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Noncontact measurement techniques in structural dynamics feld have progressed signifcantly in the past few decades. Vision-
based measurement techniques are unique in that they have the ability to achieve full-feld measurement and possess the typical
advantages associated with noncontact measurement techniques. Recently, vision-based techniques have also been applied to
streaming of videos for structural dynamic displacement measurement. Te most recent trends in vision-based measurements
include target tracing, digital image correlation, and target-less approaches. Tere are, however, some shortcomings of the vision-
based techniques such as susceptibilities to image noise, prevailing light conditions, and limit in measurement resolution. To
reduce these shortcomings, a method known as video motion magnifcation (MM) can be used to amplify small structural
motions. Using the phase-based motion magnifcation (PBMM) and subpixel edge detection methods, the full-feld dynamic
displacements of the structure can be obtained.Te deep convolutional long short-termmemory (ConvLSTM) network is applied
to aid in the selection of the frequency band for magnifcation in the PBMM algorithm. To achieve higher measurement accuracy,
the displacement results with and without MM are combined with the fnite impulse response (FIR) flter which can reduce the
error caused by the PBMM procedure. In the tests, plastic optical fber (POF) displacement sensors are introduced and used as
reference measurements to compare the dynamic displacement results from the proposed vision-based method. Compared with
the measured displacements with POF sensors, the proposed method ofers high level of accuracy for full-feld displacement
measurement.

1. Introduction

Dynamic displacement is one of themost important indices for
structural safety assessment. Although accelerometers, strain
gages, and linear variable displacement transducers can be used
to obtain the structural dynamic displacement, there are some
limitations that make these contact methods unattractive and
impractical in many applications [1]. As an alternative to
contact measurement approaches, noncontact measurement
methods are more convenient to deploy and have no efect on
the structural modal response. Laser Doppler vibrometers,
microwave interferometer, Global Navigation Satellite System
(GNSS), and other noncontact measurement methods have

drawn much attention recently in the feld of structural dy-
namic displacement monitoring [2]. Continuously scanning
laser Doppler vibrometer system has been used to measure the
structural dynamic displacement [3]. Microwave in-
terferometer has also been used for remote sensing of structural
displacements in buildings [4]. Te accuracy of GNSS systems,
however, depends on the satellite signal strength which can be
infuenced by the satellite geometry, environmental factors, and
atmospheric condition [5]. Tere are still some challenges
encountered when using the above methods in addition to the
high cost of the devices involved.

With advances in technological innovation, computer
vision sensing and monitoring technology is gaining
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signifcant attention from many workers in the feld [6]. Te
sampling rate and spatial resolution achievable for these
methods have also been demonstrated to meet the technical
requirements for dynamic displacement measurement
projects [7, 8]. Some of the most frequently used approaches
in vision-based structural displacement data extraction
techniques are target tracing [9, 10], digital image correla-
tion (DIC) [11], and target-less approaches. Xu et al. [12]
have achieved multipoint displacement monitoring by
tracking deck and cable targets in a cable-stayed footbridge.
Jeong and Jo [13] applied a Siamese network-based visual
tracker as a real-time tracking tool for dynamic monitoring.
Jiao et al. [14] proposed a tracking algorithm that combines
random sample consensus algorithm and efcient second-
order minimization technique, which refnes the fnal esti-
mates to subpixel accuracy and avoids tracking drift and
nonsmoothness efectively. Except for target-tracing
methods, the DIC and target-less approaches have the
ability to observe the full-feld structural displacement [15].
Edge detection, optical fow [16], and pattern matching
algorithms are popular in target-less measurement. Bhow-
mick et al. [17, 18] have made achievements in full-feld
displacement measurement using video image sequences.
Tey applied Gaussian flter on the spatiotemporal video
signal to convert the edge information into zero crossing
signal and used the optical fow to compute the Lagrangian
displacement of each pixel of the edge for every frame in the
video with subpixel accuracy. Dong et al. [19] proposed
a structural displacement monitoring method using deep
learning-based full-feld optical fow.

Due to the limitation in video resolution, obtaining the
small vibratory motion of the structure in the video is one
of the challenges in vision-based dynamic displacement
measurement. To achieve high accuracy, cameras with high
resolution are required in vision-based measurement
methods, and where necessary, zoom lenses are used to
focus in on a region of interest (ROI) which may reduce the
advantage of a full-feld measurement. Although many
types of subpixel methods have been proposed [20] for
improving the edge accuracy, a subpixel edge detection
method can only use the information in a single image
frame of the video captured, while the time series of the
video frames contains many more information within the
image sequence. Te developments in computer vision
have generated a method known as motion magnifcation,
a technique which can amplify the small motions of the
vibrating structure as captured by the video recording. Te
frst attempt to magnify barely visible structural motions in
a video was published in 2005 by Liu et al. [21]. In 2012, Wu
et al. [22] frst proposed the Eulerian video magnifcation
(EVM) method which can also linearly amplify noise while
amplifying motion. Wadhwa et al. [23] developed the
phase-based motion magnifcation (PBMM) technique.
Using this method, microvibration of an object that was
originally barely observable can be signifcantly amplifed
within the frequency band of interest. Nowadays the
PBMM has been applied to structural health monitoring
purposes. Civera et al. [24] used the PBMM for in-
stantaneous damage localization and tracking the damage

growth over time. Besides, the PBMM can return dis-
placement time histories as accurate as physically attached
sensors under appropriate conditions [25].

Te PBMMprocessing can generate unwanted artifacts if
the parameters chosen are inappropriate. Te blurring efect
and other artifacts in the video can signifcantly reduce the
accuracy of the dynamic displacement measurement. Te
key parameters in question are related to the structural
vibration frequency and amplitude. To produce clear motion
magnifcation results, nonnegative matrix factorization [26]
and singular value decomposition [27] have been used to
identify independent modal components. In view of its
potential, machine learning methods have recently drawn
much attention in feld of vibrationmonitoring and dynamic
analysis [1, 28]. Deep neural networks such as CNN [29] and
LSTM [30] have shown data modeling capabilities in many
engineering applications. As for video-based structural vi-
bration monitoring, CNN-LSTM-based computer vision
architectures have been used for modal frequency extraction
[31]. It has been shown that the vibration frequency spec-
trum peaks can be frst identifed using convolutional long
short-term memory (ConvLSTM) networks [32, 33]. Te
parameters of the PBMM are then selected using the fre-
quency information to achieve a better motion magnifca-
tion efect.

