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Vibration displacements are one of themost signifcant indicators in the health monitoring and condition assessment of bridges in
the life cycle. Te traditional monitoring means, such as contact sensors, have relatively high-cost and limited points for
displacement measurement of bridges. Tis paper proposes a low-cost and non-contact monocular vision system based on the
KCF algorithm to accurately and timely identify the vibration displacement of bridges. A conversion method associated with
a scale ratio was established to cope with the loss of depth information in images when a monocular camera is used to monitor
multiple targets in diferent depths of the feld. A series of shaking table tests on a two-column pier with energy dissipation beams
were conducted to verify the feasibility, accuracy, efectiveness, and robustness of the KCF-based identifcation approach. Te
results showed that the vibration displacements of the column identifed by the monocular vision system based on the KCF
algorithm are almost consistent with the measurement results obtained by the laser displacement sensors. Te peak displacement
discrepancies between both measurement methods are within 6% for all cases with diferent shaking amplitudes and earthquake
waves. Te RMSE of the displacement histories between both measurement methods is very low. Te corresponding frequency
spectra contents identifed by the monocular vision system based on the KCF algorithm match well with the measurement
counterparts recorded from the laser displacement sensors.

1. Introduction

Te displacement of bridges is one of the most signifcant
indicators refecting its mechanical performance and op-
erational status. Tus, it is crucial to use monitoring means
or sensing technologies capable of timely obtaining accurate
displacement of bridges. Displacement sensors mainly fall
into two categories: contact displacement sensors (e.g.,
Linear variable displacement transducer (LVDT)) and non-
contact displacement sensors (e.g., Global positioning sys-
tem (GPS), Laser displacement sensor (LDS), microwave
interferometric radar, and machine vision-based measure-
ment method). Te LVDT is fxed on a platform to measure
the structural displacement. However, the fxed platform is
hard to build when the LVDT is used to measure the dis-
placement of large-span bridges crossing rivers and valleys

[1, 2]. Te LVDT installation may cause a certain degree of
damage to bridges. Te vibration of the fxed platform is
prone to causing measurement errors [3]. GPSmeasurement
has low accuracy with an error of about 5mm. It is chal-
lenging to monitor the vibration amplitudes within a few
millimeters [4]. Te successive vibration displacement
measurements are also difcult to achieve due to the low
sampling frequency of GPS [5]. Even though the LDS could
overcome shortcomings of contact displacement sensors and
improve measurement accuracy, its high price and in-
stallation platform limitations make it inconvenient to apply
widely [6]. Te microwave interferometer radar employs
microwave signals for signal transmission and reception. It
obtains the displacement of the bridge by analyzing the
phase diference between refected waves at a time interval.
However, the temperature, humidity, and pressure in the air
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may make the microwave signal time lag and bend during
measurement to decrease measurement accuracy [7–10]. In
addition, the installation and maintenance of conventional
displacement sensors require a lot of human and fnancial
resources [11].

