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Using structural health monitoring (SHM) techniques, Brillouin optical time-domain analysis (BOTDA) sensors can be mounted
along the main box girder entire length of a long-span suspension bridge, and the high-density measured points strain monitoring
data can be obtained. However, insufcient research has been conducted on accurately diagnosing the structural condition of
a long-span suspension bridge by using the abovementioned strain monitoring data. To address this issue, a cross-diagnosis
method that determines the structural condition of long-span suspension bridges based on the distributed strain data spatial
window is proposed in this study. First, the distributed strain data spatial window based on a long-span suspension bridge
structural symmetry is defned.Ten, a method that divides the distributed strain data of the bridge main box girder into diferent
spatial windows usingmutual information between the strain data from BOTDA sensors is presented.Te special symmetry of the
environmental temperature efect on the spatial window structural performance is carried out to separate the temperature efect
from the strain monitoring data; this process can efectively reduce the interference of ambient temperature on the results of the
structural condition diagnosis. Second, using a convolutional neural network, a diagnosis index of the structural condition is
generated by using the correlation model between the high-density measured points and the distributed strain data belonging to
one whole spatial window. Regarding one spatial window, the proposed diagnosis index can efectively refect the variation in the
distributed strain correlation model caused by the damaged condition of the long-span suspension bridge to achieve cross-
diagnosis of the structural condition of the bridge. Finally, the efectiveness of the proposed method is demonstrated through
a numerical simulation using strain monitoring data obtained from a real bridge.

1. Introduction

In recent years, structural health monitoring for bridge
structures has received increasing attention because it can
continuously monitor bridge structures and collect long-
term structural and environmental monitoring data [1–3].
Many scholars have studied themonitoring data provided by
bridge structural health monitoring systems to diagnose the
conditions of bridge structures [4]. According to the dif-
ferent sensor types, monitoring data provided by the bridge
structural health monitoring system can be divided into
vibration acceleration data, strain data, displacement data,
and so on. Vibration acceleration data are considered ef-
fective data [5], and the methods of diagnosing conditions of

bridge structures by using bridge dynamic characteristics
have been extensively studied [6–11]. Regarding static data
of bridge structures, such as strain and displacement data,
the method for constructing condition diagnosis indexes of
bridge structures based on the correlation model between
the monitoring data is widely used [12, 13]. In addition,
based on the diagnostic methods of a single bridge, methods
for diagnosing bridge structure conditions using monitoring
data of bridges monitored within one cluster have also been
studied [14–17].

Although many scholars have studied how to efectively
use the monitoring data of various bridge structures for
long-span bridge structures, which are particularly afected
by environmental temperature, removing the infuence of
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environmental temperature in the bridge structure moni-
toring data is still a key problem in the process of diagnosing
the long-span bridge structure conditions [18]. To solve the
above problems, some scholars have carried out relevant
studies examining the correlation between the responses of
bridge structures and the ambient temperature and the
diagnosis indexes of bridge structure conditions in-
dependent of the ambient temperature. In the study of the
correlation between the structural response of bridges and
ambient temperature, the analysis of fnite element model
data and real bridges, machine learning, and other methods
have been widely used. Farreras-Alcover et al. [19] estab-
lished a correlation model of the strain and temperature of
steel bridge panels welded joints by using a regression
analysis method and diagnosed the welded joints structural
conditions based on the correlation model. Zhou and Sun
[20, 21] used the actual monitoring data of a cable-stayed
bridge to analyze the correlation between the structural
response (displacement, cable tensions, strain, and so on) of
the cable-stayed bridge and ambient temperature, providing
guidance for reducing the infuence of ambient temperature
on the diagnosis results of bridge conditions. Buckley et al.
[22] used a dynamic harmonic regression time-series model
to model recorded temperature values and strain data. Lei
et al. [23] used a residual autoencoder model to establish the
correlation between the ambient temperature and dis-
placement response of long-span cable-stayed bridges. Re-
garding constructing the structural condition diagnosis
indexes for bridges that are not afected by ambient tem-
perature, various methods that utilize either a single type of
structural response or multiple types of structural responses
have been proposed. Deraemaeker and Worden [24] con-
structed feature vectors to remove environmental impacts
based on the Mahalanobis distance. Soo Lon Wah et al. [25]
used the principal component analysis method to process
monitoring data and distinguished the infuence of struc-
tural damage and environmental factor changes on the
monitoring data. Fallahian et al. [26] proposed a method
that determines the condition diagnosis of bridge structures
based on pattern recognition in combination with coupled
sparse coding and a deep neural network. Tis method can
diagnose structural conditions in the presence of uncertain
factors such as noise and temperature. Erazo et al. [27]
proposed a structural condition diagnosis method based on
Kalman fltering under changing environmental conditions
and constructed the structural damage diagnosis index based
on the spectral moments of the residual spectral density. Xu
et al. [28] built a correlation model between the defection of
girders and tension in cables based on an unsupervised deep
learning network and then used this model to construct the
diagnosis indexes of bridge structure conditions.

In the above studies, point sensors are mostly used, but
the number of measured points is small. Recent advances in
distributed optical fber sensing technology provide strong
support for solving the above problems. Te principle of
distributed optical fber sensing technology is to use the
characteristics of the backscattering efect in the fbers, as
such an efect is sensitive to external physical quantities such
as temperature or strain; moreover, distributed optical fber

sensing technology obtains the measurements of external
physical quantities over the entire lengths of the fbers
through the measurement of the backscattering light signal
[29]. In recent years, to improve the performance index of
distributed optical fber sensing technology in terms of
spatial resolutions, measurement speeds and measurement
distances, optimizing diferential pulse-width pair Brillouin
optical time-domain analysis, fast-scanning Brillouin gain
spectra, and other technologies have been developed
[30–32]. Due to the advantages of convenient installation,
strong durability, and immunity to electromagnetic in-
terference, distributed optical fber sensing technology has
received extensive attention in the application of bridge
structure monitoring [33–35]. However, regarding the use of
distributed optical fber monitoring data to diagnose con-
ditions of long-span bridge structures, current research is
relatively limited. Zhang et al. [36] used the bridge structure
distributed strain data to construct a strain space-time
matrix and used it to characterize the structural damage
behavior and damage evolutionmode.Wei et al. [37] studied
the spatial-temporal features of distributed strain under
vehicle load and then determined vehicle load events by
using measured data to eliminate the infuences of vehicle
loads on the diagnosis of bridge structure conditions.
Scarella et al. [38] established a relationship between the
redistribution of deck strains and the tension loss in the
individual cables of cable-stayed bridges by using distributed
dynamic strain sensing technology. Oskoui et al. [39] pro-
posed a bridge damage detection method without reference
measurements by using dynamically distributed optical f-
bers. In addition, regarding the problem that the strain of the
fber core is inconsistent with the structural strain caused by
the cable protective layer and surface sticking, some scholars
have proposed methods for calculating the strain transfer
coefcient through theoretical research, numerical simula-
tion, and experimental research [40–44].