In this research, the PBMM algorithm was used to ef-
fciently magnify the small motions of the vibrating structure
captured in the video stream with the help of a ConvLSTM
neural network. Following that, the subpixel edge detection
algorithm based on the partial area efect [34] was imple-
mented to locate the boundaries of the structure. As the
PBMM algorithm does not work well with static and abrupt
displacements in the video, the displacements at low fre-
quencies can be measured from the original video with the
subpixel edge detection method. Furthermore, due to the
noisy and complex background, the edge detection results
are not found to be satisfactory to obtain the structural
deformation, and hence polynomial ftting is adapted to
reconstruct the displacement curve of the beam or shape of
the cable. From the experiments conducted, the proposed
method was found to be capable of achieving high accuracy
in capturing the vibration response. Te vibration response
of the structure was also captured using an array of plastic
optical fber (POF) displacement sensors as a reference
measurement to compare with the video-based results.

With the help of the ConvLSTM network and subpixel
edge detection, the proposed method accomplishes to obtain
full-feld displacement response of vibrating structural
components. Te main contributions of this paper are as
follows. (1) Novel ConvLSTM-based computer vision ar-
chitecture for modal frequency extraction is proposed. Te
outlined architecture is entirely autonomous when it comes
to processing vibration videos and extracting modal fre-
quencies. Additionally, the developed approach extrapolates
and performs well on unfamiliar data. (2) With the fre-
quency estimated by the proposed ConvLSTM network, the
PBMM results have been improved and the side efect like
blur has been alleviated. (3) A methodology to obtain full-
feld displacement response of vibrating structural
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components has been proposed using PBMM, convolutional
LSTM network, and subpixel edge detection. Te dis-
placement monitoring accuracy has been improved com-
pared to extracting the displacement directly from the
original video.

2. Methodology

2.1. Phase-Based Video Magnifcation. Several approached
such as the Lagrangian, linear-Eulerian, and phase-based
techniques have been proposed for the motion magnifca-
tion technology. In Lagrangian approaches, the errors are
found to be large in the magnifed video. Te basic meth-
odology of the linear EVM involves the use of the time series
of pixel brightness (grayscale) and amplifying any variation
in a specifed temporal frequency band of interest. For the
PBMMmethod, improvements over the former methods are
achieved in two important aspects: (a) larger magnifcation
scales and (b) better performance under noisy conditions
[23]. Te processes of PBMM and EVM technology have
many similarities, but their corresponding spatial flters are
very diferent. In the spatial-domain decomposition part of
the PBMM algorithm, the Gauss or Laplace pyramids of the
Eulerian linear method are replaced with complex steerable
pyramid. Te algorithm takes the phase diference in the
wavelet to amplify the video motion. Tese pyramids result
in an efcient and accurate linear decomposition for video
frames in the scale and orientation subbands.

Based on the phase-based optical fow method [35],
PBMM algorithm indirectly represents the micromotion in
the video using the phase information from the Euler
perspective and magnifes the motion in the video using the
phase information. Te basis is to convert the position in-
formation of the pixels in the video image in the spatial
domain into the phase information in the frequency domain
by using the time-shift property of Fourier transform [36].
Te complex steerable pyramid [37] is used to establish the
relationship between the local motion information in the
video image with the local phase information, in order to
achieve the amplifcation of the local motion of the video
through the operation of the local phase.

By using transfer function Ψω,θ, the discrete Fourier
transform (DFT) 􏽥I of an image I is decomposed into dif-
ferent spatial frequency bands Sω,θ. Each spatial frequency
band has DFT􏽥Sω,θ(x, y) � 􏽥IΨω,θ, in which the spatial scale
isωand orientation is θ. Te complex steerable pyramid
decomposes an image into diferent spatial frequency bands,
each of which is localized in space, scale, and orientation.
Te transfer functions of a complex steerable pyramid
contain only the positive frequencies of the corresponding
real steerable pyramid’s flter, allowing for a representation
of both amplitude and phase.

In the frequency domain, the process of building and
collapsing the steerable pyramid is given by equation (1).Te
image 􏽥IR is reconstructed by the sums in the equation over
all the scales and orientations in the pyramid.

􏽥IR � 􏽘 􏽥Sω,θΨω,θ � 􏽘 􏽥IΨ2ω,θ. (1)

Te phase-based motion magnifcation approach uses
complex-valued steerable pyramids to measure and modify
local motions. As an example, consider a 1D image intensity
profle undergoing global translation over time, denoted as
f(x + δ(t)), where δ(t) is the displacement function. Te
goal is to synthesize a sequence with modifed motion
f(x + (1 + α)δ(t)), for some magnifcation factor α. Using
a Fourier series decomposition, the displaced image f(x +

δ(t)) can be expressed as

f(x + δ(t)) � 􏽘
∞

ω�−∞
Ampωe

iω(x+δ(t))
, (2)

where Amp is the spatial amplitude, and each frequency
band in this sum corresponds to a single frequency ω.

Based on equation (2), the band for frequency ω is the
complex sinusoid.

Sω(x, t) � Ampωe
iω(x+δ(t))

. (3)

Because Sω is a sinusoid, its phase ω(x + δ(t)) contains
motion information. Like the Fourier shift theorem, the
motion can be manipulated by modifying the phase.

To isolate motion in specifc temporal frequencies, the
phase ω(x + δ(t)) is temporally fltered with a direct current
balanced flter. Te result is

Bω(x, t) � ωδ(t). (4)

Te band-passed phase Bω(x, t) is then multiplied by α
and the phase of subband Sω(x, t) is increased by this
amount to get the motion magnifed subband.

