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Tis study explores a change detection method in modal properties to automate and generalize in-service damage detection for
vibration-based structural health monitoring of bridges. Te noisy conditions caused by ambient loading pose difculty for in-
service damage detection because the load-induced noise often masks the diference in the modal properties. Te proposed
method directly converts measured time series into a simplifed anomaly indicator robust against load-induced noise. Tis study
adopts a vector autoregressive model to represent the vibration of bridges. Bayesian inference produces a posterior probability
distribution function of the model parameters. Principal component analysis extracts a subspace comparable to the modal
properties in the model parameters. Bayesian hypothesis testing quantifes anomalies in the extracted subspace. Te feasibility of
the proposed method is assessed with vibration data from feld experiments conducted on an actual steel truss bridge. Te feld
experiment includes damage severing the truss members. Te modal frequencies and mode shapes estimated from the principal
component analysis correspond well to earlier reported results. Te proposed damage detection method successfully indicated all
damage considered in the experiment.

1. Introduction

1.1. Background. Aging infrastructure management is
a crucially important issue confronted by civil engineering
professionals. Today, they adopt periodic visual inspection-
based bridge management as a fundamental method of
investigating the structural integrity of bridges. Structural
health monitoring (SHM) provides a research feld for
nondestructive evaluation based on physical measurements
and computer analyses to complement the existing in-
spection methods. Especially, vibration-based SHM has the
advantage that a few sensors enable assessment of the
condition of the whole structure because a local stifness
change afects the global dynamic characteristics represented
by modal properties [1–3]. Two commonly used means to
identify modal properties are input-output estimation and
output-only estimation [3]. For input-output estimation,

bridges are excited under controlled input signals. Contrary,
bridges are excited by uncontrolled ambient loads such as
trafc, wind, and groundmotion for output-only estimation.
We also refer to the output-only methods as operational
modal analysis (OMA) methods because they enable the
identifcation of modal properties solely from the measur-
able outputs under operation without trafc interruption.
Te ambient loads are usually modeled as steady white noise
in most OMA methods since the external force is unknown
in advance. We expect to apply OMA for damage detection
as a screening method for numerous bridges without trafc
interruption. However, as discussed below, noisy conditions
caused by ambient loads still require efort for calibration
and computation to automate damage detection.

Aiming damage detection using OMA, most earlier
studies have adopted statistic change detection in modal
properties, such as modal frequency, mode shapes, and
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damping ratios [4–14]. Among them, Gudmundson [6]
theoretically demonstrated that cracks and notches in
a beam alter modal frequencies. Pandey et al. [7, 8] proposed
to detect local changes in fexural stifness using the cur-
vature of mode shapes. Deramaeker et al. [9] demonstrated
the feasibility of output-only modal estimation for vibration-
based SHM under environmental changes with sensitivity
analysis using a numerical model. For actual bridges in the
feld, the authors [10, 11] reported that they detected changes
in modal properties caused by damage from vehicle-induced
vibration. Several studies investigated the feasibility of OMA
for the long-term monitoring of bridges under operation.
Peeters and De Roeck [12] applied black-box models for
one-year bridge monitoring data and distinguished damage-
induced frequency changes from environmental-induced
changes. Ni et al. [13] reported a change in dynamic be-
havior between ambient vibration and typhoon-induced
vibration. Although environmental fuctuation changes
modal properties, damage-induced fuctuation would be
distinguished from environmental efects if we have enough
prior knowledge and apply an appropriate change detection
procedure. However, engineers must also consider that the
load-induced noise often masks modal estimation because it
engenders unrealistic modal properties estimators
[10, 11, 14]. Tat is because ambient loads are modeled as
steady white noise in most OMA methods, whereas ambient
loads are often unsteady and colored noise. Terefore, they
need to remove the unrealistic estimators caused by the
masking efect of ambient loads.

Te following feature extraction techniques are required
to avoid the masking efect and distinguish the physically
meaningful modes from the meaningless estimators: the
frequency domain OMA requires preliminary calibration for
peak-pick [15]. In time domain OMA, they usually need
thresholds of modal validation criteria for stabilization di-
agrams [3]. In recent studies, Mao et al. [16] proposed to
automate modal identifcation with hierarchical clustering
and principal component analysis (PCA) in addition to the
classical stabilization diagrams. In the previous study, they
applied PCA to reduce the dimension of modal validation
criteria beforehand the clustering process. Engineers can
compare modal properties estimated with the above-
mentioned feature extraction techniques for damage de-
tection. However, they still need to apply statistical
methodology such as hypothesis testing because each modal
property involves variance caused by the estimation error.
Also, they are often required to choose modal properties for
comparison because the modal properties irrelevant to the
damage decrease the sensitivity of the hypothesis test. Te
comparison requires engineers’ experience both for hy-
pothesis testing and for modal analysis, and thus the results
of damage detection depend on the skill of the engineers. A
subjective judgment made by inexperienced engineers may
cause a false alert or overlook failure. Accordingly, it is still
challenging to generalize and automate the procedure re-
quired for change detection in modal properties.

Nair et al. [17] proposed omitting modal estimation
procedures for damage detection to automate damage de-
tection. Tey applied anomaly indicators converted from

a univariate AR model instead of modal properties. Te
feasibility of the anomaly indicator has been examined for
a modeled bridge [18] and an actual steel truss bridge [19].
Zhang [20] also proposed a statistical diagnosis procedure by
change detection in the AR model. Te proposed procedure
examines the diference in residuals in the AR models. For
multipoint measurement, the authors [21] expanded these
previous studies and proposed an anomaly indicator cal-
culated from a vector autoregressive (VAR) model instead of
a univariate AR model. In the study, the authors carefully
chose the AR order to avoid the masking efect caused by the
load-induced noise. Tat is because the load-induced noise
produces physically meaningless estimators in the AR co-
efcients. Te practical application of AR-model-based
anomaly indicators is consequently limited so far. For an
anomaly indicator robust against ambient loads, we desire to
extract physically meaningful parameters from the VAR
model and cancel out the masking efect caused by the
meaningless VAR coefcients. Tis study applies Bayesian
statistics to quantify the uncertainty involved in VAR co-
efcients and proposes a methodology to cancel them out. In
a Bayesian manner, the procedure to adjust the AR order is
also automated and generalized. Furthermore, this paper
applies PCA to extract the physically meaningful parameters
relevant to classical modal analysis theory.

Bayesian statistics is a widely used methodology to
quantify the uncertainty in stochastic model parameters.
Several previous studies applied Bayesian inference [22] to
quantify the uncertainty of modal properties. For instance,
Yuen and Katafygiotis [23] and Au et al. [24] proposed
a Bayesian modal analysis method. In the previous study, the
posterior distribution of the parameters represents their
uncertainty according to observed data. Lam et al. [25]
applied this method to model updating, and the updated
model was subsequently adopted for model-based damage
detection. Some other previous studies applied Bayesian
methodologies in various approaches for damage detection.
For instance, Jiang andMahadevan [26] proposed a Bayesian
hypothesis testing [27] adopting a dynamic fuzzy wavelet
neural network method for nonparametric damage de-
tection. Sun et al. [28] proposed damage detection using
a Bayesian information model, including local information
such as static strain and defection. Figueiredo et al. [29]
applied Mahalanobis distance obtained from Markov chain
Monte Carlo (MCMC) techniques as an anomaly indicator.
Dzunic et al. [30] applied a Bayesian state-space approach
and investigated multiclass classifcation for damage de-
tection. Te Bayesian stochastics is also available for ma-
chine learning providing decision-making strategies for
damage detection. For instance, Silva et al. [31] adopted
neural networks with autoencoders to extract damage-
sensitive features. Arangio and Beck [32] utilized Bayesian
neural networks and discussed their feasibility for SHM. In
the recent advances in uncertainty quantifcation and ma-
chine learning, stochastic models tend to be detailed and
complicated. Accordingly, some of the parameters that
consist of the models and threshold are often required to be
predefned. Also, most cases for recent Bayesian applications
adopt iterative optimization methods such as MCMC
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techniques. Te computational resources needed in opti-
mization are considerable for prompt decision-making in
SHM. As discussed later, Bayesian inference for the VAR
model applied in this paper enables much simpler com-
putation because it has posterior distribution in closed form
solution.