Compared with point sensors, distributed optical fber
sensors can provide strain monitoring data for high-density
measured points; as such data contain more information on
the conditions of bridge structures [45, 46]. In addition, local
load and other factors can only afect the strain monitoring
data of a small part of themeasured points at a single point in
time, so the distributed strain obtained can refect the re-
sponse of the overall structure with long-term temperature
change. Terefore, using the monitoring data of the dis-
tributed optical fber sensors, the problem of local damage
being ignored can be avoided, and the diagnosis of the
structural condition can be realized more efectively. To
efectively use the strain monitoring data of high-density
measured points, it is necessary to consider the combined
application of monitoring data of the diferent measuring
points. However, at present, research on using distributed
strain data to achieve structural condition diagnosis of long-
span suspension bridges is insufcient. Moreover, the dis-
tributed strain data of long-span suspension bridges are
greatly afected by the environment, and the variation in
structural conditions is easy to cover. Terefore, using
a reasonable method to process the distributed strain
monitoring data at diferent locations of a long-span
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suspension bridge and to reduce the interference of ambient
temperature on the results of the structural condition di-
agnoses for long-span suspension bridges is still a key issue.
To address this issue, a cross-diagnosis method that de-
termines the structural condition of a long-span suspension
bridge based on the spatial windows of distributed strain
data are proposed. First, the spatial window of distributed
strain data based on the structural symmetry of a long-span
suspension bridge is defned in Section 2; then, a method
that divides the distributed strain data of entire main bridge
box girders into diferent spatial windows by using the
mutual information between the strain data from BOTDA
sensors is presented. Next, using a convolutional neural
network, a diagnosis index of the structural condition is
generated through a correlation model between the dis-
tributed strain data of high-density measured points be-
longing to one whole spatial window in Section 3. Finally,
the efectiveness of the proposed method is demonstrated by
using a numerical simulation and strain monitoring data
obtained from a real bridge.

2. Division of the SpatialWindows Based on the
Mutual Information between the Distributed
Strain Data

2.1. Defnition of the Spatial Window of Distributed Strain
Data. Regarding the main girder structures of long-span
suspension bridges, it is assumed that there is a strain
measured at point A (as shown in Figure 1), and the strain of
the structure at this point is subject to the coupling efect of
vehicle load, environmental temperature, and other factors,
and this relationship can be expressed as follows:

UA(t) � fV(V(t)) + fT(T(t)) + θA(t), (1)

where UA(t) is the structural strain response at Point A
changing over time t, V(t) is the vehicle load vector
changing over time t, T(t) is the environmental temperature
vector changing over time t, fV(V(t)) is the structural strain
at Point A caused by vehicle load V(t), fT(T(t)) is the
structural strain at Point A caused by environmental tem-
perature T(t), and θA(t) is the structural strain at Point A
caused by other loads.

As shown in Figure 1, since the infuence of ambient
temperature is similar at the symmetrical position of the
bridge, the structural strain of the measured point A under
a temperature load and Point A′ is considered symmetric
with the strain measured point A of the main girder, and it
has the following correlation:

fT
′(T(t)) � fAA′ fT(T(t))( , (2)

where fAA′(·) is the correlation between the structural strain
of measured points A and A′ caused by the ambient tem-
perature and fT

′(T(t)) is the structural strain of measured
point A′ caused by the ambient temperature.

Using equations (1) and (2), the structural strain of
measured point A′ can be expressed by the following
equation:

UA′(t) � fV
′(V(t)) + fAA′ fT(T(t))(  + θA′(t), (3)

where fV
′(V(t)) is the structural strain of measured point A′

caused by a vehicle load, θA
′(t) is the structural strain re-

sponse of measured point A′ caused by other loads, and
UA′(t) is the structural strain response of measured point A′
changing over time t.

Equations (1) to (3) are combined to yield

UA′(t) − fAA′ UA(t)(  � UA′(t) − fAA′ fV(V(t)) + fT(T(t)) + θA(t)( 

� UA′(t) − fAA′ fV(V(t))(  − fAA′ fT(T(t))(  − fAA′ θA(t)( 

� fV
′(V(t)) − fAA′ fV(V(t))(  + θA′(t) − fAA′ θA(t)( 

� f V(t), θA′(t), θA(t)( ,

(4)

where f(V(t), θA′(t), θA(t)) is the function with V(t),
θA′(t), and θA(t) as the independent variables.

Regarding real bridges, vehicle loads and other loads can
be regarded as random variables. Terefore, f(V(t), θA′(t),

θA(t)) in equation (4) can be considered as the residual of the
correlation model between the structural strain monitoring
data at measured point A and measured point A’. Ambient
temperature efects are no longer included in the above re-
siduals. Terefore, the establishment of the strain correlation
model between measured point A and its symmetric mea-
sured point A′ can eliminate the infuence of ambient

temperature on the strain monitoring data, thus providing
a basis for the establishment of structural condition diagnosis
indexes for long-span suspension bridges. Regarding the
structural health monitoring system of a real bridge, con-
struction errors inevitably exist in the process of mounting
distributed optical fbers.Terefore, by considering the data of
measured points close to the measured points A or A′, the
correlation between the strain monitoring data of the mea-
sured points in the symmetrical area of the bridge can be
established to eliminate the infuence of ambient temperature,
as described by the following three equations:
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UA′(t) − fUAUA′
UA(t)(  � f V(t), θA′(t), θA(t), θA′− 1(t), θA− 1(t), θA′+1(t), θA+1(t), . . .( , (5)

UA′(t) � . . . , UA′− 1(t), UA′(t), UA′+1(t), . . . , (6)

UA(t) � . . . , UA− 1(t), UA(t), UA+1(t), . . . , (7)

where UA(t) and UA′(t) are the strain vectors of the mea-
sured points near measured point A or measured point A′
which change over time t, respectively; UA′− 1(t) and UA′+1(t)

are the strain monitoring data of the adjacent point on the left
and the adjacent point on the right of measured point A′,
which change over time t, respectively; UA− 1(t) and UA+1(t)

are the strain monitoring data of the adjacent point on the left
and the adjacent point on the right of measured point A,
which change over time t, respectively; fUAUA′

(·) is the
correlation model between UA(t) and UA′(t) established by
using the strain monitoring data, and f(V(t), θA′(t),

θA(t), θA′− 1(t), θA− 1(t), θA′+1(t), θA+1(t), . . .) is the residual
of the correlation model between UA(t) and UA′(t).

As seen from equations (5) to (7), the residual of the
relevant model of the measured points strain monitoring
data in the symmetrical area of the bridge is not afected by
the ambient temperature. Te residual can be used to
construct the diagnosis index of the structural condition,
thus reducing the interference of the ambient temperature
on the diagnosis result of the structural condition.Terefore,
the above symmetric areas of bridges can be defned as the
spatial window, and such window can be used as the basis for
further diagnosing structural conditions.