􏽢Sω(x, t) ≔ Sω(x, t)e
iαBω � Ampωe

iω(x+(1+α)δ(t))
. (5)

Te result 􏽢Sω(x, t) is a complex sinusoid that has mo-
tions exactly 1 + α times the input. Te motion magnifed
video can be reconstructed by collapsing the pyramid. In this
analysis, the motion magnifed sequence f(x + (1 + α)δ(t))

is obtained by summing all the subbands.
Te whole process contains four parts. (1) Each frame of

the input video is decomposed by a complex steerable
pyramid to obtain the local amplitude spectrum and the
local phase spectrum of the video image. (2) Te phase
diference signal in the frequency band of interest is
extracted by time-domain band-pass fltering such as linear
phase FIR (fne impulse response) band-pass flter and IIR
(infnite impulse response) band-pass flter. (3) Te selected
phase diference signal of interest is multiplied by the set
amplifcation factor to obtain the linear amplifcation result
of the small phase diference signal. (4) Te amplifed data
are reconstructed by complex steerable pyramid, and the
amplifed output video is reconstructed by combining the
high-pass residual and low-pass residual of the input video.

2.2. Convolutional LSTM Network. ConvLSTM is a type of
recurrent neural network that is designed for spatiotemporal
prediction. It has a convolutional structure in both the
input-to-state and state-to-state transitions, which means
that it uses convolutional flters to process the input data and
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update the internal state of the network. Te ConvLSTM
model is composed of a grid of cells, where each cell pro-
cesses a small region of the input data and maintains its own
internal state. Te internal state of a cell at time t is de-
termined by the inputs and past states of its local neighbors,
as well as its own previous state. Tis allows the ConvLSTM
to capture the dependencies between diferent spatial lo-
cations over time, making it well suited for tasks such as
video prediction or anomaly detection.

One of the key diferences between the ConvLSTM and
other types of LSTM networks is that the ConvLSTM uses
convolutions directly as part of reading the input into the
LSTM units themselves. Tis allows the ConvLSTM to
eliminate matrix multiplication in the LSTM, which can
make themodel more efcient and easier to train [38].Tis is
in contrast to the traditional LSTM, which reads the data
indirectly in order to calculate the internal state and state
transitions, and the CNN-LSTM, which interprets the
output from CNN models [39]. Te key equations of
ConvLSTM are shown below, and the symbols ∗ and ⊙
denote the convolution operator and the Hadamard prod-
uct, respectively:

it � σ Wxi ∗Xt + Whi ∗Ht−1 + Wci ⊙Ct−1 + bi( 􏼁,

ft � σ Wxf ∗Xt + Whf ∗Ht−1 + Wcf ⊙Ct−1 + bf􏼐 􏼑,

Ct � ft ⊙Ct−1 + it ⊙ tanh Wxc ∗Xt + Whc ∗Ht−1 + bc( 􏼁,

ot � σ Wxo ∗Xt + Who ∗Ht−1 + Wco ⊙Ct + bo( 􏼁,

Ht � ot ⊙ tanh Ct( 􏼁.

(6)

As mentioned in [40, 41], the structure of a ConvLSTM
cell is drawn in Figure 1. Te ConvLSTM cell consists of
input gate (it), forget gate (ft), and output gate (ot) which
are used to update the hidden state based on the input at
time t (Xt). Te main structure of the ConvLSTM cell is
similar to that of a traditional LSTM cell, but it also includes
additional components that allow it to incorporate con-
volutional operations. Tese additional components are
used to process the input data using convolutional flters and
update the cell output and hidden state using convolutions.
Te cell output (Ct) and hidden state (Ht) are used to store
and propagate information over time, allowing the
ConvLSTM cell to capture dependencies between inputs at
diferent times.

2.3. Subpixel Edge Detection. In the feld of vibration mea-
surement, ordinary pixel level edge detection methods such
as Prewitt, Sobel, Laplacian, and Canny edge detection are
not sufciently accurate for the present application. A
subpixel level edge detection method is required instead to
obtain accurate displacement data of the vibrating structure.
To estimate the subpixel edge position, the subpixel edge
detection based on partial area efect is used in this paper.

Te subpixel edge detection is based on the hypothesis
that pixel values of the image are proportional to the in-
tensities and areas at both sides of the edge. For the edge of
a straight line, the edge equation can be represented as
y � a + bx. Considering an ideal image with a straight edge

like Figure 2(a), the edge divides the image plane into two
regions of diferent gray intensities, A and B. Every pixel in
the image is a h × h square. Assume that SA and SB are the
areas in one pixel covered by A and B, respectively
(h2 � SA + SB). When an edge crosses over that pixel, the
intensity of that pixel is

Intensity �
ASA + BSB

h
2 . (7)

To determine the subpixel position of the edge, the
vertical distance from the center of a pixel to the edge can be
calculated and represented by the parameter “a.” A 5× 3
window is centered on the target pixel as shown in
Figure 2(b). Te areas of left, middle, and right column
below the edge line can be expressed as ah − bh2 + (5/2)h2,
ah + (5/2)h2, and ah + bh2 + (5/2)h2, respectively. Ten, the
intensity of the left, middle, and right column pixels has the
following expressions:

L � 5B +
A − B

h
2 ah − bh2 +

5
2
h
2

􏼒 􏼓,

M � 5B +
A − B

h
2 ah +

5
2
h
2

􏼒 􏼓,

R � 5B +
A − B

h
2 ah + bh2 +

5
2
h
2

􏼒 􏼓.

(8)

With the expressions, the coefcients a and b of the edge
line can be derived as

a �
2M − 5(A + B)

2(A − B)
h,

b �
R − L

2(A − B)
.

(9)

Tenormal vector to the edge can be calculated using the
expression

N �
A − B
�����
1 + b

2
􏽰 [b, −1]. (10)

Te magnitude of the normal vector to the edge in an
image represents the change in intensity between the two
regions on either side of the edge. Te edge location and the
normal vector can therefore be calculated by this method.

+

σ σ σtanh

+

tanh

b
Ht–1

Ht

Ht

ot

Xt

Wh

Wx

Wco

Wcf

Wci

t–1 t

*
*

Figure 1: ConvLSTM cell.
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2.4. Workfow of the Proposed Method. Tough the PBMM
algorithm can magnify the small motions in the video, the
process may cause distortion at locations with relatively
large displacements with low-frequency vibrations. For
example, it is typical that the measured displacement results
are normalized with the magnifcation factor. Following the
normalization process, the large motions will end up smaller
than the ground truth. Concurrently, the subpixel edge
detection can measure the relatively low-frequency large
motions directly from the original video. In this paper, the
proposed method aims to combine the measurement results
from the original and the magnifed video to maintain the
accuracy of the vibration measurement.