Recently, the novelty detection approach in machine
learning has been applied to structural damage detection
[33, 34]. In this sense, one-class classifcation formulates
structural damage detection without prior knowledge of
damages. Tis study concerns parametric change detection
utilizing this approach. Damage detection methods pro-
posed by Figueiredo et al. [29] and Dzunic et al. [30]
mentioned above also apply this approach. Dimension re-
duction by PCA is one of the popular methodologies to
extract physically meaningful parameters for change de-
tection [35–37]. For instance, Akintude et al. [35] demon-
strated that proper orthogonal modes from PCA of strain
time history indicated damage in a full-scale bridge deck
mock-up using variable vehicle loads and speeds. In the
previous study by Mao et al. [16] mentioned above, PCA is
applied to extract physically meaningful modes from sta-
bilization diagrams. For anomaly detection of modal
properties, Ozdagli and Kousoukos [36] investigated an
indicator to detect changes in modal properties using re-
duced dimensions by PCA. PCA was also applied to dis-
tinguish damage-induced frequency change from
environment-induced change. For instance, Sen et al. [37]
applied PCA to modal frequencies to decouple structural
damage and environmental efects. Furthermore, a classical
modal analysis theory shows that the modal properties are
also related to the PCA for a vector of the measured time
series, as discussed in Appendix A. Tis study applies this
result to extract damage-sensitive parameters for anomaly
detection.

1.2. Outline of the Proposed Method. Tis study aims to
provide an easy-to-use framework for change detection in
modal properties with minimum adjustment. Tis study
proposes a change detection method so that it meets all of
the following conditions:

(i) An anomaly indicator is formulated based on hy-
pothesis testing for convincing change detection

(ii) To automate and generalize the procedure for
damage detection, the anomaly indicator is directly
converted from the measured time series

(iii) Bayesian statistics is applied to quantify the un-
certainty involved in the stochastic model

(iv) For fast computation, no iterative method is
adopted for Bayesian inference

(v) Damage-sensitive parameters comparable to modal
properties are extracted to avoid errors caused by
parameters unrelated to modal properties

Tis study adopts a VAR model as a bridge vibration
model under ambient loads. Even though a VAR model
merely provides a rough approximation of the structural

responses, it still has an advantage in simple and fast
computation. As discussed in Section 1.1, unsteady load-
induced noise engenders meaningless estimators in the VAR
coefcient. Tis study proposes the following framework to
reduce the masking efect caused by ambient loads.

Bayesian inference for the VAR coefcients and the
covariance matrix of the error term provide posterior dis-
tribution of the parameters. Because the posterior distri-
bution is in closed form solution, the Bayesian inference is
available without the iterative optimization. In the Bayesian
inference, the prior distribution represents noninformative
initial knowledge before measurement and the posterior
distribution represents updated knowledge after measure-
ment. Hyperparameters calculated from the measured time
series represent the posterior distribution of the VAR co-
efcients and the covariance matrix. Te posterior distri-
bution quantifes the most probable values and uncertainty
for each regressive parameter from the observation. An
orthogonal basis derived from the PCA transforms the
posterior distribution of VAR coefcients. Te damage-
sensitive parameters appear in a parametric subspace
whose dimension the PCA reduces. Appendix A shows that
the extracted damage-sensitive parameters are comparable
to the modal properties estimated in a classical modal
analysis method. Accordingly, the transformed posterior
distribution separates the VAR coefcients into damage-
sensitive and meaningless parameters. Bayesian hypothesis
testing [27] is applied to detect changes in the damage-
sensitive parameters. Te hypothesis testing adopts two
hypotheses representing the healthy and damaged state of
the bridge. For both hypotheses, evidence functions rep-
resent the likelihood of the observed data. Here, one evi-
dence function presumes changes in the damage-sensitive
parameters, and the other assumes no change. Each evidence
function marginalizes the uncertainty of the other mean-
ingless parameters with integration. A Bayes factor, a ratio of
the two evidence functions, indicates the changes. Ac-
cordingly, the proposed Bayes factor reduces the masking
efect caused by ambient loads. In this study, the threshold
for the log-scaled Bayes factor to detect damage is fxed at 0,
as discussed in Section 3.

Te above procedure comprises the following two steps:

Step 1: Reference Modeling
Acquire acceleration time series from a bridge under
healthy conditions (designated as the reference data-
set). According to the Bayesian inference, transform the
reference dataset into hyperparameters. Find the op-
timal AR order by the Bayesian information criterion
(BIC) [22, 38]. Extract the damage-sensitive parameters
by PCA.

Step 2: Damage Detection
Acquire a new acceleration time series from the same
bridge under unknown damage conditions (designated
as the test dataset). Calculate hyperparameters of the
evidence functions for the two hypotheses representing
healthy and damaged states. Te Bayes factor exceeds
the threshold if it detects any changes in the damage-
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sensitive parameters between the reference and test
datasets.

Engineers can convert damage-sensitive parameters to
modal properties through a relevant state-space model
[39, 40] just after Step 1.Tis procedure helps them interpret
the physical meaning of the damage-sensitive parameters.
Tey can omit this procedure from the framework if they do
not need the physical interpretation.

Figure 1 presents an outline of the proposed damage
detection method. Here, the equation numbers appear in
Section 2 and Section 3. Section 2 describes optimizing the
stochastic model for Step 1 and modal estimation. In Section
3, we formulate hypothesis testing for Step 2.We validate the
proposed method in Section 4 with a case study of a steel
truss bridge in the feld [41]. Furthermore, Appendix B
provides a case study using an existing approach, i.e.,
Bayesian hypothesis testing without principal component
analysis, for comparison.