In summary, the spatial window of distributed strain
data of a long-span suspension bridge is defned as follows.
As shown in Figure 1, distributed optical fber sensors are
laid along the longitudinal length of the main girder, with
symmetric local longitudinal Areas U and P of the main
girder. Ten, the spatial window of distributed strain data is
the main girder area composed of Areas U and P, and the
structural strain responses of the high-density measured
points are contained in the spatial window.

2.2. Division of the Spatial Windows of Distributed Strain
Data. Te spatial window of distributed strain data is defned
in Section 2.1, and the method for dividing the distributed
strain data of the bridge entire main girder into diferent
spatial windows is presented in this section. According to the
defnition of the spatial window, there is a signifcant cor-
relation between the strain data of the main girder structure
and the spatial window. Te maximal information coefcient
is a mathematical tool capable of efectively detecting data
correlations.Terefore, the size evaluation index of the spatial

window is constructed based on the maximal information
coefcient by utilizing the symmetry of the measured points
in the spatial window, and then a reasonable division for the
spatial windows of distributed strain data are obtained.

Te structurally distributed strain data of the left area
and the right area of the rth spatial window at the ith
monitoring time are defned as follows:

Ur
i � U

r
i1, U

r
i2, . . . , U

r
ij, . . . , U

r
in 
Τ
,

Pr
i � U

′r
i1, U
′r
i2, . . . , U

′r
ij, . . . , U

′r
in 
Τ
,

(8)

where n is the total number of structural distributed strain
measured points in the left area of the rth spatial window, Ur

ij
is the measured structural strain data of the jth measured
point in the left area of the rth spatial window at the ith
monitoring time, U′

r

ij is the measured structural strain data
of the jth measured point in the right area of the rth spatial
window at the ith monitoring time, Ur

i is the structural
distributed strain response vector of the left area of the rth
spatial window at the ith monitoring time, and Pr

i is the
structural distributed strain response vector in the right area
of the rth spatial window at the ith monitoring time.

To calculate the maximal information coefcient of the
measured points strain data in the spatial window, strain
data of two diferent measured points at multiple times are
selected to form a sample set, as shown in the following
equations:

Ur,j
� U

r
1j; U

r
2j; . . . ,

Pr,h
� U
′r
1h; U
′r
2h; . . . 

Τ
,

(9)

where Ur,j is the strain data sample set of the jth measured
point in the left area of the rth spatial window and Pr,h is the
strain data sample set of the hth measured point in the right
area of the rth spatial window.

Te strain of the jth measured point in the left area of the
spatial window is taken as the x-coordinate, and the strain of
the hth measured point in the right area of the spatial
window is taken as the y-coordinate. Te above sample data
are divided into GridG of the au row and bu column, and the
coordinates of the data points in the grid are shown in
equation (10). Grid G is shown in Figure 2.

Symmetrical axis of bridge

U P

Te position of windows
A′A

Figure 1: Sketch diagrams of the spatial windows of long-span suspension bridges.
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X1,X2, . . .  � U
r
1j, U
′r
1h , U

r
2j, U
′r
2h , . . . , (10)

where X1 and X2 are the frst and second data points in Grid
G, respectively.

Ten, the mutual information of the sample set when it is
divided into Grid G can be calculated as follows:

Ijh Gau,bu
  �   f au, bu( log

f au, bu( 

f au( f bu( 
 ,

f au, bu(  �
n au,bu( )

nall
,

(11)

where n(au,bu) is the number of strain data points of the
sample set in the auth row and buth column of the grid; nall is
the total number of data points of the sample set; f(au, bu) is
the ratio of the number of strain data points in the auth row
and buth column of Grid G to the total number of strain data
points; and f(au) and f(bu) are the marginal distributions
of f(au, bu) in the x and y directions, respectively.

Tere are many ways to obtain Grid G, and the Grid G
with the largest mutual information is selected. Hence, the
mutual information Ijh(au, bu) can be expressed by the
following equation:

Ijh au, bu(  � max Ijh Gau,bu
  . (12)

Te mutual information of grids with diferent row and
column numbers is calculated and normalized [47]. Te
greater the mutual information after normalization, the
better the grid division is. Te maximal information co-
efcient of the distributed strain data of the jth measured
point and the hth measured point MICjh is shown as
follows:

MICjh � max
Ijh au, bu( 

log
2

min au, bu ( 

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠. (13)

According to the above equation, the maximal in-
formation coefcient of the strain data of diferent measured
points in the left area and the right area in the rth spatial
window can be developed into the following matrix:

M �

MIC11 MIC12 · · · MIC1n

MIC21 MIC22

⋮ ⋱ ⋮

MICn1 · · · MICnn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

Te higher the MIC is, the stronger the correlation of the
strain of the measured points. Terefore, the size evaluation
index of the spatial window can be constructed by using the
following equation:

C �
1
n
2 sum(diag(MI)), (15)

I �

1 1 · · · 1
1 1
⋮ ⋱ ⋮
1 · · · 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n×n

, (16)

where diag(·) represents extracting the main diagonal ele-
ments of the matrix as column vectors and sum(·) represents
calculating the sum of a vector.

Using the above size evaluation index of the spatial
window, the specifc steps of the division method for dis-
tributed strain data spatial windows of long-span suspension
bridges are as follows:

(1) Regarding long-span suspension bridge structures,
the initial size of the spatial window is the section
area of the main girder between two suspenders
along the longitudinal length of the bridge.

(2) Te size evaluation index of the initial spatial win-
dow is calculated by using equation (15), and the
result is denoted as C11.

(3) Te size of the spatial window is enlarged, and the
expanded size can be the distance between measured
points.

(4) Te size evaluation index of the spatial window that
was determined in Step (iii) is calculated by using
equation (15), and the result is denoted as C12.

(5) If C12>C11, it is determined that C11 �C12, and the
size of the spatial window at this time is recorded as
the optimal size of the frst spatial window. Steps (iii)
to (v) are repeated until the spatial window covers
the main girder of the bridge.

1 2

2

Ur,j

Pr,h

au

bu

Figure 2: Grid G obtained from the strain data sample set.
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(6) Te optimal spatial window size is recorded for the
frst spatial window that was determined in Step (v).

(7) Te lateral boundary of the spatial window is moved
to the longitudinal bridge, and the initial size of the
new spatial window is set, as shown in Figure 3.

(8) Steps (ii) to (vi) are repeated to determine the op-
timal size of the second spatial window.

(9) Steps (vii) to (viii) are repeated to complete the
division of all spatial windows of the distributed
strain of the bridge, as shown in Figure 4.

In diferent spatial windows, the correlation of the strain
of measured points is diferent. Only the spatial windowwith
a strong correlation of the measured points strain can be
used to establish a strain correlation model with a good
efect. Terefore, a clustering algorithm is adopted to obtain
the spatial windows with a strong correlation of the mea-
sured points strain as the fnal retained spatial window. Te
specifc steps are as follows:

(1) Te size evaluation index of any two spatial windows
are taken as the initial values of the size evaluation
index mean values of the two types of spatial win-
dows.Temean values of the size evaluation index of
the spatial windows for the frst category and the
second category are denoted as χ1C and χ2C,
respectively.