Te workfow of the proposed method is illustrated in
Figure 3. Firstly, the spectrum peaks are estimated by the
deep ConvLSTM neural network. Te cutof frequency is
identifed as the frst peak of the estimation. Adopting the
selected frequency band from the frst spectrum peak to the
Nyquist frequency, the videomotion can bemagnifed by the
PBMM algorithm. Te displacements of the object
boundaries of both the original video and the processed
video are extracted by the subpixel edge detection. With the
use of the FIR flter, data from the low-frequency part of the
original video and the high-frequency part of the magnifed
video results are combined. In every frame, the bending
curve is smoothened through polynomial ftting, and the
fnal full-feld dynamic displacement can then be obtained.

3. ConvLSTM Network Training and Video
Magnification Parameter Optimization
Based on Steel Strand Experiment

In the proposed processes of the full-feld dynamic dis-
placement measurement, the video motion magnifcation
needs the frequency parameter to work and the ConvLSTM
network needs to be pretrained before the measurement.
Tus, a cable test was used to provide the datasets for
ConvLSTM network training and the videos of the

vibrating cable with diferent tension and modal fre-
quencies were recorded. Once the network is pretrained, it
can be fne-tuned on diferent frequency estimation cases.
Tis approach enables the network to learn the spatio-
temporal patterns and relationships between the frequency
and the input data, leading to accurate frequency pre-
dictions and further helping to measure the dynamic full-
feld displacement.

3.1. Data Collection and Training of the ConvLSTMNetwork.
A 7-wire steel strand which is 5mm in diameter is tested in
this study. Te experimental set is shown in Figure 4. Te
anchorages at the end plates provide fxed constraints at both
ends. Te steel strand used has the following property and
dimension: m � 0.123 kg/m and the free length L� 3m. In
order to vibrate the strand, a random hammering excitation
is provided manually. Te accelerometer is attached at the
end of the strand, and the acceleration is captured at 200Hz
sampling rate. Te video is recorded with a Hikrobot area
scan camera set at 1440×1080 pixel resolution and 100 fps.
Diferent tension forces are applied to the strand to change
its natural modal frequencies. Videos of the steel strand
vibrating at diferent natural modal frequencies are recorded
during the tests. Due to factors such as ambient lighting
condition and camera sensor, noise in the captured video is
expected.

Te schematic drawing and the selected rectangle ROI of
video frames are shown in Figure 5. Te peaks observed in
the frequency spectra correspond to the modal frequencies
of the strands.Te frst three modes of natural frequencies of
the strands with diferent tension are shown in Table 1. It can
be seen from Table 1 that the frequency range of this study is
from 7.813Hz to 38.086Hz. Te range of the frequency can
be extended or narrowed by changing the cable tensile force
according to the actual requirement. Finally, the proposed
deep learning network is trained with the video frame
streams and the corresponding modal frequencies obtained
from the displacement spectra.

B B B B B B

B B B B

B B

A

A A A

A A A A

y=a+bx

a
x

yN

A

(a)

y=a+bx

a
x

yN

L M R

(b)

Figure 2: Edge features obtained for the highlighted pixel. (a) Edge line between areas A and B. (b) A 5× 3 window centered on the
target pixel.
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Each raw frame has the shape of 1440 ×1080 × 3, and
the central section of the strand in the video is selected for
the deep learning processing. Te raw frames were resized
into 64 × 64 × 3 section as the input data for the
ConvLSTM model. A total of 70400 video frames are
collected for the dataset, and each of the set of 200 frames
was assigned as one kind of sequential input data for the
natural frequency regression task. On the whole, there are
240 training samples, 48 validation samples, and 64 test
samples. Te frames in training and test dataset are from
diferent videos.

Te process of predicting the frequency is shown in
Figure 6.Temean absolute error (MAE) method is used to
evaluate the accuracy of the proposed ConvLSTM ap-
proach, which is also adopted as the loss function for the
training of the proposed deep learning architectures. MAE
is a measure of the absolute diference between the pre-
diction and the ground truth values. It is given by the
following equation:

MAE �
􏽐

n
i�1 􏽢yi − yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

n
, (11)

where n is the sample size and 􏽢y and y represent the pre-
dicted value and ground truth value, respectively.

Tree ConvLSTM networks with diferent depths are
tested in this research. Te ConvLSTM models contain
diferent number of ConvLSTM layers from 3 to 1. Te
Maxpooling and Flatten layers are used to reshape the data
inside the model, and the dense layers help to output the
results. In Table 2, the hyperparameter confgurations of the
three networks are listed and the frst one of these has the
best performance among them.

Hyperparameter tuning involves fnding the optimal set
of hyperparameters for a particular learning algorithm that
minimizes a predefned loss function on a given independent
dataset, resulting in a high-performing model [42]. Te
number of layers, layer size, flter size, learning rate, and
batch size are the typical hyperparameters. In the training
phase, two components comprising L2 regularization and
early stopping algorithms are adopted. By incorporating
penalties in the loss function on the layer parameters, it helps
to solve the problem of overftting during optimization. L2
defnes the regularization term as the sum of the squares of
all the feature weights. Early stopping is another regulari-
zation algorithm that can provide guidance on the number
of iterations required before the model begins to encounter
the problem of overftting. Te learning rate is set as 0.001;
batch size is 10; activation function is Relu; and the training
epoch is 100.

Besides, the CNN-LSTM can also estimate the vibration
frequency with the video input [31]. One CNN-LSTMmodel
made by stacking three convolutional layers and one LSTM
layer is given for the comparison. Te learning rate, batch
size, and kernel size are the same as ConvLSTMmodel 1.Te
MAE values are calculated based on the models’ perfor-
mance of the validation samples. Te MAE values over the
validation dataset are shown in Figure 7, and the model with
three ConvLSTM deep layers has the best performance.

Extrapolability is the measure of a model’s estimation
capability on a dataset outside its training domain range.
ConvLSTM model 1 and the CNN-LSTM model are trained
on data from any 5 given cases in Table 1 and then deployed
for predicting the natural frequency of the remaining one
case. In total, there are six experiments. Each experiment
comprises training on fve cases, followed by testing on the
remaining one.