Machine vision-based vibration displacement mea-
surements are one of the research hotspots due to numerous
advantages, such as higher measurement precision and
sampling frequency, multi-point, non-contact, and long-
distance measurements [12]. Also, machine vision-based
vibration displacement measurements are not reliant on
additional fxed platforms. Displacement is directly
extracted from structural vibration videos recorded by
cameras. Terefore, the methods are widely applied in
displacement or defection measurements [13–16] and
modal recognition [17] of civil engineering structures.
Machine vision-based displacement identifcation methods,
including template matching methods [18–20], optical fow
estimation methods [21–24], and correlation fltering
methods [25–27], were developed in the past. Olaszek [28]
established an imaging system based on the photogram-
metric principle to determine the dynamic characteristic of
bridges, indicating that the system reduced the infuence of
environmental factors on the acquisition of images. Hanssen
et al. [29] developed a digital image correlation method
based on the normalized cross-correlation coefcient (NCC)
to measure the defection of a three-point bending steel
beam. Yu et al. [30] presented a fast and accurate machine
vision-based measurement method to identify the de-
formation of a cantilever beam and the mid-span defection
of the Su-Tong Bridge. Yoon et al. [31] applied Kanade-
Lucas-Tomasi (KLT) algorithm in measuring the displace-
ment of a six-story-high building model and verifed the
algorithm by comparing the results from conventional
sensors. Chen et al. [32] developed an optical fow method
based on motion magnifcation, which was validated by the
defection of structures, cantilever beams, and pipes. Zhao
et al. [33] built an approach that combined support cor-
relation flters (SCF) and KLT to measure the vibration
displacement of a cable-stayed bridge model. Te results
showed that the identifcation displacement is accurate by
comparing the LDS displacement. Although the displace-
ment identifcations based on the template matching and
optical fow methods achieved fruitful results, there are still
several shortcomings. For example, the template matching
method needs high contrast or artifcial targets to improve
the measurement accuracy. However, the high contrast
targets are often not present in actual bridges, and artifcial
targets may afect the structural appearance.Te optical fow
estimation method should meet the assumptions of constant
brightness and continuous time or small motion. However,
the approach cannot satisfy the abovementioned assump-
tions when it is used to monitor the displacement of large-
span bridges. Although the optical fow method based on
motion magnifcation could improve the identifcation ac-
curacy, the efciency of the methodology tracking and
identifying the displacement of fast-moving structures re-
duces due to the high time complexity caused by a spatial
band-pass flter.

Te correlation flter (CF) could compensate for the
shortcomings of the template matching and optical fow
estimation methods, improve identifcation speed, accuracy,
and robustness, and is widely applied in video tracking and
identifcation. Bolme et al. [25] proposed the minimum
output sum of squared errors flter (MOSSE) to compute the
correlation response of targets by multiplication element-
by-element in the Fourier domain, indicating that MOSSE
signifcantly reduced the time complexity and could track
the target with speeds of 600–700 frames per second.
Henriques et al. [26] developed a circulant structure of
tracking-by-detection with kernels (CSK). Te CSK employs
a circular matrix to obtain dense samples and the corre-
sponding feature contents. Te CSK also uses kernel
functions to improve computational efciency. Henriques
et al. [27] further proposed a kernelized correlation flter
(KCF) based on CSK. Te KCF replaces the single-channel
grayscale features in CSK with a multi-channel histogram of
oriented gradients (HOG), which could enhance the ex-
pression capability of samples and the accuracy and ro-
bustness of the KCF. Du et al. [34] presented a KCF tracker
integrating a three-frame-diference algorithm, which
identifed target displacements in the ultra-high-resolution
video (3840× 2160 pixels and 3600× 2700 pixels). Shao et al.
[35] established a velocity correlation flter (VCF) using
velocity features and an inertia mechanism (IM). Yang et al.
[36] embedded the KCF tracker into an unmanned aerial
vehicle (UAV) tracking platform. Te KCF tracker main-
tained high operating speed due to its low time complexity.
However, its computational power was limited. Chen et al.
[37] built a KCF tracking framework based on the curve
ftting algorithm and evaluated the root mean square error
and mean absolute deviation between the tracking dis-
placement and theoretical displacement. Zheng and Gupta
[38] proposed a multi-camera multi-target tracking system
based on the KCF algorithm and the improved KCF algo-
rithm. However, there are few publications on the KCF
algorithm tracking and identifying the vibration displace-
ment of civil structures. Tere is a lack of research on the
KCF algorithm applied in the displacement measurement of
bridge structures.

Terefore, this paper proposes a monocular vision
system based on the KCF algorithm to identify the vibration
displacement of bridges. First, the system establishes the
relationship between physical space and pixel coordinates by
camera calibration. A region of interest (ROI) containing the
target is determined. Te KCF algorithm is used to identify
the vibration displacement of the target. Te target could be
artifcial targets, such as 2-D codes, geometric patterns, and
artifcial light sources, or natural targets, such as pits, bolts,
and rivets of the structural surface. Finally, the pixel co-
ordinate displacements of the target in each frame are
transformed into the physical space displacements of the
target by a scale ratio. Consequently, the vibration dis-
placement of the structure is identifed. In this paper, the
main contents are as follows: (1) Te KCF-based identif-
cation approach is introduced, and identifcation processes
are presented in Section 2. (2) In Section 3, the KCF-based
identifcation approach is verifed by shake table tests on
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a two-column pier with energy dissipation beams. Te
displacement identifed from the proposed KCF-based
identifcation approach is compared with the displace-
ment recorded from the traditional LDS. Te root-mean-
square errors (RMSE) and peak displacement errors between
both approaches are obtained to evaluate the accuracy,
feasibility, and robustness of the proposed KCF-based
identifcation approach. (3) Te critical conclusions are
extracted from the analyses and discussions in Section 4.