(2) Te distance between the size evaluation index of
each spatial window and the mean value of the size
evaluation index of the spatial window of the frst
category or the second category is calculated, as
shown in the following equation:

ςr1 �

��������

Cr − χ1C 



,

ςr2 �

��������

Cr − χ2C 



,

(17)

where Cr is the size evaluation index of the rth spatial
window and ςr1 and ςr2 are the distances between the
rth spatial window and the frst or second category,
respectively.

(3) If ςr1 < ςr2, the rth spatial window is classifed into the
frst category; otherwise, the rth spatial window is
divided into the second category.

(4) Steps (ii) and (iii) are repeated to complete the
classifcation of all spatial windows, and the mean
values of the size evaluation indexes of the spatial
windows of the frst category and the second cate-
gory are updated.

(5) Steps (ii) and (iv) are repeated until the mean values
of the size evaluation indexes of the spatial windows
of the frst category and the second category are
unchanged; then, the classifcation ends.

Te spatial window with a larger mean value of the size
evaluation index is taken as the fnal retained spatial win-
dow. Regarding those measured points that are not within
the fnal retained spatial window, the strain monitoring data

can be analyzed by using the traditional structural condition
diagnosis method based on principal component analysis (as
described in Section 4.2.4).

3. Cross-Diagnosis Algorithm for the Structural
Condition of Long-Span Suspension Bridges
Based on the Spatial Windows of Distributed
Strain Data

3.1. Correlation Model of Distributed Strain Data for One
Spatial Window. Due to the complex structure of the long-
span suspension bridge, the strain data of the main girder
structure have a strong nonlinear degree. Terefore, in this
section, a deep neural network is used to construct the
correlation model between the strain data of high-density
measured points in one whole spatial window. Convolu-
tional neural networks are among the most widely used
algorithms in the feld of deep learning. Many excellent
results have been obtained in many practical applications in
recent years by using this algorithm. Since the distributed
strain data of the main girder structure at each moment are
one-dimensional data, a one-dimensional convolutional
neural network is used to construct the correlation model
between the distributed strain data of the symmetric area in
one whole spatial window.

Te one-dimensional convolutional neural network is
constructed by taking the structurally distributed strain
monitoring data of the right area of the spatial window as
input and the distributed strain monitoring data of the left
area of the spatial window as output. Te convolutional
neural network needs to use multiple convolutional layers
and pooling layers. Te processing method of the con-
volutional layer is as follows:

J
c1
ij � f

c


NC − 1

o�0
Ui(j+o)w

c1
o + z

c1
h

⎛⎝ ⎞⎠, (18)

where Ui(j+o) is the (j+ o)-th input strain data at the ith time
point, wc1

o is the oth parameter of the convolution kernel c1,
zc1

h is the bias of the convolution kernel c1, NC is the size of
the convolution kernel c1, Jc1

ij is the output obtained from the
jth to (j+NC − 1)-th input data processed by the convolu-
tion kernel c1, and fc(·) is the activation function of the
convolutional layer.

In this section, the ReLu function is used as the activation
function of the convolutional layer [48], as shown in the
following equation:

f
c
(x) � max(0, x). (19)

Te output data of the convolutional layer are further
processed by the pooling layer to reduce the number of
neurons in each layer. When the pooling layer is processed,
the output data of the convolutional layer are divided into
various intervals, and then the data of each interval are
processed separately. Te processing method of the data in
the interval is shown in the following equation:

J
s1
ij � max J

c1
ij,1, J

c1
ij,2, . . . , J

c1
ij,ns

 , (20)
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where Js1
ij is the jth output of the pooling layer s1, Jc1

ij,ns
is the

nsth value of the interval, and ns is the size of the interval
corresponding to the jth output of the pooling layer s1.

After the input data are processed by multiple convolu-
tional and pooling layers, they are connected to the output layer
through a fully connected layer. Fully connected layers are
processed in a similar way to convolutional layers, except that
the fully connected layer uses a convolution kernel of the same
size as the input, so that each input data of the fully connected
layer only outputs one data through the convolution kernel.

Trough the combination of multiple convolutional
layers and pooling layers, the features of the distributed
strain of the main girder structure can be extracted.Trough
the fully connected layer, the feature is connected to the
output layer, and the whole one-dimensional convolutional
neural network model is fnally constructed.Te structure of
the one-dimensional convolutional neural network model is
shown in Figure 5.

Te correlation model of distributed strain in the spatial
window constructed by the above one-dimensional con-
volutional neural network can be expressed as follows:

Ur

i � f
r
CNN1 Pr

i( , (21)

where Ur

i is the predicted value of the distributed strain, Ur
i

in the spatial window, and fr
CNN1(·) is the correlation model

between the distributed strain monitoring data in the rth
spatial window (its input is the strain monitoring data of the
measured points in the right area, and its output is the strain
monitoring data of the measured points in the left area).

3.2.Cross-DiagnosisAlgorithmTatDetermines theStructural
Conditions of Long-Span Suspension Bridges. Te structural
damage of long-span suspension bridges often occurs in
local areas. If the abnormal data caused by the local damage
are taken as the input or output of the correlation model of
distributed strain data, the results of the model will in-
evitably be diferent. Based on this principle, a cross-
diagnosis algorithm that determines the structural condi-
tions of long-span suspension bridges is proposed.

Since the left and right areas of the spatial window are
symmetric, a correlation model similar to that in equation
(21) can be established, as shown in the following equation:

Pr

i � f
r
CNN2 Ur

i( , (22)

where Pr

i is the predicted value of the distributed strain, P
r
i of

the structure in the spatial window, and fr
CNN2(·) is the

correlation model between the distributed strain monitoring
data in the rth spatial window (its input is the strain
monitoring data of the measured points in the left area, and
its output is the strain monitoring data of the measured
points in the right area).

Regarding the left areaUr and the right area Pr of the rth
spatial window, at the ith time point, the residual of the
correlation model of bridge structural strain in the left area
Ur of the spatial window can be calculated by using the
following equation:

ei � Ur
i − Ur

i � Ur
i − f

r
CNN1 Pr

i(  � ei1,r, ei2,r, . . . , eij,r, . . . , ein,r 
Τ
, (23)

where eij,r is the strain residual value of the jth measured
point in the rth spatial window at the ith time point.

Since the size of the spatial window is generally large, the
spatial windows of bridge structures can be divided into
multiple areas that can be diagnosed to refect the strain

distribution characteristics of bridge structures with further
accuracy.Te strain residual of the areas to be diagnosed can
be shown as follows:

ei � Ur
i − Ur

i � e1i , e2i , . . . , ev
i 
Τ
, (24)

The second 
spatial window

The first spatial 
window

Figure 3: Te location of the second spatial window.