Te MAE values of the ConvLSTM and CNN-LSTM
models are shown in Figures 8 and 9. Although the MAEs
are higher when using unfamiliar datasets for verifcation,
the results of ConvLSTM model are still close to the ac-
celerometer and more accurate than that of CNN-LSTM
model. Te ConvLSTM model’s ability of spatiotemporal
information extraction helps it obtain the information from
the video frame sequences. Overall, the proposed
ConvLSTM model has better performance than the CNN-
LSTM model.

3.2. Full-Field Displacement Extraction of the Steel Strand.
After the frequency estimation, the PBMM processing is
provided to amplify the strand vibration in the video. It is
not necessary to process the entire image frame if the ROI
has been selected. Te ROI selection can reduce the
workload and time consumption of feature extraction and
matching calculation. Te ROI is adjusted to include both
the upper edge and the lower edge of the steel strand. Te
small motion in the selected ROI of the video stream is
magnifed by the PBMM algorithm. In the motion magni-
fcation process, three parameters (frame rate, magnifcation
band, and magnifcation factor) are required. Te natural
frequencies can be estimated using the proposed ConvLSTM
network, and subsequently the magnifcation band width
can then be chosen. Te frequency prediction of the frst
three modes of natural frequency is 7.868Hz, 16.156Hz, and
23.433Hz. According to the Nyquist–Shannon sampling
theorem, the magnifcation band width should not be over
the Nyquist frequency which is half that of the video frame
rate. To ensure the accuracy in the motion magnifcation,

Table 1: Te natural frequency (Hz) of the strands.

No. Te frst-order frequency Te second-order frequency Te third-order frequency
1 7.813 15.234 22.852
2 9.571 18.756 27.734
3 10.156 19.727 28.906
4 11.523 22.852 33.594
5 12.305 24.609 36.133
6 13.086 25.977 38.086

Structural Control and Health Monitoring 7



broad-band magnifcation [43] is ideal. But one of the
limitations of this technique is that it can cause blur when
there are large low-frequency motions in the video [23]. In
addition, if the results are normalized according to the

magnifcation factor, the displacement measurement outside
the selected band will lose its accuracy. In view of these
factors, it is challenging to maintain the accuracy of the
results.

Strand vibration
test

FFT frequency spectrum

Frame sequence

Extract natural
frequency

ConvLSTM
network
training

Spectrum peaks
estimation

Video record
and data pre-

processing

Figure 6: Te processing of the frequency estimation.

Table 2: ConvLSTM model structure.

Confguration Model 1 Model 2 Model 3
ConvLSTM2D Filters� 32, kernel size� (3, 3) Filters� 32, kernel size� (3, 3) Filters� 32, kernel size� (3, 3)
Batch normalization
ConvLSTM2D Filters� 32, kernel size� (3, 3) Filters� 32, kernel size� (3, 3) —
Batch normalization
ConvLSTM2D Filters� 32, kernel size� (3, 3) — —
Batch normalization
Conv2D Filters� 32, kernel size� (3, 3) Filters� 32, kernel size� (3, 3) Filters� 32, kernel size� (3, 3)
MaxPooling2D Pool size� (4, 4) Pool size� (4, 4) Pool size� (4, 4)
Flatten — — —
Dense 512 512 512
Dropout 0.5 0.5 0.5
Dense 512 512 512
Dense 128 128 128
Dense 3 3 3

Model 1 Model 2 Model 3 CNN-LSTM

Median Line
Mean

25%~75%
Range within 1.5IQR

0.0

0.5

1.0

1.5

2.0

M
A
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Figure 7: Te MAE values for the ConvLSTM and CNN-LSTM models.
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After trials, the frequency band between the frst-order
frequency and the Nyquist frequency is selected in the
PBMM algorithm. With the subpixel edge detection algo-
rithm, the vibration is frstly measured from the original
video, and then the vibration within the selected frequency
band is magnifed by PBMM and extracted. Te FIR flter is
used to extract the low-frequency part of the vibration
without MM and high-frequency part of the vibration with
PBMM. Te cutof frequency is the estimated frst spectrum
peak. With the superposition of the two parts, the accuracy
of the measurement could be improved. Te motion mag-
nifcation results can be signifcantly afected by the mag-
nifcation factor. To prevent blurring of the image in the

motion magnifcation process, the magnifcation factor
should be optimized.Te PBMM efect of the whole strand is
presented in Figures 10(a)–10(c). It can be seen from Fig-
ure 10 that it is difcult to locate the strand due to themotion
blur when the amplifcation factor is set to a value of 10.
After several trials, the magnifcation factor of 5 was chosen
to produce sufcient level of magnifcation while mini-
mizing image distortion.

Te vibration of the test steel strand under random
hammer excitation is amplifed by a factor of fve using the
PBMM algorithm before the subpixel edge detection is
applied in this experiment. In Figure 11(a), the vibration
amplitude of the steel strand is magnifed, and the vibrations
of red line sampled region are drawn in y-t slice view. Te
signifcant magnifcation efect is further shown by com-
paring Figures 11(b) and 11(c). To measure the full-feld
dynamic displacement of the strand, the edges in every frame
need to be detected.Te subpixel edge detection of one video
frame is shown in Figure 12. Te displacements between the
frst frame and every other frame can be obtained. Te
distance between the upper and lower edge of the strand is
known as the diameter of the strand, which can be used to
calibrate the displacement in the images. Te edge values of
all the pixels along the ROI length are collected. Te mean
value of the strand upper edge and lower edge is used to
describe the strand deformation. Besides, the strand de-
fection is always in a smooth continuous curve shape, and
polynomial ftting can be used to optimize the results. In
Figure 13, the subpixel displacement results of the strand in
one frame are shown and the predicted displacement of the
curve estimated through the use of fourth-degree poly-
nomial ftting is shown. In the original video, the edge curve
obtained by the subpixel edge detection is not found to be
sufciently smooth due to the background and the lighting
condition as shown in Figures 13(a) and 13(b). After the
PBMM process, the vibration amplitude in the video is
amplifed and the edge result is much less noisy.