2. Reference Modeling

2.1. VAR Model Expansion. Tis section presents a general
description of the VAR model expanded to Bayesian sta-
tistics. Let a synchronized time series of the acceleration be
measured at m measurement locations on a bridge. A zero-
mean time series is produced by subtracting the mean value
from the measured acceleration. Let yk ∈ Rm×1 (k � 1 . . . n)
denote a column vector at the k-th time step of the zero-
mean time series with components corresponding to the
measurement locations. As mentioned in Section 1, most of
the OMAmethods assume the ambient loads as steady white
noise. Te VAR model with sufcient numbers of model
order p approximates the time series obtained from a linear
structural dynamic system excited by white noise [42]. Te
VAR model is given as

yk � 

p

i�1
αiyk− i + ek (for k � p + 1, . . . , n). (1)

In that equation, αi ∈ Rm×m represents the i-th AR co-
efcient matrix, and ek ∈ Rm×1 denotes a zero-mean
Gaussian white noise vector. Letting Y �

[yT1 , . . . , yTn ]T ∈ Rmn×1,W � [αp, . . . , α1] ∈ Rm×mp and ϕk �

[yTk− p, . . . , yTk− 1]
T ∈ Rmp×1, equation (1) leads to the fol-

lowing probability density function (PDF).

p(Y |W,Σ) � p ϕp+1  

n

k�p+1
N yk

Wϕk,Σ . (2)

Terein, Σ denotes the covariance matrix of ek; p(ϕp+1)

denotes the PDF of ϕp+1; p(Y |W,Σ) denotes the conditional
PDF of Y conditioned by W and Σ;N(yk |Wϕk,Σ) denotes
the PDF of yk following the multivariate Gaussian distri-
bution with expectation Wϕk and covariance matrix Σ. Te
conditional PDF in equation (2) is the likelihood function of
Y for parametersW and Σ. According to the Bayes theorem,
the PDF of W and Σ conditioned by Y is given as

p(W,Σ |Y) � p(Y |W,Σ)p(W,Σ)p(Y)
− 1

, (3)

where p(W,Σ) and p(W,Σ |Y) represent the prior and
posterior PDF of W and Σ, respectively; p(Y) is a constant
given as the marginal likelihood of Y.

For Bayesian inference, this study adopts conjugate
priors [22], which produce posterior distributions with
invariant functional forms. Te conjugate priors have an
advantage for fast computation because they do not require
MCMC. For a linear regressive model, the conjugate prior

Step 1: Reference Modeling

Input Reference Dataset

Bayesian Inference

Calculate Hyperparameters
as equations 15 and 18

Find Optimal AR order using BIC
as equation 23

Eigenvalue Decomposition
as equation 24

Find Optimal Model Order
using Contribution Ratio

as equation 27

(Optional) Modal Estimation
using State Space model

as equations 32-36

Input Test Dataset

Step 2: Damage Detection

PCA

Set Hyperparameters
for Alternative Hypothesis

as equations 43

Hypothesis Testing

Calculate Hyperparameters
as equations 49

Calculate Log-Scaled Bayes Factor (2lnB)
as equations 50 or 56

Lower evidence
of damage

2lnB > 0 ?

Higher evidence
of damage

NO

YES

Figure 1: Outline of the proposed method.
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forW and Σ is given as the followingmatrix-normal inverse-
Wishart distribution [30].

p(W,Σ) � MN W |M,Σ, L− 1
 IW(Σ |Ψ, ]). (4)

Terein, MN(W |M,Σ, L− 1) and IW(Σ |Ψ, ]) stand,
respectively, for the matrix-normal and inverse-Wishart
distributions as

MN W |M,Σ, L− 1
  � (2π)

− m2p/2( ) L− 1

− (m/2)

|Σ|
− (mp/2) exp −

1
2
tr L(W − M)

TΣ− 1
(W − M)  ,

IW(Σ |Ψ, ]) � 2− (]m/2)Γm
]
2

 |Ψ|
(v/2)

|Σ|
− (]+m+1)/2 exp −

1
2
tr ΨΣ− 1

  ,

(5)

where tr[·] represents the trace of a matrix, | · | denotes the
determinant of a matrix, and Γm(·) is the multivariate
gamma function. M ∈ Rm×mp, L ∈ Rmp×mp, Ψ ∈ Rm×m, and
] ∈ R are hyperparameters, i.e., the parameters which de-
termine the functional form of the PDF for the parameters
W and Σ. Equations (2)–(4) engender the following pos-
terior distribution [30].

p(W,Σ |Y) � MN W |M′,Σ, L′
− 1

 IW Σ |Ψ′, ]′ .

(6)

In equation (6), each hyperparameter is given as follows:

L′ � L + 
n

k�p+1
ϕkϕk

T
, (7)

M′ � ML + 
n

k�p+1
ykϕk

T⎛⎝ ⎞⎠L′
− 1

, (8)

]′ � ] + n − p, (9)

Ψ′ � Ψ + 
n

k�p+1
ykyk

T
+ MLMT

− M′L′M′T.

(10)

Equations (2)–(4) and (6) lead the following marginal
likelihood.

p(Y)∝
Γm ]′/2 

Γm(]/2)

|L|
m/2

L′



m/2

|Ψ|
]/2

Ψ′



]′/2

. (11)

Herein, ∝ represents that the right-hand side is pro-
portional to the left-hand side.

2.2. Bayesian Inference for the Reference Dataset. Let l sets of
time series of acceleration be acquired as the reference
dataset: Yi � [yiT

1 , . . . , yiT
ni

]T(i � 1 . . . l) stands for each of the
time series where ni (i � 1 . . . l) is its data length. Let Dr
represent the reference dataset asDr � Y1 . . .Yl , where the
subscript “r” denotes “reference.” Before observing the

reference dataset, we do not have any information about the
value of the model parameters. Terefore, it is reasonable to
adopt a so-called noninformative prior [22, 43], which
represents unknown initial knowledge about the parameters.
In equations (7)–(10), this study applies hyperparameters
[L]ij � 0 (i, j � 1 . . . mp), ] � 0, and [Ψ]ij � 0 (i, j � 1 . . .

m) to represent the noninformative prior. As far as the
abovementioned hyperparameters are adopted, the value of
M does not alter the following calculation. Te proposed
noninformative prior and equations (7)–(10) generate the
following posterior distribution:

p W,Σ|Dr(  � MN W|Mr,Σ, L− 1
r IW Σ|Ψr, ]r( . (12)

In equation (12), each hyperparameter is calculated as

Lr � 
l

i�1


ni

k�p+1
ϕi

kϕ
i
kT, (13)

Mr � 
l

i�1


ni

k�p+1
yi

kϕ
i
kT⎛⎝ ⎞⎠Lr

− 1
, (14)

]r � 
l

i�1
ni − p( , (15)

Ψr � 
l

i�1


ni

k�p+1
yi

ky
i
kT − MrLrMr

T
, (16)

where ϕi
k � [yiT

k− p, . . . , yiT
k− 1]

T. Te posterior distribution in
equation (12) represents the updated knowledge after
measuring the reference dataset and quantifes the un-
certainty for each regressive parameter based on the ob-
servation. Te time series in the reference dataset directly
produce the hyperparameters in equations (13)–(16). Te
summations in equations (13), (14), and (16) are approxi-
mated with the following autocorrelation for fast
computation:

R(s) �

1
N


l

i�1
ni

k�s+1 yi
ky

iT
k− s , (for s≥ 0),

R(s)
T
, (for s< 0).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(17)
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Herein, N represents the total data length of the ref-
erence dataset, i.e., N � Σli�1ni. Equations (13), (14), and (16)
are approximated using autocorrelation functions, as shown
in the following equations:

Lr � 
l

i�1


ni

k�p+1

yi
k− p

⋮
yi

k− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

yi
k− p

⋮
yi

k− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

≈ (N − pl)

R(0) , . . . , R(1 − p)

⋮ ⋱ ⋮
R(p − 1) , . . . , R(0)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦,

Mr � 
l

i�1


ni

k�p+1
yi

k

yi
k− p

⋮
yi

k− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠L− 1

r ≈ [R(p) . . . R(1)]

R(0) , . . . , R(1 − p)

⋮ ⋱ ⋮
R(p − 1) , . . . , R(0)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦

− 1

,

Ψr ≈ (N − pl)R(0) − MrLrMr
T
.

(18)

To fnd appropriate AR order p, the following BIC
[22, 38] is adopted.