Spatial window

Figure 4: Locations of all spatial windows.
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where ev
i is the strain residual vector of the v th area to be

diagnosed at the ith time point.
By using equation (23), the strain residual matrix in the

spatial window under the reference state (the bridge
structure is in a healthy state) can be calculated, and the
calculated result can be expressed as

e � e1, e2, . . . , ei, . . . , es 

� e1, e2, . . . , ev
 

Τ

�

e
1
11,r e

1
12,r · · · e

1
1s,r

e
1
21,r e

1
22,r

⋮ ⋱ ⋮

e
v
n1,r · · · e

v
ns,r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(25)

where s is the total number of samples in the reference state;
ev is the strain residual matrix of the vth area to be diagnosed
under the reference state; and ev

ns,r is the strain residual value
of the nth measured point in the rth spatial window in the
reference state at the sth time point, belonging to the vth area
to be diagnosed.

Based on the Mahalanobis distance [49], the structural
condition diagnosis index Yv of each area that is diagnosed
in the spatial window under the reference state can be
calculated by using the following equation:

Yv � diag ev
− μev( 

ΤΣ− 1
evev ev

− μev(  
1/2

, (26)

Σevev �
v

n
ev

− μev(  ev
− μev( 

Τ
, (27)

where μev is the mean value vector of ev, Σevev is the co-
variance matrix of ev, and diag(·) denotes extraction of
elements from the main diagonal of a matrix.

Te structural condition diagnosis index in each area to
be diagnosed is calculated according to the above equation.
Ten, the structural condition diagnosis index in the spatial
window can be expressed as

Y � Y1,Y2, . . . ,Yv 
Τ

�

y11,r y12,r · · · y1s,r

y21,r y22,r

⋮ ⋱ ⋮

yv1,r · · · yvs,r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
(28)

where yvs,r is the structural condition diagnosis index of the
vth area to be diagnosed of the rth spatial window at the sth
time point.

Te structural condition diagnosis indexes of each area
are rearranged to be diagnosed in matrix Y from the smallest
to the largest, and the following matrix can be obtained as
follows:

Y �

y
1
1,r y

2
1,r · · · y

s
1,r

y
1
2,r y

2
2,r

⋮ ⋱ ⋮

y
1
v,r · · · y

s
v,r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (29)

where ys
v,r is the sth value in the sequence of the structural

condition diagnosis index arranged from small to large in
the vth area to be diagnosed in the rth spatial window.

Te threshold of the condition of a bridge structure can
be calculated by the following equation:

Ty � y
0.95s
1,r , y

0.95s
2,r , . . . , y

0.95s
v,r 
Τ

� TY1,TY2, . . . ,TYv( 
Τ
,

(30)

where TYv is the threshold of the bridge structure state of the
vth area to be diagnosed.

Te strain residual of the spatial window in the state to be
diagnosed can be expressed as

e′ � e1′, e2′, . . . , ei
′, . . . , eg

′  � e1
′
, e2
′
, . . . , ev′

 
Τ
, (31)

where g is the total number of samples in the state to be
diagnosed.

convolutional layer pooling layer convolutional layer fully connected 
layer

output layerInput data

Multiple 
convolutional 
and pooling 

layers

UrPr

Figure 5: Sketch of the one-dimensional convolutional neural network.
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In the state to be diagnosed, the structural condition
diagnosis index in the vth area in the spatial window can be
calculated according to the following equation:

Yv
′ � diag ev′

− μev ′ 
Τ
Σ− 1
evev ev′

− μev ′  

1/2

, (32)

where μev ′ is the mean value vector of ev′.
Te state diagnosis index of the bridge in the state to be

diagnosed Y′ can be expressed as follows:

Y′ �

y11,r
′ y12,r
′ · · · y1g,r

′

y21,r
′ y22,r
′

⋮ ⋱ ⋮

yv1,r
′ · · · yvg,r

′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (33)

Te above structural condition diagnosis index of the
bridge is obtained based on the residual of the correlation
model of distributed strain data calculated by using equation
(23). Te correlation model used for this residual is obtained
by taking the structural strain monitoring data of the right
area in the spatial window as input and the structural dis-
tributed strain of the left area as output. Based on equation
(22) and by taking the monitoring data of structural strain in
the right area of the spatial window as the output and the
distributed structural strain in the left area as the input, the
residual as shown in the following equation can be obtained
as follows:

eUP � Pr
− Pr

� Pr
− f

r
CNN2 Ur

i( . (34)

According to equations (23) to (33), the bridge structural
condition diagnosis index and the threshold calculated by
using eUP under the state to be diagnosed are shown in the
following equation:

R′ �

R11,r
′ R12,r
′ · · · R1g,r

′

R21,r
′ R22,r
′

⋮ ⋱ ⋮

Rv1,r
′ · · · Rvg,r

′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (35)

TR � TR1,TR2, . . .TRv( 
Τ
, (36)

where Rvg,r
′ is the bridge structural condition diagnosis index

of the vth area in the right area of the rth spatial window
under the state to be diagnosed at the gth time point, and
TRv is the threshold of the vth area in the right area of the rth
spatial window.

Under the state to be diagnosed, when the structural
condition diagnosis index of the bridge exceeds the corre-
sponding threshold, the bridge structure is determined to be
damaged. On this basis, the cross-diagnosis method is
further used to locate the area where the strain anomaly is
located.

Structural damage is often localized. When the strain
data of measured points in the damaged area are used as the
input of the correlation model, the abnormality of local
measured points as the input has little infuence on the
output results due to the large number of measured points in
the spatial window. Terefore, in the above cases, the output
is basically normal. When the strain data of the measured
point in the damaged area are used as the output of the
spatial correlation model, the output result will only be
abnormal near the damaged area since the input is still in
a normal state.

If damage occurs in Area U as shown in Figure 1, the
structural strain monitoring data in Area U are used to
predict the structural strain of Area P by using the corre-
lation model, and the structural condition diagnosis index of
the bridge will not exceed the threshold. At the same time,
when the structural strain monitoring data in Area P are
used to predict the structural strain in Area U, the structural
condition diagnosis index of some measured points exceeds
the threshold value.

According to the above analysis, after obtaining the
bridge structural condition diagnosis index in the symmetric
area of the spatial window by using equations (23) to (36),
the damage region can be determined by the following steps.

(1) Whether the bridge structural condition diagnosis
indexes in Area U and Area P are over the limit can
be determined by using equation (37) and (38),
respectively:

R′vg,r >TRv, (37)

y′vg,r >TYv. (38)

(2) If equation (37) is valid, the bridge structural con-
dition diagnosis index in the vth region to the right of
Area P can be determined to be beyond the limit. If
equation (38) is valid, the bridge structural condition
diagnosis index in the vth region to the left of AreaU
can be determined to be over the limit.

(3) If all the bridge structural condition diagnosis in-
dexes corresponding to the region to be diagnosed in
Area U do not exceed the limit and there are several
bridge structural condition diagnosis indexes cor-
responding to the region to be diagnosed in Area P
that exceed the limit, then the strain abnormal area
can be determined to be Area P.

(4) If all the bridge structural condition diagnosis in-
dexes corresponding to the region to be diagnosed in
Area P do not exceed the limit and there are several
bridge structural condition diagnosis indexes cor-
responding to the region to be diagnosed in Area U
that exceed the limit, then the strain abnormal area
can be determined to be Area U.