Furthermore, the full-feld deformation of the strand
during the measurement time is shown in Figure 14; the
results are smoothened via fourth-degree polynomial ftting.
After smoothening the deformation curves at everymoment,
the result shows the dynamic displacements of the entire
steel strand over time. Following the polynomial ftting, the
displacement time history for a given point on the steel
strand could be obtained directly from Figure 14. Te ob-
tained displacement is further presented in Figure 15. In the
original video, slight vibrations with small amplitude and
high frequency are not clearly visible in the image, which
results in low accuracy and some noise in the subpixel edge
detection results. By superpositioning the original video and
magnifed video with an FIR flter, the fdelity of the high
frequency segment is maintained. In addition, the noise
from the original video data is eliminated. Following the
superpositioning process, the proposed method is found to
be able to measure the dynamic displacement accurately.

Te comparison of the displacement and acceleration
frequency spectra is further shown in Figure 16.Te peaks in
the displacement spectrum match the acceleration peaks in
the frst three modes of natural frequencies. Te FFT
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Figure 8: Estimation error of ConvLSTM network under un-
familiar frequencies.
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Figure 9: Estimation error of CNN-LSTM network under un-
familiar frequencies.
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(a) (b)

(c)

Figure 10: Te PBMM efect of the whole strand. (a) Original. (b) Motion magnifed 5x. (c) Motion magnifed 10x.

(a)

t
y

(b)

(c)

Figure 11: Te motion magnifcation results. (a) One video frame. (b) Original. (c) Motion magnifed 5x.

Figure 12: Te subpixel edge of the steel strand.
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Figure 13: Fourth-degree polynomial curve ftting of strand deformation at frame number 1800. (a) Deformation curve without motion
magnifcation. (b) Deformation curve with motion magnifcation.
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amplitude of the acceleration in frequencies lower than
15Hz does not match the vision methods, and the reason is
that the accelerometer is not attached completely along the
vibration direction due to the round cross-section of the
steel strand. Te higher modes of natural frequency are not
considered in the analysis. Te inaccuracies of the higher
modes of vibration are due to the video frame imaging time
and synchronization. Te performance of the video capture
device, the complexity of the video signal, and the efciency
of the video processing can afect the video frame syn-
chronization which can cause inaccuracy in the high fre-
quency. Besides, it is hard to extract the higher order modal
frequency peaks above the frst-order frequency using the
original raw video.

Te accuracy of the displacement measurement in the
frequency domain can be improved using the proposed
method. By adopting the proposed method, the dis-
placement spectrum peaks are clearer than the results of
original video. Table 3 shows the frst three modes of
natural frequency estimated using the accelerometer, deep
ConvLSTM, original video extraction, and proposed
method, and the relative errors of diferent methods are
calculated, respectively, comparing the accelerometer.
Here, it is clear that the frequency peaks obtained via the
proposed method with PBMM match well with the
acceleration peaks.

4. Beam Full-Field Displacement Measurement
Results and Comparison

In this section, an aluminum beam is tested to verify the
accuracy of the proposed method. Te dynamic displace-
ment of the beam is measured with both the camera and POF
sensor. POF sensors are versatile and robust sensors that can
measure various physical parameters such as strain and
displacement. For dynamic displacement measurements,
POF sensors use the principle of intensity modulation,

where the variation in the intensity of light transmitted
through the fber is related to the target displacement. By
comparing the results obtained from both techniques, the
accuracy of the proposed method can be assessed and
validated. Each POF sensor can only measure the dis-
placement of one point, and the results at specifc points of
the beam are compared.

4.1. Comparison of Results to Study the Efect of Varying Vi-
bration Amplitudes. To further verify the proposed mea-
surement method, an aluminum beam with dimensions of
800×12.7× 4mm is tested in the experiment. Young’s
modulus, Poisson’s ratio, and the density of the beam are
70GPa, 0.33, and 2700 kg/m3, respectively. Te beam is
clipped at both ends which are considered as fxed supports
at these locations. Te video stream is captured by a Sony
a7m3 video camera using the 1080P@100fps format. Te
setups of the camera, data logger, and aluminum are shown
in Figure 17.

To obtain the actual displacements for verifcation, the
displacement collected by plastic optical fber [44] dis-
placement sensors is used and set as the ground truth for
comparison of results. Tree POF displacement sensors are
placed at the 1/4, 1/2, and 7/8 span of the test beam,
measured 200mm, 400mm, and 700mm, respectively,
from the left support as shown in Figure 18. Te POF
sensor system comprises a Keyence FS-N11MN fber
amplifer and a Hioki LR8400 data acquisition unit to
capture the vibration of the host beam. Tis sensor sends
a light signal through the POF and receives a refected light
containing information of the vibration of the beam. Te
refected light intensity is converted into raw voltage values
and is continuously logged via the data acquisition unit at
100Hz sampling rate.Te raw voltage signal is converted to
displacement data (in mm) via a calibration constant ob-
tained earlier from a calibration study.
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Figure 14: Full-feld deformation of the steel strand along time.
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Firstly, the ConvLSTM network predicts the peaks re-
fected in the vibration spectrum as outlined in Section 3.
Te deep ConvLSTM network used refers to the pretrained
three-layer ConvLSTM summarized in Section 3.1. In the
frst test, the frst three peaks predicted were 3.879Hz,
11.265Hz, and 22.571Hz, respectively. Te process was the
same as that described in the previous section. Te dis-
placement information was extracted with and without

applying the MM algorithm. Following that, the low-
frequency part of the displacement without MM and the
high-frequency part of the displacement with MM were
combined.

Te video was recorded at 100 frames per second, and
correspondingly the Nyquist frequency was 50Hz. Based on
the spectrum peak estimation, the magnifcation band se-
lected ranged from 3.8Hz to 50Hz. Amagnifcation factor of

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40

-20

-10

0

10

20

-20

-10

0

10

20

-20

-10

0

10

20

D
isp

la
ce

m
en

t (
m

m
)

Time (s)

Results of the mgnified video

Results of the original video

 Results after superposition

(a)

-20

-10

0

10

20

-20

-10

0

10

20

-20

-10

0

10

20

D
isp

la
ce

m
en

t (
m

m
)

Results of the magnified video

Results of the original video

 Results after superposition

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40
Time (s)

(b)

5

0

-5

D
isp

la
ce

m
en

t (
m

m
)

2 4 6
Time (s)

0

Results afer superposition

Results of the original video
Results of the magnified video

(c)

5

0

-5

D
isp

la
ce

m
en

t (
m

m
)

2 4 6
Time (s)

0

Results afer superposition

Results of the original video
Results of the magnified video

(d)

Figure 15: Measured displacement time history of one point: (a) at length� 75 cm, (b) at length� 150 cm, (c) zoom-in view of the
displacement time history at length� 75 cm, and (d) zoom-in view of the displacement time history at length� 150 cm.