BIC � − 2ln p Dr
 Wr,

Σr 

+ m
2
p +

m(m + 1)

2
 ln Σli�1 ni − p(  .

(19)

Terein, Wr and Σr are the most likelihood estimators
(MLEs) of W and Σ for the reference dataset. Te most
likelihood estimators can be rewritten using the hyper-
parameters as

Wr � 
l

i�1


ni

k�p+1
yi

kϕ
i
k
T⎛⎝ ⎞⎠ 

l

i�1


ni

k�p+1
ϕi

kϕ
i
k
T⎛⎝ ⎞⎠

− 1

� Mr,

(20)


r �


l
i�1

ni

k�p+1 yi
k − Wrϕ

i
k  yi

k − Wrϕ
i
k 

T


l
i�1 ni − p( 

�
Ψr

]r
. (21)

According to the well-known nature of the Gaussian
model, lnp(Dr | Wr,

Σr) in equation (19) is given as pre-
sented in the following equation:

ln p Dr
Wr

 , Σr  � −
Σli�1 ni − p( 

2
ln Σr


 + Const. (22)

Using the hyperparameters and ignoring the constant,
BIC in equation (19) is rewritten as

BIC � ]r ln
Ψr
]r




+ m

2
p +

m(m + 1)

2
 ln ]r. (23)

Te AR order providing the lower BIC represents the
better regressive model representing the reference dataset.
Accordingly, the optimal AR order is automatically calcu-
lated from the reference dataset.

2.3. Principal Component Analysis. Te posterior distribu-
tion for W is transformed into independent parameters for
further analysis. For the PDF given in equation (12), the
orthogonal basis for the transformation is obtained from the
eigenvalue decomposition of the hyperparameter Lr as

Lr � UΛUT
� u1, . . . ,ump diag λ1, . . . , λmp  u1, . . . ,ump 

T
,

(24)

where Λ ∈ Rmp×mp is the diagonal matrix consisting of the
eigenvalues;U ∈ Rmp×mp is the orthogonal matrix consisting
of the eigenvectors; diag[λ1, . . . , λmp] stands for the diagonal
matrix consisting of the diagonal elements λ1, . . . , λmp. ui

and λi stand, respectively, for the i-th column of U and the i-
th diagonal member of Λ. For simplicity, let the eigenvalues
be in descending order, i.e., λ1 > . . . > λmp. Te orthogonal
basis u1 . . . ump  transforms the posterior distribution for
W as follows: Letting W � WU and wi � Wui (i � 1 . . . mp),
the PDF in equation (12) is transformed as

p W,Σ|Dr(  � MN W| M,Σ,Λ− 1
 IW Σ|Ψr, ]r(  � 

mp

i�1
wi| mi, λ

− 1
i Σ IW Σ |Ψr, ]r( , (25)
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where M � MrU and mi � Mrui (i � 1 . . . mp). Equation
(25) shows that each vector wi is independent of the others.

Te transformation described previously is comparable
to the PCA of the vector ϕk. Tat is because equation (13)
relates the abovementioned orthogonal basis and the co-
variance matrix of the vector ϕk as follows:

cov ϕk(  �


l
i�1 

ni

k�p+1 ϕ
i
kϕ

i
kT 

Σli�1 ni − p(  
∝Lr � UΛUT

. (26)

Tis equation demonstrates that the vectors u1 . . . ump

are the eigenvectors of the covariance matrix of ϕk.
Terefore, the i-th principal components of ϕk are given as
uTi ϕk. According to the PCA theory, vector ϕk is approxi-
mated with the frst several principal components. Te
following contribution ratio is used widely to evaluate how
principal components contribute to the approximation.

CR(i) �
λi


mp
j�1λj 

. (27)

Te abovementioned contribution ratio is applied to
distinguish the damage-sensitive parameters from the other
parameters.

Te following steady state-space model is examined to
clarify the relationship between modal properties and the
PCA.

xk+1 � Axk + Bek, (28)

yk � Cxk + ek. (29)

Here, xk is a state vector representing structural re-
sponse, and matrices A, B, and C are constant matrices. Te
modal frequencies, damping ratios, and mode shapes are
estimated from matrices A and C. As discussed in Appendix
A, the eigensystem realization algorithm (ERA) [40] pro-
duces the estimators of A and C as

A � u1 , . . . , uq 
T u1[m+1:mp] , . . . , uq[m+1:mp]

w1 , . . . , wq

⎡⎣ ⎤⎦,

(30)

C � u1[1:m] , . . . , uq[1:m] . (31)

In those equations, ui[a:b] represents a vector that con-
sists of the a-th to b-th elements of ui.

For the reference dataset, the modal properties are es-
timated by substituting the MLE given in equation (20) toA.
Te MLE of matrix A is given as

A � u1 , . . . , uq 
T u1[m+1:mp] , . . . , uq[m+1:mp]

m1 , . . . , mq

⎡⎣ ⎤⎦.

(32)

Modal properties are estimated with eigenvalue
analysis of matrix A as

A − λA ψ � 0, (33)

where λA is one of the eigenvalues of A and ψ is the cor-
responding eigenvector. Te angular frequency ω, damping
ratio ξ, and the mode shape s are given as follows:

ω �
| ln λA( |

Δt
, (34)

ξ � − cos∠ ln λA( , (35)

s � real u1[1:m] , . . . , uq[1:m] ψ , (36)

where abs|(·)|, real(·), and ∠(·) represent the absolute value,
real part, and phase angle, respectively; Δt stands for the
sampling interval.

Equations (30) and (31) show that the AR coefcients
relate with the modal properties only on the vector space
consisting of the orthogonal basis u1 . . . uq . Namely, only
q vectors w1 . . . wq represent the modal properties, and the
other vectors wq+1, . . . , wmp are less relevant to them. Te
orthogonal transformation consequently separates physi-
cally meaningful and meaningless parameters. Tis study
refers to the vectors w1 . . . wq as the damage-sensitive
parameters. Let the damage-sensitive parameters and
the other parameters be gathered in matrices, respectively,
as W1 � [w1, . . . , wq] ∈ Rmp×q and W2 �

[wq+1, . . . , wmp] ∈ Rmp×(mp− q). Equation (25) produces the
following PDFs for W1, W2, and Σ.

p W1
Σ,Dr  � 

q

i�1
N wi

 mi, λ
− 1
i Σ , (37)

p W2
Σ,Dr  � 

mp

i�q+1
N wi| mi, λ

− 1
i Σ , (38)

p Σ |Dr(  � IW Σ |Ψr, ]r( . (39)

3. Damage Detection

3.1.Hypothesis Testing. Bayesian hypothesis testing provides
a framework to compare two competing statistical models
representing the observed data [27]. Tis study adopts two
statistical models, respectively, representing the healthy and
damaged bridge. Following the hypothesis testing precedent,
the healthy and damaged bridgemodels are designated as the
“null hypothesis” and the “alternative hypothesis.”