A fowchart of the proposed method is presented in
Figure 6.
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4. Case Study Verification

4.1. Introduction to the Yellow River Fenghuang Bridge.
Te engineering example used in this section is the main
bridge of the Yellow River Fenghuang Bridge in Jinan,
China.Te bridge is a three-tower, self-anchored suspension
bridge and is an important passage across the Yellow River.
Its span layout is (70m+ 168m+ 428m+ 428m+ 168m+
70m). Te bridge deck is a steel-concrete composite
structure, and the bored pile foundation is used as the
substructure. A photo of the bridge is shown in Figure 7.

4.2. Numerical Case Study

4.2.1. Finite Element Model of the Yellow River Fenghuang
Bridge. By using the design data of the Yellow River Fen-
ghuang Bridge, the fnite element model of the bridge
structure was established by using the fnite element software
ANSYS. Beam188 elements were used to simulate the main
girder, and link10 elements were used to simulate the boom
and main cable. Te fnite element model is shown in
Figure 8.

Te main girder section of the fnite element model of
the bridge is shown in Figure 9.

A random vehicle load was applied on the bridge by
means of nodal forces.Te load value of the node under each
time point was randomly selected according to the uniform
probability distribution. Te probability density function of
vehicle loads is as follows [50]:

f(x) �
1

x
���
2π

√
β
exp

− (lnx − α)
2

2β2
 , (39)

where x is the vehicle weight load with units of kN; α is the
distribution parameter, and is 2.57; β is the distribution
parameter, and is 0.8485; and exp(·) is the exponential
function based on the natural constant.

Ignoring daily temperature variation, a periodic function
was used to simulate annual temperature variation, and
a total of 12,000 temperature data points were simulated, as
shown in Figure 10.

A random vehicle load as shown in equation (39) was
applied to each node of the fnite element model. Simul-
taneously, the corresponding temperature shown in Fig-
ure 10 was applied at each time point to obtain the bridge
structure strain data at 12,000 time points. Te measured
points at and near the midspan of the bridge are selected as
the key measured points, as shown in Figure 11. Te strain
data of key measured points are shown in Figure 12.

Establishing the strain correlation model in the spatial 
window by using Eqs. (22) to (26) 

Calculating the residual of the spatial correlation model by 
using Eq. (27) and (38)

Determining whether the structural 
state diagnostic index of 

the spatial window exceeds 
the threshold 

Te structural state in the spatial window is normalTe damage occurred in the spatial window

Strain data of the long-span suspension bridge under the 
reference state

Yes
No

CalculatIng the threshold of the state of bridge structure 
by using Eqs. (30) to (34)

Calculating the residual of the spatial correlation model by 
using Eq. (35)

Calculating the structural state diagnostic index by using 
Eq. (36)

Obtaining the spatial window with strong correlation of 
measuring points as the fnal retained spatial window by 

using the clustering algorithm 

Calculating the size evaluation index of the spatial 
window by using Eq. (18), and then completing the 

division of all spatial windows of distributed strain of the 
bridge

Strain data of the long-span suspension bridge under the 
state to be diagnosed 

Determining the strain abnormal area by using the cross 
diagnosis method 

Figure 6: Flowchart of the proposed method.
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Te temperature-induced strain belongs to the low-
frequency part of strain data and the trafc-induced
strain belongs to the high-frequency the part of strain
data [51, 52]. Terefore, in order to analyze temperature-

induced and trafc-induced structural strains, a curve ftting
method is used to process the original data, and the ftted
curve can approximately be regarded as the temperature-
induced strain. Te trafc-induced strain can be obtained by

Figure 7: Photo of the Yellow River Fenghuang Bridge.

Figure 8: Finite element model of the bridge.

X
Y

Figure 9: Main girder section of the fnite element model of the bridge.
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Figure 10: Temperature change regulation of the simulated air environment.
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Figure 11: Key measured points of the bridge.
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subtracting the temperature-induced strain from the orig-
inal strain, as shown in Figure 13. It can be seen from
Figure 13 that the temperature-induced strain data of the
two measured points are relatively similar. Tis phenome-
non indicates that the strain data of the symmetrical mea-
sured points of the bridge have a certain correlation under
the efect of long-term temperature, and this is consistent
with equation (2). In contrast to the temperature-induced
strain data, the trafc-induced strain data of the symmetrical
measured points are random and have no obvious
correlation.

In this paper, the structural damage of the main girder is
simulated by reducing the elastic modulus of the materials.
Te specifc methods are as follows: the structural condition
of the bridge from the 1st to the 10000th time point is set as
the healthy state, and the structural condition of the bridge
from the 10001th to the 12000th time point is set as the
damaged state. Te elastic modulus at the simulated damage
position of the bridge structure under the damaged state
gradually changes linearly over time and reaches the min-
imum value at the 12000th time point. Detailed descriptions
of the diferent cases are listed in Table 1.

4.2.2. Division of the Spatial Window of Distributed Strain
Data. Using the method described in Section 2, the loca-
tions and classifcation results of all spatial windows ob-
tained are shown in Figure 14.

Obviously, the evaluation index of the second type of
space window is larger, so the second type of space window
is retained. Since many measured points are in multiple
diferent spatial windows, the spatial window in which the

interior measured point is completely contained by other
spatial windows is removed, and adjacent spatial windows
with overlapping areas are merged. Te fnal retained spatial
windows are shown in Figure 15.

4.2.3. Diagnosis Results of the Structural Condition of the
Bridge. Te method described in Section 3 is adopted to
establish the correlation model of the bridge structure
distributed strain data with the data from the 1st to 10000th
time points as the sample set. Te strain residual of the
model at the key point of the bridge in a healthy state is
shown in Figure 16.

It can be seen from Figure 16 that the residual of the
correlation model of the bridge structure distributed strain
data is small and changes smoothly. Tis phenomenon
indicates that this model can efectively reduce the infuence
of ambient temperature on the strain response of bridge
structures.

Based on the two strain correlation models for esti-
mating the strain data of the left region by using the strain
data of the right region in the spatial window and esti-
mating the strain data of the right region by using the
strain data of the left region in the spatial window, the
method described in Section 3 was adopted to diagnose
the structural condition of the bridge. When the noise
level of the monitoring data is 5%, the diagnosis results are
shown in Figures 17 and 18.

It can be seen from Figures 17 and 18 that based on the
strain correlation model that estimates the strain data of the
left region by using the strain data of the right region in the
spatial window, the bridge structural condition diagnosis
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Figure 12: Strain data of key measured points. (a) Key measured point A. (b) Key measured point B. (c) Key measured point C. (d) Key
measured point D.
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index can be used to efectively diagnose the damage at Point
A (even when the maximum damage extent is 5%), and the
diagnosis indexes at other points are less than the threshold.
Based on the strain correlation model for estimating the
strain data of the right region by using the strain data of the
left region in the spatial window, the bridge structural
condition diagnosis index does not exceed the threshold at
Point B and Point A. Te above phenomenon is consistent
with the conclusion in Section 3.