2. Vibration Displacement Measurement
Method Based on KCF Algorithm

For a machine vision-based identifcation approach for vi-
bration displacement of bridge structures, a commercial
high-speed camera is used to record the target movement
and videos of bridge structures.Ten, a proposed KCF-based
identifcation approach is employed to identify the vibration
displacement of the target from the recorded video. Te
specifc process (see Figure 1) is as follows:

(1) Calibrating camera to calculate the scale ratio: Te
step aims to accurately obtain the scale ratio (φ),
which could describe the relationship between the
pixel coordinate displacement, dimg, and the physical
space displacement, dreal, of the target.

(2) Selecting the region of interest (ROI) and extracting
the sample set features: Te ROI, including the
target, is determined for the tth frame of the video
recorded by the camera. Te ROI is used to obtain
the sample set by a cyclic shift operator. Te sample
set information is composed of the FHOG features of
the sample.

(3) Training and updating the flter tracker: For the tth

frame of the video recorded by the camera, the
sample set information, such as FHOG features, is
applied to train and update the flter tracker.

(4) Acquiring the physical space displacement of targets:
For the (t + 1)th frame of the video recorded by the
camera, the flter tracker is used to detect the target
position. Ten the pixel coordinate displacements of
the target are converted into the physical space
displacements of the target.

Each step is discussed in depth in the following
subsections.

2.1. Calibrating Camera to Calculate the Scale Ratio.
Camera calibration is an indispensable step in machine
vision-based displacement measurement. Te purpose of
camera calibration is to obtain the scale ratio between the
pixel coordinate displacement, dimg, and the physical space
displacement, dreal, of the target. Simultaneously, the camera
calibration could eliminate the infuences of the geometric
aberrations caused by optical imaging through the cali-
bration method proposed by Zhang [39]. However, only
scale ratio calculation is highlighted in this section. Te
calculation principle of the scale ratio could be presented by

the pinhole model (see Figure 2). Namely, the physical space
displacement of the target is proportional to the pixel co-
ordinate displacement of the target, which is only related to
the distance between the camera and the target when the
optical axis of the camera is perpendicular to the plane of the
target. Te scale ratio, φ, can be determined according to the
mapping relationship between pixel and physical space
length.

φ �
LAB

Lab
, (1)

where LAB is the physical space length of the target, Lab is the
pixel length on the image plane projected by a physical space
length.

Multi-targets in diferent depths of feld for the bridge
structures inevitably need to be simultaneously monitored
by the monocular camera, resulting in the depth information
of the image loss. Even if the sizes of the structural targets in
physical space with various depths of feld are diferent, the
structural targets are mapped to the same pixel length on the
image plane (Figure 2(b)). Terefore, various scale ratios, φι,
need to be calculated for structural targets in physical space
at diferent depths of the feld.

φι �
LAιBι

Lab
, (2)

where LAιBι
denotes the physical space length of the structure

surface with diferent depths of feld and ι represents the ιth
depth of feld plane.

2.2. Selecting the ROI and Extracting the Sample Features

2.2.1. ROI Acquisition. An adaptive method was established
to adjust the display window of the video with high reso-
lution to satisfy the display of the computer monitor with
lower resolution. Te KCF-based tracking algorithms
identify the structural targets within the ROI.Terefore, ROI
acquisition is one of the critical steps. Te ROI is a two-
dimensional image containing the target. An ideal ROI could
make the target tracking and identifcation take less pro-
cessing time and improve accuracy and robustness. Te key
steps generating the ROI in the KCF-based tracking algo-
rithm are as follows:

(1) Selecting and extending the ROI (selected bymouse).
Te selected ROI is expanded toN times (e.g.,N� 2.5
[27]). Te ROI expansion could prevent the target
from being decomposed and reconstructed during
cyclic shift sampling. Te expansion operation could
also increase the weight of the pixel in the target edge
for the feature extraction because the feature ex-
traction ignores the boundary element.