Let Dt denote the test dataset for the hypothesis testing.
Herein, subscript “t” stands for “test.” Let Wr

1 and Wt
1

represent the damage-sensitive parameters for the reference
and test datasets, respectively. Tis study formulates the
hypotheses according to the following conditions:

(i) Te damage-sensitive parameters for the null hy-
pothesis H0 are consistent between the reference
and test datasets, i.e., Wr

1 � Wt
1
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(ii) Te damage-sensitive parameters for the alternative
hypothesisH1 difer between the reference and test
datasets, i.e., Wr

1 ≠ Wt
1

(iii) Parameters W2 and Σ for both hypotheses are
consistent between the reference and test datasets

Under the null hypothesis, no parameter is altered be-
tween the reference and the test datasets. Terefore, the PDF
of the parameters for the null hypothesis is identical to
equation (12), i.e.,

p W,Σ |H0(  � p W,Σ |Dr(  � MN W |Mr,Σ, L− 1
r IW Σ |Ψr, ]r( . (40)

Under the alternative hypothesis, damage-sensitive pa-
rameters Wt

1 are altered from the reference dataset and
unknown before observing the test dataset. Bayesian sta-
tistics represents the parameters with less knowledge as
PDFs with broad variances. As shown in equation (37),
each vector wi has variance λ− 1

i Σ in the posterior distri-
bution. Te eigenvalues of Lr are usually large enough, i.e.,
1≪ λi (i � 1, . . ., q) because sufcient data length is available
for the reference dataset. So, the alternative hypothesis
adopts the following PDF with broad variances instead of
equation (37):

p Wt
1 |Σ,H1  � 

q

i�1
N wi

 0,Σ . (41)

Here, 0 is adopted as the mean value of the damage-
sensitive parameters Wt

1 to avoid bias derived from the
reference dataset.

Consequently, the PDF for parameters W and Σ are
given as

p W,Σ |H1(  � MN W |Malt,Σ, L− 1
alt IW Σ|Ψr, ]r( ,

(42)

where

Malt � 0, . . . , 0 mq+1, . . . , mmp UT
,

Lalt � Udiag 1, . . . , 1, λq+1, . . . , λmp UT
.

(43)

Letting M0 � Mr, L0 � Lr, M1 � Malt, and L1 � Lalt for
simplicity, the PDFs for the null and alternative hypotheses
are presented as follows:

p W,Σ |Hκ(  � MN W |Mκ,Σ, L− 1
κ IW Σ |Ψr, ]r(  (κ � 0,1).

(44)

Using the PDF in equation (44), evidence functions of
Dt for the hypothesis testing are

p Dt
Hκ  � Bp Dt

W,Σ p W,Σ |Hκ( dW dΣ (κ � 0,1).

(45)

Te only diference between the two hypotheses is the
distribution of the damage-sensitive parameters Wt

1 relevant
to the modal properties. Te uncertainty involved in the
other parameters is marginalized and canceled out by the
integration in equation (45).

Te Bayes factor is the ratio of the two evidence func-
tions shown as follows:

B Dt(  �
p Dt

H1 

p Dt
H0 

. (46)

According to the well-known scale as the likelihood ratio
test statistics, Kass and Raftery [27] interpreted the Bayes
factor on twice the natural logarithm scale as

2 lnB Dt(  � 2ln p Dt
H1  − 2ln p Dt

H0 . (47)

When the test dataset is in favor of the alternative hy-
pothesis, its evidence function is higher against the null
hypothesis, i.e., p(Dt |H1)> p(Dt |H0). So, if the
damage-sensitive parameters difer from the reference
dataset, 2 lnB likely exceeds 0, and vice versa. Terefore,
this study adopts 2 lnB � 0 as the threshold for damage
detection where the model evidence for the null and the
alternative hypotheses are equivalent, i.e.,
p(Dt |H1) � p(Dt |H0). Kass and Raftery [27] proposed
the scale shown in Table 1. For example, if 2 lnB is greater
than 10, the evidence against the null hypothesis is
interpreted as “very strong.”

3.2. Global Damage Indicator. Let Yt � [ytT1 , . . . , ytTnt ]
T rep-

resent a time series observed for hypothesis testing, where nt
stands for the data length.Tis section adopts the whole time
series as the test dataset, i.e.,Dt � Yt. Equation (11) gives the
following evidence function:

p Yt
Hκ ∝

Γm ]r′/2( 

Γm ]r/2( 

Lκ



m/2

Lκ′



m/2

Ψr



]r/2

Ψκ′



]r′ /2

. (48)

In equation (48), ]r′, Lκ, and Ψκ′ stand for the hyper-
parameters of the posterior distribution after test
dataset observation, i.e., the hyperparameters of
p(W,Σ |Yt,Hκ). Te following equations calculate each
hyperparameter:

L′κ � Lκ + 

nt

k�p+1
ϕt

kϕ
tT
k ,

M′κ � MκLκ + 

nt

k�p+1
ytkϕ

tT
k

⎛⎝ ⎞⎠L′κ− 1,

]r′ � ]r + nt − p,

Ψ′κ � Ψr + 

nt

k�p+1
ytky

tT
k + MκLκM

T
κ − M′κL

′
κM
′T
κ .

(49)

Here,ϕt
k � [ytTk− 1, . . . , ytTk− p]T. Accordingly, equation (48)

gives the following log-scaled Bayes factor.
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2 lnB Yt(  � ]r′ ln Ψ0′


 − ln Ψ1′


  + m ln L0′


 − ln L1′


  − m 

q

k�1
ln λk. (50)

Te log-scaled Bayes factor in equation (50) is designated
as the “global Bayes factor” because it detects global changes
in the modal response.

3.3. Local Damage Indicator. Te hypothesis testing to es-
timate the damage location is formulated as follows. Let y

(j)

k

stand for the j-th element of ytk, and let y(− j)

k stand for the

vector except for the j-th element from ytk. Te time series of
the j-th element Y(j)

t � [y
(j)
1 , . . . , y

(j)
nt ]T is adopted as the test

dataset, i.e.,Dt � Y(j)
t . Te likelihood for y

(j)

k is transformed
as follows, according to the Gaussian nature [22]:

p y
(j)

k ϕk

 ,W,Σ  � N yk

Wϕk,Σ dy(− j)

k � N y
(j)

k W(j)
 ϕk, σ2j . (51)

Terein,W(j) stands for the j-th row ofW; σ2j stands for
the j-th diagonal element of Σ. Te likelihood function for
Y(j)
t satisfes the following relation:

p Y(j)
t W(j)

 , σ2j ∝ 

nt

k�p+1
N y

(j)

k W(j)
 ϕk, σ2j . (52)

Because the likelihood function only has parameters
W(j) and σ2j , the evidence function for hypothesis testing can
be simplifed as shown in the following equation:

p Y(j)
t Hκ

  � Bp Y(j)
t W(j)

 , σ2j p W(j)
, σ2j Hκ

 dW(j)d σ2j (κ � 0,1). (53)

Te PDF ofW(j) and σ2j are approximately derived from
equations (40) and (42) as

p W(j)
, σ2j Hκ

  � N W(j)
M

(j)
κ , σ2jL

− 1
κ IW σ2j

ψ
(j)
r , ]r (κ � 0,1), (54)

where M(j)
κ and ψ(j)

r in equation (54) correspond, re-
spectively, to the j-th row of Mκ and the j-th diagonal
element of Ψr. In a similar manner to that discussed in
Section 2.1, the evidence functions in equation (53) are
given as

p Y(j)
t |Hκ ∝

Γ1 ]′/2( )

Γ1(]/2)

Lκ



1/2

Lκ′



1/2

ψ(j)
r 

]/2

ψ′(j)
κ 

] ′/2 (κ � 0,1). (55)

Here, ψ′(j)
κ stands for the j-th diagonal elements of the

matricesΨκ′.Te log-scaled Bayes factor is accordingly given as
2 lnB Y(j)

t  � ]r′ lnψ
′(j)
0 − lnψ′(j)

1 

+ ln L0′


 − ln L1′


  − 

q

k�1
ln λk.