12 Structural Control and Health Monitoring



101

100

10-1

10-2

10-3

10-4

A
m

pl
itu

de

0 5 10 15 20 25 30 35 40 45 50
Frequency (HZ)

Original video
Proposed method
Accelerometer

Figure 16: FFT of the strand vibration.

Table 3: Te natural frequency (Hz) estimation and the relative error.

Method Accelerometer ConvLSTM Original video
extraction Proposed method

Value Value Error (%) Value Error (%) Value Error (%)
Te frst-order frequency 7.813 7.868 0.7 7.709 1.3 7.792 0.3
Te second-order frequency 15.234 16.156 6.1 15.821 3.9 15.726 3.2
Te third-order frequency 22.852 23.433 2.5 23.317 2.0 23.179 1.4

Camera

POF sensor and amplifier Data acquisition

Figure 17: Te beam experimental set.

800 mm

POF displacement sensors at ¼, ½ and ⅞ span

Figure 18: Te arrangement of the POF sensors.
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5 was adopted.With the subpixel edge detection method, the
full-feld dynamic deformation can be acquired and cali-
brated. With the FIR flter, displacement data extracted from
the original video vibrating above 3.8Hz were fltered out
and combined to the magnifed video displacement data in
the frequency band from 3.8Hz to 50Hz to obtain the fnal
results.

In this study, diferent test cases were conducted to verify
the accuracy of the proposed method by varying the vi-
bration amplitude of the aluminum beam. In a series of three
cases, the free-response vibration of the beam at diferent
initial displacements was captured and processed using the
proposed method. Here, the POF displacement sensors were
located at these positions along the beam, i.e., at lengths
200mm, 400mm, and 700mm from the left support, re-
spectively. A mass was tied to the beam with a thread at
length 400mm (middle point of the beam) to provide an
initial displacement to the beam.Te thread was cut, and the
beam was left to vibrate freely.

For Case 1, the mass was attached to the beam at position
400mm where a 10mm local initial displacement was in-
troduced due to the weight of themass.Te thread was cut to
trigger the free vibration of the beam. Te vibration of the
beam was recorded via a video camera and the POF dis-
placement sensors. Te full-feld dynamic displacement is
shown in Figure 19. Te displacement time histories ob-
tained by the proposed method and POF sensors are pre-
sented in Figure 20. Te root-mean-square error (RMSE)
values of the measured displacement by using the proposed
method and the method with original video are illustrated in
Figure 21. Te RMSE is defned as follows:

RMSE �

�����������

􏽘
n

i�1

􏽢yi − yi( 􏼁
2

n

􏽶
􏽴

, (12)

where 􏽢y is the predicted value, y is the ground truth value,
and n is the sample size.

In Case 2, the mass was applied on the middle span (i.e.,
400mm) and the initial displacement was 5mm. As before,
free vibration of the beam was initiated after the mass was
detached and the vibration response was captured. Te full-
feld displacement over time is shown in Figure 22. Com-
parison of the measurement results from the three POF
displacement sensors and the video (original and after
processing) is shown in Figure 23. Te RMSEs are calculated
in Figure 24.

In Case 3, the mass was applied to the same position of
the beam as before but here the initial displacement was set
to 1mm. Te free vibration response of the beam was
recorded as before after detaching the mass. Te results are
shown in Figures 25–27.

In three cases with diferent displacement amplitudes,
the initial displacement is applied by the hanging mass at the
middle span. It can be noticed that RMSEs of the dis-
placement measurements extracted by the proposed method
were shown to be nearly 50% lesser than those based on the
original video.TemaximumRMSE occurs in Case 1 among
the three cases due to the biggest displacement amplitude.
Te RMSEs are 0.88%, 1.64%, and 2.68% of the displacement
amplitudes at length 400mm in Cases 1, 2, and 3, re-
spectively.Tough the RMSEs increased with the decrease in
amplitude, the proposed method signifcantly improved the
accuracy in the cases with diferent amplitudes.

4.2. Comparison of Results to Study the Efect of VaryingMass
Weights. To further test the robustness of the proposed
method, another test series of three cases were conducted
where the weight of the mass was varied for diferent cases.
For the frst case in this series, Case 4, the initial weight was
positioned at 200mm along the beam from the left support,
and the initial defection at middle point of the beam (i.e., at
400mm) was 2mm.Te full-feld dynamic displacement for
Case 4 is shown in Figure 28. Te vibration responses of the
beam captured via the video camera at specifc points along
the length of the beam were compared to the POF sensor.
Te result comparisons are shown in Figures 29 and 30.

In Case 5, the beam structure subjected to abrupt initial
displacement was tested to evaluate the accuracy of the
proposed method. Tree 100 g masses were attached at the
middle of the span, and then, each of them was sequentially
released to generate the free vibration. Comprising three
masses, each weighing 100 g, they were placed at specifc
position in each test (corresponding to the positions of the
POF displacement sensor installed at 200mm, 400mm, and
700mm along the beam, respectively). By cutting the threads
holding the masses sequentially, the beam was subjected to
diferent free vibrations under diferent initial defection
conditions as illustrated in the displacement plots in
Figures 31–33.

In Case 6, random excitations using a hammer were
introduced to the test beam. Te dynamic full-feld dis-
placements are captured as before, and the results are shown
in Figures 34–36.