When the maximum damage extent is 5% and the noise
level is also 5%, the summary diagnosis results of the bridge
structure are shown in Figures 19 and 20.

As shown in Figures 19 and 20, it can be clearly de-
termined that damage has occurred to the bridge structure,
and the abnormal strain area is at the position of Point A.
Te results show that the proposed method can efectively
diagnose the minor damage in the local area of the main
girder and accurately determine the abnormal strain area.

To further analyze the ability of the proposed method to
resist noise, simulated noise was added to the simulated data
at a 10% damage extent, and the bridge structural condition
diagnosis index at 10% and 15% noise degrees was obtained.
Te structural condition diagnosis index of the bridge at
Points A and B is shown in Figure 21.
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Figure 13: Temperature-induced and trafc-induced structural strains. (a) Temperature-induced strain at key measured point A.
(b) Temperature-induced strain at key measured point A′. (c) Trafc-induced strain at key measured point A. (d) Trafc-induced
strain at key measured point A′.

Table 1: Descriptions of the diferent cases.

Number
Description of case

Maximum
damage extent (%) Noise level (%) Damaged region

Case 1 5.0 5.0 Key measured point A
Case 2 5.0 10.0 Key measured point A
Case 3 5.0 15.0 Key measured point A
Case 4 10.0 5.0 Key measured point A
Case 5 10.0 10.0 Key measured point A
Case 6 10.0 15.0 Key measured point A
Case 7 15.0 5.0 Key measured point A
Case 8 15.0 10.0 Key measured point A
Case 9 15.0 15.0 Key measured point A
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As shown in Figure 21, the proposed method has a good
antinoise interference ability when the damage extent is
10%. At a noise level of 15%, the structural condition

diagnosis index of the bridge at Point A exceeds the
threshold; that is, this method can identify the damage
extent of 10% of the bridge structure at a noise level of 15%.
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Figure 14: Locations and classifcation results of all spatial windows.
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Figure 16: Residual of the strain correlation model at the key point. (a) Key measured point A. (b) Key measured point B.
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4.2.4. Performance Comparison of the Proposed Method with
Other Methods. Te proposed method is compared with
the method based on principal component analysis
(PCA) and the method based on a correlation model
without a spatial window. In the method based on PCA,
PCA is used to remove the environmental infuence
components, and then the Mahalanobis distance is used

to calculate the corresponding diagnosis indexes of
bridge structural conditions. Te main diference be-
tween the method based on PCA and the proposed
method is that it does not use the symmetric interval of
the long-span bridge structure to establish the correlation
model. Te steps of the method based on PCA are
described below.
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Figure 17: Results of the condition diagnosis of the bridge structure at the 5% noise level (based on the strain correlation model for
estimating the strain data of the left region by using the strain data of the right region in the spatial window). (a) Key measured point A
(maximum damage extent is 5%). (b) Key measured point B (maximum damage extent is 5%). (c) Key measured pointA (maximum damage
extent is 10%). (d) Key measured point B (maximum damage extent is 10%). (e) Key measured point A (maximum damage extent is 15%).
(f ) Key measured point B (maximum damage extent is 15%).
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At the ith time point, the strain of the measured point in
the region to be diagnosed can be expressed as follows:

Ui � Ui1, Ui2, . . . , Uij, . . . 
Τ
, (40)

where Uij is the strain of the jth measured point at the ith
time point.

Te strain matrix of the region to be diagnosed at
multiple time points can be expressed as
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Figure 18: Results of the condition diagnosis of the bridge structure at the 5% noise level (based on the strain correlation model for
estimating the strain data of the right region by using the strain data of the left region in the spatial window). (a) Key measured point A
(maximum damage extent is 5%). (b) Key measured point B (maximum damage extent is 5%). (c) Key measured pointA (maximum damage
extent is 10%). (d) Key measured point B (maximum damage extent is 10%). (e) Key measured point A (maximum damage extent is 15%).
(f ) Key measured point B (maximum damage extent is 15%).
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Figure 19: Summary diagnosis results of the bridge structure (case 1, based on the strain correlation model that estimates the strain data of
the left region by using the strain data of the right region in the spatial window).
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Figure 20: Summary diagnosis results of the bridge structure (case 1, based on the strain correlation model that estimates the strain data of
the right region by using the strain data of the left region in the spatial window).
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Figure 21: Continued.
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U � U1,U2, . . . ,Ui, . . . ,Unu
 , (41)

where nu is the total number of points contained.
Te covariance matrix of U is constructed after cen-

tralized processing, and an eigenvalue decomposition of the
covariance matrix is conducted, as shown in the following
equation:

1
nu

U − μU(  U − μU( 
Τ

� ABAΤ, (42)

where μU is the mean value vector of U, and B is the ei-
genvalue matrix of U.

B can be divided into two parts according to the size of
the eigenvalue, as shown in the following equation:

B �
B1  

 B2
 , (43)

B1, which contains larger eigenvalues, is removed, and the
part of the matrix A corresponding to B2, which is denoted
as A2, is taken. Te damage diagnostic feature that removes
the environmental impact component can be expressed as

eu � AΤ2 U − μU( . (44)

By substituting equation (44) into equation (26), the
bridge structural condition diagnosis index based on PCA
can be calculated to achieve bridge structural condition
diagnosis.

In the method based on the correlation model without
a spatial window, all the other processes are the same as
those of the proposed method except that the spatial window
is not divided and the strain data of the half-bridge are taken
as the input and output of the correlation model. Te bridge
structure state diagnosis results of the method based on
PCA, the method based on the correlation model without
a spatial window, and the proposed method are shown in
Figure 22.

It can be seen from Figure 22 that, compared with the
proposed method, the diagnostic accuracy of the method
based on the correlation model without a spatial window
and the method based on PCA is lower, and it is difcult to
identify the damage at the 5% noise level and 10% damage
extent.

4.3. Case Study of the Real Bridge

4.3.1. Introduction of the SHM System of the Real Bridge.
Distributed optical fber sensors were installed in the steel
box girder of the Yellow River Fenghuang Bridge main
bridge. Te distributed optical fber sensing technology
based on Brillouin scattering was used to obtain the strain
monitoring data of the steel box girder with a spatial res-
olution of 20 cm. Te layout diagram of the distributed
optical fber sensors is shown in Figure 23.

Te distributed optical fber sensor is connected to the
steel box girder through the all-paste method, and the strain
monitoring data of the bridge were collected in December
2021, as shown in Figure 24.