(2) Resampling the ROI resolution to obtain the ap-
propriate size. Te expanded ROI increases the
number of internal pixels of the target, resulting in
the operation speed of the tracking algorithm
slowing down. However, the running speed of the
KCF-based tracking algorithm could be improved by
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the bilinear interpolation sampling adjusting the
ROI resolution. Simultaneously, the primary feature
contents of the target within the ROI could be
preserved.

2.2.2. Cyclic Shift. Te ROI is sampled by a cyclic shift
operator established in the KCF-based tracking algorithm to
collect more sample data for training the flter tracker. Te
process of the cyclic shift is relatively complex for the ROI.
Terefore, the computational procedures and principles of
the cyclic shift operator are introduced in a one-dimensional
case. Namely, a one-dimensional vector (called the base
sample) is given in the equation (3). Te cyclic shift operator
is presented by a specifc matrix to shift the one-dimensional

vector. Te base sample vector, u, and cyclic shift operator
matrix, R, are defned as follows.

u � v1, v2, v3, . . . , vm􏼂 􏼃, (3)

R �

0–1–0– · · · 0
0–0–1– · · · 0
⋮–⋮–⋮ –⋮
0–0–0– · · · 1
1–0–0– · · · 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

Te base sample vector, u, multiplied by the cyclic shift
operator, R, equals to a negative sample, u1, according to the
equation (5). Namely, the frst element of the base sample
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Figure 1: Te process of the Vibration displacement measurement method based on KCF algorithm.
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vector is shifted to the second element of the negative
sample, and the rightmost element is shifted to the leftmost.
If the base sample vector separately multiplied by the cyclic
shift operator of powers, Rn, a data matrix, U, is obtained,
where n � 0,1, . . . , m − 1. Consequently, the data matrix, U,
contains one base sample and m − 1 negative samples.

u1 � uR
1

� vm, v1, v2, . . . , vm−1􏼂 􏼃, (5)

uR
n
􏼌􏼌􏼌􏼌n � 0, 1, . . . , m − 1􏽮 􏽯, (6)

U � C(u) �

v1–v2–v3– · · · vm

vm–v1–v2– · · · vm−1

⋮–⋮–⋮– ⋮
v3–v4–v5– · · · v2

v2–v3–v4– · · · v1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

Similarly, the derivative process of the one-dimensional
vector could be extended to the ROI. Te ROI in each frame
multiplied by the cyclic shift operator is regarded as
movement along the horizontal or vertical directions. Te
ROI is shifted using the cyclic shift operator to obtain the
sample set. Figure 3 shows several typical samples. Te
positive and negative signs represent the shift down and up
of the image sample, respectively. Te number (such as 10
and 20) represents the times of shifts, and “0” represents the
base sample for the image.

2.2.3. FHOG Feature Extraction. Te KCF-based tracking
algorithm extracts the features of the sample set to locate the
target position in each frame. Te features of the sample set
should have invariance properties even if the sizes and
posture of the target in the sample set and even environ-
mental lighting change. However, how efectively describing
the features of the sample set is a challenging task. Herein,
the HOG feature [40] is used to present the features of the
sample set, such as gradient features of the target. In the
HOG feature extraction process, the image of the sample set
is converted to a grayscale image, and the image contrast is
modifed by gamma correction to lessen the impact of
uneven lighting. Te gradients of the image are obtained
from the convolution between the [−1, 0, 1] and [−1, 0, 1]T

operators and the image. Te gradient values Gp(p, q) and
Gq(p, q) of an image pixel in the horizontal and vertical
directions are obtained according to equations (8) and (9),
respectively.

Gp(p, q) � H(p + 1, q) − H(p − 1, q), (8)

Gq(p, q) � H(p, q + 1) − H(p, q − 1), (9)

where H(p, q) denotes the gray value at the pixel
coordinate (p, q).