(56)

Te log-scaled Bayes factor given in equation (56) is
designated as the “local Bayes factor.”

Table 1: Interpretation of Bayes factors [27].

2 lnB(Dt) B(Dt) Evidence against H0

0 to 2 1 to 3 Not worth more than bare mention
2 to 6 3 to 20 Positive
6 to 10 20 to 150 Strong
>10 >150 Very strong
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4. Case Study

4.1. Target Bridge. Tis study provides a case study for
a simply supported truss bridge to assess the feasibility of the
proposed method. Field experiments were conducted on the
bridge with a moving vehicle [41]. Te bridge is a single-lane
through-type steel Warren truss with 59.2m span length,
8m maximum height, and 3.6m width, as presented in
Figure 2. Te vehicle used for the experiment is a two-axle
recreational vehicle with a total weight of about 21 kN.
During the investigation, all trafc except for the loading
vehicle was prohibited. Eight uniaxial accelerometers were
installed on the bridge deck to measure vertical vibrations, as
presented in Figure 3. Te sampling rate of each sensor was
200Hz.

Te truss members were severed in the feld experiment.
Figures 4(a) and 4(b) portray the schematic diagrams and
photographs of the damaged members, respectively. Te
following fve damage scenarios were considered: the INT
scenario represents the intact bridge without damage. For
the DMG1 scenario, half-cut damage was applied to the
vertical truss member at midspan (the vertical member in
a diferent color on the A3 sensor in Figure 3). For the
DMG2 scenario, full-cut damage was applied to the same
member. After that, the damaged member was repaired,
designated as the RPD scenario. For the DMG3 scenario,
a full cut was applied in a vertical member at 5/8th-span
(the vertical member in a diferent color on the A4 sensor
in Figure 3) after examining the RPD scenario. For the
INT scenario, the vehicle passed over the deck at three
speeds: 30 km/h, 40 km/h, and 50 km/h. For these ana-
lyses, INT30, INT40, and INT50 represent the scenarios at
the three vehicle speeds. Te vehicle passed only at 40 km/
h for the other damage scenarios. Table 2 presents the
vehicle loading scenarios. Te damage experiment is
motivated by the damage event for which a ruptured truss
member was discovered during a bridge inspection in
Japan [44]. More details of the feld experiment and the
data are available from the related data paper [41] and data
repository [45]. We can also fnd the design dimensions
for all the steel truss components and reinforced concrete
slab in [41]. Another earlier study [11] investigated
damage detection for this bridge based on modal
identifcation.

Figures 5(a)–5(g) present the acceleration time series at
sensor A3 for INT30, INT40, INT50, DMG1, DMG2, RPD,
and DMG3, respectively. Te linear trends in the time series
were removed in advance. Tis case study adopts raw time
series data with no preprocessing except for removing
linear trends. As shown in Figures 5(a)–5(c), diferent
vehicle speeds produce diferent transient responses of the
bridge. Te unsteady ambient loading can be a source of
false alerts, as shown in Appendix B. In Figures 5(b), 5(d)–
5(g), where vehicle speed was 40 km/h, the diference in the
waveforms is not so signifcant. To examine changes in the
modal response in the measured time series, the power
spectral density (PSD) curve is widely used. Figure 6
portrays PSD curves from each time series, estimated as
periodograms with the rectangular window. In the PSD

curves, several natural frequencies appear as peaks.
Figure 6(a) shows that the dominant mode around 3Hz
slightly altered in DMG2, possibly because of the severed
member at the midspan.Te diference between INT40 and
DMG1 is hard to distinguish in this fgure. Figure 6(b)
implies that the damage altered the higher modes, but the
peaks are ambiguous at the higher frequency range com-
pared to the dominant mode. Engineers can compare the
frequencies for damage detection, but it is not always easy
to distinguish changes by classical peak-picking. For in-
stance, they need to choose the modal frequency for
comparison. Preliminary calibration is required to set
thresholds for peak-pick to automate damage detection.
Also, they should estimate several samples from multiple
measurements and compare them with a statistical ap-
proach because the frequencies involve estimation errors.
Unsteady ambient loadings often make these procedures
harder. Although they have more advanced ways, as dis-
cussed in Section 1.1, automating and generalizing damage
detection procedures are still challenging.

4.2. Reference Modeling. All samples obtained from INT30,
INT40, and INT50 were adopted as the reference dataset in
this section. Figure 7 shows a plot of the BIC for the AR
order. Te vertical dashed line in Figure 7 depicts the op-
timal AR order p � 94. Accordingly, this study adopted p �

94 as the AR order. Te PCA produces the contribution
ratios shown in Figure 8. Here, the frst and second principal
components have a contribution ratio of around 30% and
dominantly represent the vector ϕk. Te third to tenth
principal components have contribution ratios of about 5%
to 2%; the others’ contribution ratios are less than 1%. Te
frst two principal components likely represent the dominant
mode because it primarily contributes to the bridge vibra-
tion. Te third to tenth principal components likely rep-
resent the other higher modes, whose modal responses are
relatively small. Tis study applies the frst to tenth principal
components, i.e., q� 10.

With q� 10, the state-space model produces modal
properties of fve modes. Figures 9(a)–9(e) present the fve
mode shapes calculated by equation (36). Here, circles and
squares in the diagram represent modal deformations, re-
spectively, at A1 to A5 and A6 to A8 sensors. Te frequency
and damping ratios calculated by equations (34) and (35) are
given in the captions of each fgure. For Figures 9(a) and
9(b), we can identify the frst and second bending modes.
Although the estimatedmode shapes in Figures 9(c)–9(e) are
not evident enough because of the limitation of the number
of measurement points, we can identify the corresponding
modes by comparing them with a structural model. Te
frequencies and mode shapes correspond well with results
from fnite element analysis in an earlier study [11]. Te
earlier study indicates that the estimated modes are identical
to the bridge’s frst to ffth bending modes. Accordingly, the
damage-sensitive parameters in this case study are related to
the frst to ffth bendingmodal frequencies andmode shapes.
Contrarily, the estimated damping ratios are much lower
than physically expected.Te possible reason is that the ERA
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Figure 2: Photographs of the target bridge [41].

8@7.4=59.2m

DMG 1
DMG 2
RPD

DMG 3
Vehicle movement

direction

Midspan 5/8 th span

Accelerometer
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Figure 3: Sensor deployment and damage location [41].
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cut
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Full
cut Weld
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DMG1 DMG3RPDDMG2

(b)

Figure 4: Damage scenarios: (a) schematic diagrams and (b) photographs of damaged members [41].

Table 2: Scenarios considered in the feld experiment.

Description Vehicle speed (km/h) Numbers of experiments
INT30 Intact bridge 30 11
INT40 Intact bridge 40 10
INT50 Intact bridge 50 5
DMG1 Half cut in vertical member at midspan 40 12
DMG2 Full cut in vertical member at midspan 40 10
RPD Repair of the member at midspan 40 10
DMG3 Full cut in vertical member at 5/8th-span 40 10
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assumes impulse response, whereas actual ambient loads
produce continuous excitation.