It can be seen from Figures 24(b) and 24(d) that the
strain data of measured points A and A′ contain the part of
periodic changes caused by environmental temperature and
other parts caused by various loads such as vehicles, and this
is consistent with equation (1). At the same time, it can be
seen that the periodic changes in the strain data of the
measured points A and A′ are similar, showing that there is
a correlation between the part of the strain caused by en-
vironmental temperature at the two measured points, and
this is consistent with equation (2). Figure 24(e) further
shows the correlation between the strain data of the two
measured points, and it shows that there is indeed a corre-
lation between the strain data of the symmetrical measured
points of the bridge, which is consistent with equation (4)
and provides a basis for the further diagnosis of the
structural condition of long-span suspension bridges.
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Figure 21: Results of the condition diagnosis of the bridge structure at 10% and 15% noise levels (based on the strain correlation model that
estimates the strain data of the left region by using the strain data of the right region in the spatial window). (a) Key measured point A (the
noise degree is 10%). (b) Key measured point B (the noise degree is 10%). (c) Key measured point A (the noise degree is 15%). (d) Key
measured point B (the noise degree is 15%).
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4.3.2. Division of the Spatial Window of Distributed Strain
Data of the Real Bridge. Using the method described in
Section 2, the locations and classifcation results of all spatial
windows of the real bridge are obtained and shown in
Figure 25.

Obviously, the evaluation index of the second type of
space window is larger, so the second type of spatial window
is retained. In accordance with the method in Section 4.2.2.,

the spatial window in which the interior measured point is
completely contained by other spatial windows is removed,
and adjacent spatial windows with overlapping areas are
merged. Te fnal retained spatial windows are shown in
Figure 26. Te spatial window obtained from the measured
data is diferent from the results of the fnite element, and the
main diference is that the spatial window obtained from the
measured data contains more main girder areas. Te reason
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Figure 22: Results of the condition diagnosis of the bridge structure at a 5% noise level and 10% damage extent obtained by using the
proposed method and other methods. (a) Key measured point A (the proposed method). (b) Key measured point B (the proposed method).
(c) Key measured point A (the method based on the correlation model without a spatial window). (d) Key measured point B (the method
based on the correlation model without a spatial window). (e) Key measured point A (the method based on PCA). (f ) Key measured point B
(the method based on PCA).
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for this phenomenon is perhaps that the infuence of am-
bient temperature on the strain of the main girder varies
with diferent vehicle and wind loads, leading to the dif-
ference in the correlation of the strain of the main girder.

4.3.3. Diagnosis Results of the Structural Condition of the Real
Bridge. Te method described in Section 3 is adopted to
establish the correlation model of the distributed strain data
of the real bridge with the data from the 1st to 1600th time

distributed optical sensing fiber

(a)

distributed optical sensing fiber

(b)

Figure 23: Sketch of the arrangement of the distributed optical sensing fber. (a) Elevation layout diagram. (b) Cross-section layout diagram.
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Figure 24: Strain monitoring data of the bridge. (a) Spatial distribution of the strain. (b) Strain data (point A). (c) Strain data (point B). (d)
Strain data (point A′). (e) Te correlation between strain data at point A and point A′.
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points as the sample set. Te strain residuals of the model at
the key point of the bridge are shown in Figure 27.

It can be seen from Figure 27 that the residuals of the
strain correlation model are small and change steadily, in-
dicating that the proposed correlation model of the dis-
tributed strain data is efective. Based on the correlation
model of distributed strain data, the diagnosis results of the
proposed method are shown in Figure 28.

It can be seen from Figure 28 that, except for the ac-
cidental errors of some data, the structural condition di-
agnosis index of the bridge did not exceed the threshold
and changed steadily, indicating that the bridge was in
a healthy state. Since the bridge is a newly built bridge, it
can be considered that no damage occurs, and this is
consistent with the diagnosis results of the proposed
method. Te above results validate the efectiveness of the
proposed method from the perspective of avoiding
misdiagnosis.

To further verify the efectiveness of the proposed
method, the strain at Point A is artifcially amplifed. Te
specifc method is as follows:

U
′A
i �

U
A
i , i< 1600,

U
A
i ·

(i − 1600)

492
ζ, i≥ 1600,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(45)

where UA
i is the strain at the ith time point of point A before

modifcation, U′
A

i is the strain at the ith time point of PointA
after modifcation, and ζ is the strain amplifcation factor,
and is 0.25.

Te state diagnosis results of the real bridge of the
method based on PCA, the method based on the correlation
model without a spatial window and the proposed method
are shown in Figure 29.

As shown in Figure 29, when the strain amplifcation
factor is 0.25, efective diagnosis of the condition of the real
bridge can be achieved by using the proposed method.
Compared with the proposed method, the method based on
PCA and the method based on the correlation model
without a spatial window has a lower diagnostic accuracy.
When the strain amplifcation factor is 0.25, the summary
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Figure 25: Locations and classifcation results of all spatial windows of the real bridge.
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Figure 27: Residuals of the strain correlation model at the key point of the real bridge. (a) Key measured point A (b) Key measured point B.
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Figure 28: Results of the condition diagnosis of the real bridge. (a) Key measured point A (b) Key measured point B.
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Figure 29: Continued.
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Figure 29: Results of the condition diagnosis of the real bridge after simulated damage is applied were obtained by using the proposed
method and other methods. (a) Key measured point A (the proposed method). (b) Key measured point B (the proposed method). (c) Key
measured point A (the method based on the correlation model without a spatial window). (d) Key measured point B (the method based on
the correlation model without a spatial window). (e) Key measured point A (the method based on PCA). (f ) Key measured point B (the
method based on PCA).
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Figure 30: Summary diagnosis results of the real bridge (the strain amplifcation factor is 0.25, based on the strain correlation model for
estimating the strain data of the left region by using the strain data of the right region in the spatial window).
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diagnosis results of the real bridge are shown in Figures 30
and 31.

It can be seen from Figures 30 and 31 that the proposed
method not only efectively identifes the occurrence of
bridge damage but also accurately determines the abnormal
strain region.

5. Conclusions

To diagnose the condition of a bridge by using the strain
monitoring data from BOTDA sensors, a cross-diagnosis
method for the structural condition of a long-span sus-
pension bridge based on the spatial windows of distributed
strain data is proposed. Te following conclusions are de-
veloped as follows:

(1) Regarding one spatial window defned in this study,
the correlation model between the distributed strain
data of high-density measured points is efective in
reducing the infuence of ambient temperature on
the results of the condition diagnoses of bridges.

(2) Te numerical example and the example of a real
bridge show that diferent load conditions of the
bridge will lead to diferent degrees of correlation
between the distributed strain data of high-density
measured points and then lead to diferent division
results of the spatial windows. Moreover, because the
degree of correlation between the distributed strain
data at diferent positions of the bridge is diferent
under the coupling infuence of various loads, it is not
necessarily the best method to establish a correlation
model by using the strain data of all measured points.

(3) Te numerical example shows that the proposed
method can efectively identify the occurrence of bridge
damage and determine the damaged region; at the
same time, the proposedmethod has a relatively strong
ability to resist the interference of measured noise.

(4) Te results of a numerical example and an example
of a real bridge show that the diagnostic accuracy
of the proposed method is higher than that of both
the method based on the correlation model
without a spatial window and the method based
on PCA.

(5) Te proposed method is only suitable for symmetric
long-span bridges, and it is difcult to directly apply
it to asymmetric bridges. In addition, regarding the
bridge region that is not within the efective spatial
window, the method based on PCA is recommended
to diagnose the condition of the bridge.
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