Te amplitude and direction of the gradient for a pixel is
determined according to equations (10) and (11),
respectively.

G(p, q) �

���������������������

Gp(p, q)􏼐 􏼑
2

+ Gq(p, q)􏼐 􏼑
2

􏽲

, (10)

θ(p, q) � arctan
Gp(p, q)

Gq(p, q)
, (11)

where G(p, q) represents the amplitude of the gradient, and
θ(p, q) denotes the direction of the gradient.

Te image is discrete into several cells by the HOG
feature. Each cell consists of 4× 4 pixels, and adjacent four
cells establish a block. Te gradient direction of each cell is
divided into unsigned and signed histograms using the HOG
feature with a weighted method. Te unsigned gradient
direction histogram uniformly divides the gradient direction
of each pixel into 9 bins in 0–180 degrees. Te signed
gradient direction histogram equably divides the gradient
direction of each pixel into 18 bins in 0–360 degrees. Te
histograms in the block are normalized by four types of
normalization methods, resulting in a 108-dimensional data
acquisition. A higher dimensional data is obtained for the
images composed of several blocks, leading to the processing
with high time complexity. Terefore, it is importance to
reduce the number of dimensions of the feature while
retaining the primary feature contents.

Te abovementioned high-dimensional data of the
features could be a dimension reduction process by the
FHOG method [41]. For example, the FHOG method could
reduce the 108-dimensional HOG features to 31-
dimensional FHOG features. Te detailed dimension re-
duction process is shown in Figure 4.

As shown in Figure 4, the 27-dimensional features
consist of the column accumulation of 4 normalization
operators under 27 bins (including 9 unsigned gradient
histograms and 18 signed gradient histograms). Te 4-
dimensional features consist of the row accumulation of
27 bins under 4 normalization operators.

2.3.TrainingandUpdating theFilterTracker. Te core step of
the KCF-based tracking algorithm is to train the flter tracker
that is used to locate the target position in each frame. Te
computation, training, and updating of the flter tracker are
taken as an example to process each frame. First, a Gaussian
regression label, yi(yi ⊂ [0, 1]), in the Fourier domain is
established by utilizing the training sample xi. Te Gaussian
regression label gradually decreases as the number of cyclic
shifts increases. It is worth noting that the target is itself
when the Gaussian regression label equals 1. Te training
sample set (acquisition process as shown in Figure 5(a)) is
used to train the flter tracker to obtain the equation (12) in
the tth frame, which minimizes the squared error over the
training sample xi and its Gaussian regression label yi, as
presented in the equation (13).

f xi( 􏼁 � ωT
xi, (12)

min
ω

􏽘
i

f xi( 􏼁 − yi( 􏼁
2

+ λ‖ω‖
2
, (13)

Structural Control and Health Monitoring 5



-20 -10 0 10 20

Figure 3: Te ROI after specifc shifts along the vertical direction.

··· ···

··· ···

··· ···

··· ···

···

···

···

···

3

1

4

231

42

Cell 4×4 

Block 16×16

1 2 9 10 18 19 20 27

4-dimension
27bin accumulation

1

2

3

4

1 2 9 10 18 19 20 27
··· ··· ···

27-dimension
4 normalized accumulation

adjacent domains 
normalization and 

truncation

4×18-dimension 
signed gradient 

histogram

4×9-dImension 
unsigned gradient

Histogram

Figure 4: FHOG feature extraction process.

Frame t

Select the ROI
… …… …

Cyclic shif

Extract the FHOG
features 

Training sample set X t

Te target in the frame t
Te ROI in each frame

Te target in the frame t+1

(a)

Frame t+1

Select the ROI
… …… …

Cyclic shif

Extract the FHOG
features 

Testing sample set Z t+1

Te target in the frame t
Te ROI in each frame

Te target in the frame t+1

(b)
Figure 5: Continued.

6 Structural Control and Health Monitoring



where λ represents the regularization parameter to prevent
overftting, and ω denotes the regression coefcient.

Te unique closed-form solution of ω is presented as
follow.

