point cloud modeling for seismically damaged
structures.

(2) Te automatic fight manner results in an RMSE of
the point cloud model smaller than that of the
manual fight manner because of the more consistent
overlap area ratio of the images in automatic fight.
In addition, a closer distance from the UAV to the
target causes a GSD of the point cloud model smaller
than that of a farther distance from the UAV to the
target. Terefore, the images captured at a close
range and in the automatic fight mode of the UAV
reconstruct the point cloud model with higher
precision and resolution.

(3) TeGCPs can control the size and location of the point
cloudmodel to make it the same as the actual target. In
addition, more GCPs can reconstruct point cloud
models with lower computational costs and better
model accuracy. Moreover, a wider distribution of
GCPs with a larger product of eigenvalues of PCA can
produce point cloud models with lower computational
costs, better model accuracy, and fewer large errors.
Terefore, more GCPs and a wider distribution of
GCPs should be selected for a faster and more accurate
reconstruction of point cloud models.

(4) A comparison of 10 column inclinations measured
by three methods, including the total station mea-
surement, the measurement of the image-based
point cloud model, and the measurement of the
terrestrial laser scanner point cloud model, was
presented, which showed that the relative errors of

inclination rates were all within 4%. Terefore, an
accurate point cloud model reconstructed using
image-based 3D reconstruction technology is suit-
able for structural damage inspection and state
assessment.

Tis study provides a theoretical basis for accurate point
cloud model reconstruction for earthquake-damaged struc-
tures using UAV-based photogrammetry. Tus, after an
earthquake, an accurate point cloud model can be recon-
structed rapidly for structural damage inspection and state
assessment. Tis provides important support for post-
earthquake rescue and resettlement of victims. However,
deploying more GCPs with a wider distribution in the feld
measurement requires more time. Hence, it is important to
balance the distribution and quantity of GCPs, which speeds
up the reconstruction of accurate point cloud models.

In addition, the accurate point cloud models of building
structures are limited in practical engineering applications.
Te identifcation of the current structural deformation can
be realized by employing a single point cloud model. It may
be challenging to realize the measurement of structural
incremental deformation with the matching analysis of
multiple point cloud models. Te structural fnite element
model may not be fully reconstructed by using structural
point cloud models because the inside condition of the
structure could not be obtained using UAV-based photo-
grammetry. In the future, the multisource point cloudmodel
based on the fusion of multiple types of autonomous un-
manned equipment (such as unmanned drones and vehicles)
is expected to achieve comprehensive structural modeling
and diagnosis.

In future studies of the point cloud model precision of
image-based 3D reconstruction, an investigation should be
conducted on other factors, such as real-time kinematics,
and other scenarios, such as regional buildings. Further-
more, the application of accurate point cloud models, such
as the extraction of observable physical damage, including
surface cracking, wall spalling, and steel component buck-
ling, may also be of interest in the future.
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