4.3. Damage Detection. Tis case study adopts the INT as
a reference scenario for DMG1 and DMG2 scenarios and the
RPD scenario as a reference scenario for the DMG3 scenario
because the modal properties changed after the repair of the
damaged member. Te following two cases are considered:

(i) Case 1: INT40 is adopted as a reference scenario for
DMG1 and DMG2, but RPD is adopted as a refer-
ence scenario for DMG3

(ii) Case 2: INT30, INT40, and INT50 are adopted as
a reference scenario for DMG1 and DMG2

Table 3 presents the conditions described above.
2lnB � 0 is adopted as the threshold for damage de-

tection, as mentioned in Section 3.1. Te threshold is des-
ignated as a “critical value” for hypothesis testing. For the

reference dataset, the leave-one-out cross-validation (CV)
technique is applied to assess the validity of the Bayes factors:
one of the time series (e.g., Y1) is taken out from this set as
a test sample; then, the remaining samples Y2, . . . ,Yl  are
referred as the reference dataset, i.e., Dr � Y2, . . . ,Yl  and
Dt � Y1. Consequently, the l Bayes factors are obtained from
the l samples from the reference dataset. Te Bayes factors
calculated using the CV technique are designated as “CV
samples.” Te Bayes factor is validated as a robust anomaly
indicator when CV samples are lower than the null hy-
pothesis. On the other hand, if most of the CV samples are
over the critical value, false positives are suspected (see also
Appendix B).

Figures 10(a) and 10(b) present global Bayes factors for
Cases 1 and 2, respectively. For INTand RPD scenarios, CV
samples are shown in Figure 10. In addition, the critical
value is depicted as a red horizontal line. Table 4 summarizes
the mean values and the correct answer ratio of the global
Bayes factors for each scenario. Here, Bayes factors meeting
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Figure 5: Measured time series of A3 sensor for (a) INT30, (b) INT40, (c) INT50, (d) DMG1, (e) DMG2, (f ) RPD, and (g) DMG3.
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2lnB< 0 are correct answers for the CV samples; 2lnB> 0
are as correct answers for the damage scenarios. Except for
DMG1, every global Bayes factor result in the correct an-
swer. For DMG1, 10 out of 12 samples indicate the correct
answer for both cases. According to the scale cited in Table 1,
every damaged scenario, including DMG1, resulted in much
higher Bayes factors than 2lnB � 10 in their mean value,
which is “very strong” evidence for the alternative hy-
pothesis against the null hypothesis. Tese results describe
that the proposed Bayes factors are sensitive enough even to
DMG1. Results for Case 2 demonstrate that the proposed
method is sufciently robust against unexpected bias caused
by diferent vehicle speeds. Compared with Appendix B,
these results indicate that the proposed method reduces false
alerts caused by load-induced noise.

Figures 11(a) and 11(b) depict the local Bayes factors for
Cases 1 and 2, respectively. Legends in the fgures corre-
spond to the measurement locations in Figure 3; CV samples
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Figure 6: Measured PSD curves of A3 sensor: (a) for INT40, DMG1, and DMG2, (b) for RPD and DMG3.
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Figure 7: BIC with respect to the AR orders.
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Figure 8: Contribution ratios.
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and the critical value are provided similarly to those in
Figure 10. In those fgures, some local Bayes factors are much
higher than others for DMG2 and DMG3. For DMG2, the

higher values appear at measurement location A3. For
DMG3, in contrast, the higher values are found at A4. Te
A3 and A4 are the closest measurement locations to the

Freq. = 2.97 Hz, Damp. Ratio = 0.0077 %

(a)

Freq. = 6.87 Hz, Damp. Ratio = 0.015 %

(b)

Freq. = 9.59 Hz, Damp. Ratio = 0.027 %

(c)

Freq. = 10.5 Hz, Damp. Ratio = 0.033 %

(d)

Freq. = 13.4 Hz, Damp. Ratio = 0.023 %

(e)

Figure 9: Estimated modal properties: (a) 1st bending, (b) 2nd bending, (c) 3rd bending, (d) 4th bending, and (e) 5th bending.

Table 3: Cases considered for damage detection.

Reference scenarios Damage scenarios

Case 1 INT40 DMG1 and DMG2
RPD DMG3

Case 2 INT30, INT40, and INT50 DMG1 and DMG2
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Figure 10: Global Bayes factors: (a) for Case 1 and (b) for Case 2 (30, 40, and 50 denote vehicle speed in km/h).
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Table 4: Summary of the global Bayes factor.

Mean value Correct answer ratio

Case 1

INT40 − 777 10/10
DMG1 432 10/12
DMG2 3280 10/10
RPD − 818 10/10
DMG3 14175 10/10

Case 2

INT30 − 721 11/11
INT40 − 630 10/10
INT50 − 696 5/5
DMG1 307 10/12
DMG2 5704 10/10
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Figure 11: Local Bayes factors: (a) for Case 1 and (b) for Case 2 (30, 40, and 50 denote vehicle speed in km/h).
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Figure 12: Bayes factors without PCA: (a) for Case 1 and (b) for Case 2 (30, 40, and 50 denote vehicle speed in km/h).
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damaged member, respectively, for DMG2 and DMG3. For
DMG1, the local Bayes factor is not as signifcant as DMG2
and DMG3. Tose results demonstrate that the local Bayes
factors indicate the closest measurement point to damage
locations if the damage is severe enough that the member
nearby the sensor thoroughly ruptures.

5. Concluding Remarks

Tis study proposes damage detection methods for bridges
using ambient loads to cope with difculties in decision-
making for bridge maintenance. Te damage detection aims
to develop a screening method for numerous bridges
without trafc interruption. Load-induced noise often
hinders subtle changes. So, this study automates and gen-
eralizes the change detection in modal properties and
proposes a simplifed anomaly indicator robust against load-
induced noise.

A time series of bridge accelerations provides a likeli-
hood function of a vector autoregressive (VAR) model. Te
likelihood function and a noninformative prior produce the
posterior distribution of the model parameters that con-
stitute the VAR model. Te posterior distribution provides
a reference model representing healthy bridge vibrations
using acceleration measured under healthy conditions. Te
orthogonal bases of the posterior distribution obtained from
the principal component analysis extract damage-sensitive
parameters comparable to modal properties. We formulated
Bayesian hypothesis testing comparing two evidences rep-
resenting the healthy and damaged state of the bridge, using
the damage-sensitive parameters.

Tis study examined experimental data on an actual
simply supported steel truss bridge with severed tension
members to investigate the feasibility of the proposed ap-
proach for damage detection. Te AR order is determined
with the Bayesian information criterion. Te contribution
ratios of the principal components indicate an appropriate
number of damage-sensitive parameters. Te damage-
sensitive parameters are converted into fve bending
modal properties, identical to the results of an earlier
study [11].

Te proposed Bayes factors result in much higher mean
values than “very strong” evidence in the conventional scale
for all damage considered in the case study, including the
subtle change caused by the half-cut of the member. Change
in the vehicle speed does not lead to a false positive result in
this case study. Tis result suggests that the proposed
methodology is robust against changes in vehicle speed
compared to the existing Bayesian hypothesis testing, as
discussed in Appendix B. Localized Bayes factors have
signifcant values at the measurement locations closest to the
damaged members for severe damage scenarios where the
truss members were ruptured thoroughly.

We prospect the following discussions and in-
vestigations in future studies:

(i) Tis study validated the robustness of the proposed
method against load-induced noise. However, be-
cause of the limitations of feld experiments, we

have not discussed the other source of noise. Es-
pecially, temperature fuctuation is one of the
crucial concerns for long-term health monitoring.
Future studies should follow to validate or improve
the proposed method for long-term environmental
change.