In Cases 4 to 6, with varying mass weights, the proposed
method can obtain the abrupt and random impact dis-
placements. Like Cases 1, 2, and 3, the RMSE of the proposed
method is almost half of that based on original videos in
Cases 4, 5, and 6.Te RMSEs are 1.26%, 0.64%, and 2.63% of
the maximum amplitude in Cases 4, 5, and 6, respectively. In
Case 6, the RMSEs of vibration under the random excitation
are larger than those in other cases, which may due to the
smaller vibration amplitude of the test beam and the dis-
tortion caused by the motion magnifcation.
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Figure 19: Illustration showing the full-feld displacement of the beam in Case 1.
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Figure 20: Plots showing a comparison of the displacement time history results of POF sensor and those from the video capture (original
and processed) at specifc points along the beam for Case 1. (a) Length� 200mm. (b) Length� 400mm. (c) Length� 700mm.
(d) Length� 700mm, zoomed in.
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Figure 21: RMSE comparison for Case 1.
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Figure 22: Illustration showing the full-feld displacement of the beam in Case 2.
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Figure 23: Continued.
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Figure 23: Plots showing a comparison of the displacement time history results of POF sensor and that from the video capture (original
and processed) at specifc points along the beam in Case 2. (a) Length� 200mm. (b) Length� 400mm. (c) Length� 700mm.
(d) Length� 700mm, zoomed in.
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Figure 24: RMSE comparison for Case 2.
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Figure 25: Illustration showing the full-feld displacement of the beam in Case 3.
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Figure 26: Plots showing a comparison of the displacement time history results of POF sensor and that from the video capture (original
and processed) at specifc points along the beam for Case 3. (a) Length� 200mm. (b) Length� 400mm. (c) Length� 700mm.
(d) Length� 700mm, zoomed in.
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Figure 27: RMSE comparison for Case 3.
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Figure 28: Illustration showing the full-feld displacement of the beam in Case 4.

1.00.0 1.5 2.00.5
Time (s)

-2.4

-1.6

-0.8

0.0

0.8

1.6

D
isp

la
ce

m
en

t (
m

m
)

POF
Proposed method
Orignal

(a)

-2.4

-1.6

-0.8

0.0

0.8

1.6

D
isp

la
ce

m
en

t (
m

m
)

1.00.0 1.5 2.00.5
Time (s)

POF
Proposed method
Orignal

(b)

1.00.0 1.5 2.00.5
Time (s)

-0.6

-0.3

0.0

0.3

0.6

D
isp

la
ce

m
en

t (
m

m
)

POF
Proposed method
Orignal

(c)

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.600.20
Time (s)

0.0

0.3

0.6

D
isp

la
ce

m
en

t (
m

m
)

POF
Proposed method
Orignal

(d)

Figure 29: Plots showing a comparison of the displacement time history results of POF sensor and that from the video capture (original and
processed) at specifc points along the beam for Case 4. (a) Length� 200mm. (b) Length� 400mm. (c) Length� 700mm. (d)
Length� 700mm, zoomed in.
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Figure 30: RMSE comparison for Case 4.
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Figure 31: Illustration showing the full-feld displacement of the beam in Case 5.
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Figure 32: Continued.
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Figure 32: Plots showing a comparison of the displacement time history results of POF sensor and that from the video capture (original and
processed) at specifc points along the beam for Case 5. (a) Length� 200mm. (b) Length� 400mm. (c) Length� 700mm. (d)
Length� 700mm, zoomed in.
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Figure 33: RMSE comparison for Case 5.
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Figure 34: Illustration showing the full-feld displacement of the beam in Case 6.
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Figure 35: Plots showing a comparison of the displacement time history results of POF sensor and that from the video capture (original and
processed) at specifc points along the beam for Case 6. (a) Length� 200mm. (b) Length� 400mm. (c) Length� 700mm. (d)
Length� 700mm, zoomed in.

Length=200 mm Length=400 mm Length=700 mm
0.00

0.04

0.08

0.12

Proposed method
Orignal video

RM
SE

 (m
m

)

Figure 36: RMSE comparison for Case 6.
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5. Conclusions

Tough PBMM can signifcantly magnify the low and high-
frequency vibrations, it is hard for the PBMM algorithm to
deal with the abrupt and relatively large motions in the
video. By using FIR flters, the proposed method combines
the displacements extracted from the original video and the
video that had undergone the PBMM process, and the ac-
curacy in both low-frequency and high-frequency parts of
the full-feld displacement could be maintained. Te
ConvLSTM deep network was used to predict the structure
vibration spectrum peaks to help identify the magnifcation
band prior to the PBMM process. Using a magnifcation
factor of 5x, this was found to be sufciently efective in
improving the accuracy of displacement measurement after
the superposition of the two kinds of displacement in-
formation from the original video and the magnifed video,
respectively. Te full-feld dynamic displacements are not
smooth along the length at every frame due to the measuring
noises in the edge detection and result combination process.
In contrast, structures like beams, cables, and tubes tend to
exhibit smooth and continuous deformation shapes in the
real world. To improve the smoothness of the displacement
curves, fourth-degree polynomial ftting is used to optimize
the results of the subpixel edge detection process.

(1) Te deep ConvLSTM network can efciently predict
the modal frequencies of the vibrating objects in the
video images. Te accuracy is satisfactory, and the
three-layer deep ConvLSTM network has the best
accuracy compared to ConvLSTM networks with
two or one layer.

(2) In all cases of the aluminum beam test, the POF
results are set as ground truth, and the proposed
method could achieve the full-feld dynamic dis-
placement measurement accurately. Te RMSEs
based on the raw original video recordings and the
processed results based on the proposed method are
computed, and the results showed that the proposed
method yielded signifcantly better displacement
measurement accuracy compared to the raw un-
processed video recordings. Te fusion of the data
from the original and the motion magnifed videos
eliminated the shortcomings of the PBMM algo-
rithm leading to higher displacement measurement
accuracy. Te proposed method was able to reduce
almost 50% of the RMSE in all cases compared to the
displacement data extracted from the raw original
videos.

(3) Te proposed method improved the accuracy of the
full-feld dynamic displacement measurement using
the processes described in the paper. In the cable test,
the proposed method measured the full-feld dy-
namic displacements and the vibration spectrum
showing clearer modal peaks. Te results also il-
lustrated that the proposed method based on sub-
pixel edge detection used in conjunction with the
PBMM can produce a time history of the beam
displacement information. Compared to methods

which only trace limited fnite number of points on
the structure, the proposed method is superior in
achieving high degree of accuracy in capturing the
full-feld dynamic displacement measurement.
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