ω � X
H

X + λI􏼐 􏼑
− 1

X
H

y, (14)

where X is the training sample set composed of training
samples xi, XH � (X∗)T is the Hermitian transpose, X∗ is
the complex-conjugate matrix of X, I is the unit matrix, and
y is the vector composed of Gaussian regression labels yi.

To improve the classifcation performance of the flter
tracker, a mapping ϕ is used to map the training samples xi

into Hilbert space. Simultaneously, a kernel function, as
presented in the equation (15), is introduced for optimi-
zation. According to the Representer Teorem [42], the
regression coefcient ω can be expressed as a linear com-
bination of the mapped samples, as presented in the
equation (16). Terefore, the equation (12) is transformed
into the equation (17).

k xi, xj􏼐 􏼑 � ϕT
xi( 􏼁ϕ xj􏼐 􏼑, (15)

ω � 􏽘 αiϕ xi( 􏼁, (16)

f xj􏼐 􏼑 � 􏽘 αiϕ xi( 􏼁ϕ xj􏼐 􏼑 � αT
k xi, xj􏼐 􏼑, (17)

where αi is the combination coefcient, and α is the vector
composed of αi. Te solution of ω is transformed into the
solution of α in the dual space.

Te solution of the kernelized version of α in the dual
space is presented as follows [43].

α � K
xx

+ λI( 􏼁
− 1

y, (18)

where Kxx is the kernel matrix of the training sample,
namely, Kxx

ij � k(xi, xj).
Te kernel matrix Kxx has the structure of the cyclic

matrix [26], which could be further optimized in the Fourier
domain by the following equation.

􏽢α �
􏽢y

􏽢k
xx

+ λ
, (19)

where the symbol^denotes the Discrete Fourier Transform
(DFT) of the variable, kxx is the kernel matrix Kxx in the
Fourier domain, and 􏽢α is the flter tracker in the Fourier
domain.

Due to the robustness requirements of the KCF-based
tracking algorithm, the flter tracker 􏽢α needs to be updated in
each frame. Te flter tracker is updated by the following
equation

􏽢αt+1 � (1 − 0.012) × 􏽢αt−1 + 0.012 × 􏽢αt, (20)

where 􏽢αt+1 is the flter tracker for the (t + 1)th frame, 􏽢αt is the
flter tracker for the tth current frame, and 􏽢αt−1 is the flter
tracker for the (t − 1)th previous frame.

2.4. Acquiring the Target Physical Space Displacement. In the
(t + 1)th frame, the response of the testing sample set (ac-
quisition process as shown in Figure 5(b)) is detected by the
flter tracker 􏽢αt+1 in the equation (20), as presented in the
equation

f(z) � F
− 1 􏽢k

xz
⊙ 􏽢α􏼐 􏼑, (21)

where the symbol^denotes the DFTfor the variable, and F− 1

is the Fourier inverse transform matrix. kxz is the kernel
matrix Kxz in the Fourier domain, and f(z) is the response
set of the testing sample set Z.

Te position of the target in the (t + 1)th frame could be
located by the largest response in the equation (21).Te pixel
coordinate displacement dimg of the target is determined by
diference between the target coordinate of the (t + 1)th

frame and the target coordinate of the frst frame. Te
physical space displacement dreal of the target in the (t + 1)th

frame is calculated by the scale ratio φ, as presented in the
equation

dreal � φ dimg􏼐 􏼑. (22)

During long-term health monitoring and even shaking
table tests on bridges, the identifed vibration displacements
may drift from the baseline due to environmental noise or
other uncertain factors. Terefore, the KCF algorithm was
improved to eliminate the baseline drift. Consequently, the

Frame t+1
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Cyclic shif

Extract the FHOG
features 

… …… …

Training sample set X t+1

Te target in the frame t
Te ROI in each frame

Te target in the frame t+1

(c)

Figure 5: Acquisition process of sample sets: (a) training sample set in the tth frame; (b) testing sample set in the (t + 1)th frame; (c) training
sample set in the (t + 1)th frame.
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Figure 7: Continued.
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Figure 7: Acceleration time histories of seismic waves. (a) Chi-Chi wave. (b) Artifcial wave. (c) EI-Centro wave. (d) Mexico-City wave.
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Figure 8: Acceleration frequency spectra of seismic waves. (a) Chi-Chi wave. (b) Artifcial wave. (c) EI-Centro wave. (d) Mexico-City wave.