(ii) Te proposed method evaluates the ratio of the
evidence functions for damaged bridge and healthy
bridge. However, we have yet to quantify the
damage severity. Te statistic scale proposed in
a previous study, cited as Table 1, appears un-
available for damage quantifcation because the
calculated results are much higher than it. Model-
based sensitivity analysis to quantify various dam-
ages is required because the test case in the feld
experiment is quite limited. Also, sensitivity analysis
needs to be undertaken for the local Bayes factors to
confrm their sensitivity to the damages.

(iii) Te damping ratios were underestimated from the
damage-sensitive parameters. Te possible reason is
that the adopted estimation technique assumes
impulse response, whereas actual loads produce
continuous excitation. Modifcations in models or
feature extraction methods are required to detect
changes in damping ratios.

(iv) Although the proposed method almost automates
the procedure for damage detection, the choice of
the dimension of the damage-sensitive parameters
has yet to automate. Te principal components’
contribution ratios help engineers fnd how much
the parameters contribute to the modal response.
However, they still need to determine the dimension
by themselves. Further automation is desired to
avoid overlooking damage-sensitive parameters.

(v) Te proposed method enables rapid screening for
damage detection without any structural models.
After the screening, engineers will require damage
identifcation in the next phase. Structural-model-
based techniques are likely suitable for further de-
tailed damage localization and identifcation.

Appendix

A.RelationshipwithClassicalModalEstimation

Tis appendix shows that the modal properties estimated in
the proposed method are consistent with the eigensystem
realization algorithm (ERA) [40]. In ERA, the modal
properties of the system are estimated with singular value
decomposition (SVD) to a Hankel matrix, which is defned
as

H(k) �

yk+1 , . . . , yk+n− p

⋮ ⋱ ⋮

yk+p , . . . , yk+n− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� ϕk+p+1 . . . ϕk+n .

(A.1)
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As well as equation (26), with the sufciently large n, the
Hankel matrix relates to the PCA proposed in this study as
follows:

H(0)HT
(0) � 

n

k�p+1
ϕkϕk

T∝UΛUT
. (A.2)

Accordingly, the left singular vector of the Hankel matrix
H(0) is consistent with the vector composing U in equation
(24). Te singular value decomposition (SVD) is applied to
H(0) as

H(0) � UΣVT
. (A.3)

Here, Σ is a rectangular matrix consisting of the singular
values, and V is an orthonormal matrix consisting of the
right singular vectors. Note thatΛ∝ ΣΣT is satisfed because
of equation (A.2). Terefore, using the frst q singular values
and corresponding singular vectors, H(0) is approximated
as

H(0) ≈ UqΣqV
T
q , (A.4)

whereΣq,Uq, andVq are submatrices consisting of the frst q

singular values and singular vector.
Using the Hankel matrix, the VARmodel in equation (1)

is transformed as

(A.5)

where Ii and Oi stand, respectively, for the i × i identity and
zero matrices. Assuming sufciently large n, the pseu-
doinverse matrix of H(0) is given as

H†
(0) � HT

(0) H(0)HT
(0) 

− 1
. (A.6)

Since the VAR model assumes white noise, ek is in-
dependent of ϕk. Terefore, using the pseudoinverse matrix,
the following approximation is given:

ep+1 · · · en H†
(0) � 

n

k�p+1
ekϕk

T H(0)HT
(0) 

− 1
≈ O.

(A.7)

Equation (A.5) is transformed as

(A.8)

In ERA, the pulse response is assumed instead of white-
noise excitation, i.e., x0 � 0, e0 � [1, . . . , 1]T, and
ek � 0 (for k≥ 1). Note that equation (A.8) is consistent both
for the white noise and pulse-response assumptions.

Following the pulse-response assumption, the Hankel
matrix H(1) is given as

H(1) ≈ UqΣ
1/2
q AΣ1/2

q Vq
T
, (A.9)

where A is the constant matrix in equation (28). Equations
(A.4), (A.8), and (A.9) produce the following A:

(A.10)

where Uq[a:b] represents a submatrix that consists of a to
b rows of matrix Uq. Te constant matrix C in equation (29)
is estimated as

C � Uq[1:m]Σ
1/2
q . (A.11)

For simplicity, this study adopts A and C as shown in
equations (30) and (31) instead of equations (A.10) and
(A.11) because the modal estimation results are not altered
by omitting Σq from those equations.

B. Comparison with Existing Bayesian
Hypothesis Testing

Here, Bayesian hypothesis testing without PCA is discussed
for comparison. Classically, the evidence functions to

calculate Bayes factors are approximated by BIC [22, 38].
Te authors previously assessed the validity of this ap-
proach for SHM [47]. Tis appendix provides the equiv-
alent hypothesis testing using the notation presented in
Section 2 for comparison. Te hypothesis testing is for-
mulated as follows:

(i) Te null hypothesis H0 presumes that the param-
eters W are fxed to the MLEs obtained from the
reference dataset, i.e., W � Wr

(ii) Te alternative hypothesis H1 presumes W≠ Wr

(iii) Parameters Σ are fxed to the MLEs obtained from
the reference dataset Σ � Σr

Here, likelihood functions for parameters W satisfy the
following:

Structural Control and Health Monitoring 17



p Yt

W, Σr ∝ 
n

k�p+1
N ytk

Wϕt
k, Σr ∝ exp −

1
2
tr 

nt

k�p+1
ytk − Wrϕ

t
k  ytk − Wrϕ

t
k 

TΣ− 1
r

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (B.1)

Terefore, the log-scaled evidence function for the null
hypothesis is given as

2ln p Yt

H0  � − tr 

nt

k�p+1
ytk − Wrϕ

t
k  ytk − Wrϕ

t
k 

TΣ− 1
r

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ + Const. (B.2)

According to [48], the log-scaled evidence function for
the alternative hypothesis is approximated as

2ln p Yt
H1  ≈ − tr 

nt

k�p+1
ytk − Wtϕ

t
k  ytk − Wtϕ

t
k 

TΣ− 1
r

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ − m
2
p ln nt − p(  + Const, (B.3)

where Wt represents the following MLE obtained from the
test dataset.

Wt � 

nt

k�p+1
ytkϕ

t
k
T⎛⎝ ⎞⎠ 

nt

k�p+1
ϕt

kϕ
t
k
T⎛⎝ ⎞⎠

− 1

. (B.4)

Equations (B.2)–(B.4) produce the following log-scaled
Bayes factor:

2lnB � 2ln p Yt|H0(  − 2ln p Yt|H1(  ≈ tr Wr − Wt  

nt

k�p+1
ϕt

kϕ
t
k
T⎛⎝ ⎞⎠ Wr − Wt 

TΣ− 1
r

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ − m
2
p ln nt − p( . (B.5)

Figures 12(a) and 12(b) show the global Bayes factors
calculated with equation (B.5), respectively, for Cases 1 and
2. Te results demonstrate that test datasets of DMG1 en-
gender false negatives. Tat is probably because the anomaly
caused by DMG1 is inconspicuous among the other model
parameters. Tis observation indicates that the proposed
method has advantages for detecting subtle changes in
modal properties.

In Figure 12(b), false-positive CV samples are observed,
especially in INT50. One possible reason is that the dif-
ference in the waveform shown in Figure 5(c) afects the
model parameters, which are irrelevant to modal properties.
Another possible explanation is the limited number of
samples for INT50. Namely, nonuniformity in testing cases
may produce biased results in anomaly detection. Note that
the proposed method reduces the false positives. Tis ob-
servation indicates that the proposed method is more robust
against unsteady ambient loads than the existing Bayesian
hypothesis testing is.
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