Table 1: All test cases for the test model.

Case number Seismic waves Inputting direction PGA/g
1

Chi-Chi wave Transverse direction (Y)

0.10
2 0.20
3 0.30
4 0.40
5 0.50
6 0.60
7 0.68
8 0.80
9 0.90
10 Artifcial wave Transverse direction (Y) 0.68
11 EI-Centro wave Transverse direction (Y) 0.68
12 Mexico-City wave Transverse direction (Y) 0.68
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robustness and accuracy of the KCF algorithm identifying
the vibration displacements improve.

3. Experiments and Validation

3.1. Experimental Schemes. Shaking table tests on a two-
column pier with energy dissipation beams were conducted
to verify the feasibility, accuracy, efectiveness, and ro-
bustness of the KCF-based identifcation approach. Te test
model of the two-column pier with energy dissipation beams
was designed and built according to the similarity ratios.Te
similarity ratios of the geometric and elasticity modulus are
1 :15 and 0.3 :1, respectively. Te total height of the test
model is 4500mm. Each column is a box cross section. Te
geometric dimensions of the box cross section are
567× 347mm, and the wall thickness is 100mm (see Fig-
ure 6). Five I-type energy dissipation beams made of low-
yield steel were equally installed between both columns. Te
cross section is composed of the fange and web. Te fange
and web thickness are 7mm and 2mm, respectively. Te

fange wideness and web height are 52mm and 66mm,
respectively.Te test model was built using the HRB400 steel
bar with 8mm diameter and M15 cement mortar. Te
longitudinal reinforcement ratio is 1.526%. Te additional
counterweight, 9993 kg, was installed along the height of the
column to satisfy the dynamic similarity requirement.

Seismic waves should be reasonably selected as vibration
inputs for the shaking table tests. Terefore, a typical Chi-
Chi wave was chosen as the vibration input because the wave
with pulse efects may markedly infuence the seismic re-
sponse of the test model. Te accuracy and feasibility of the
KCF-based identifcation approach were investigated by
gradually increasing the peak ground motion acceleration
(PGA) of the Chi-Chi wave. Furthermore, the diferent
frequency contents of other seismic waves, such as the
Artifcial wave, the El-Centro wave, and the Mexico City
wave, were selected as vibration inputs to evaluate the ef-
fectiveness and robustness of the KCF-based identifcation
approach. It is worth noting that all seismic waves must be
compressed by the time similarity ratio of 0.2582 to consider
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Figure 11: Displacement responses and the corresponding frequency contents along the column height of Case 1. (a) Displacement
responses. (b) Frequency contents of displacement.
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the dynamic similarity of the test model. Te acceleration
time histories and frequency spectra are shown in Figures 7
and 8, respectively. Te seismic waves were applied to the
test model in the transverse direction. All test cases are listed
in Table 1.

Te artifcial circular targets were adhesive to the column
to easily track by a high-speed camera, as shown in Fig-
ure 9(a). In addition, the natural targets of the test model,
such as screws and structural corners, were selected as
tracking objects because the artifcial target is not easily
placed for an actual structure. Signs A1–A5 and C1–C5
represent artifcial and natural targets, respectively (see
Figure 9(b)). In particular, signs C2, C3, and C4 present
screws, and C1 and C5 represent structural corners as the
natural target. Te high-speed camera distance from the test
model is approximately 6m. Te optical axis of the high-
speed camera is perpendicular to the surface of the test
model by reasonably adjusting the visual angle. Te sam-
pling frequency of the high-speed camera is 120Hz, and its

resolution is 2448× 2048. Te traditional LDS mounted on
the fxed platform was used to measure the vibration dis-
placement of the test model, indicated by D1–D5 (see
Figure 9(b)). Te vibration displacement of the column
measured by LDS was used to verify the feasibility, accuracy,
efectiveness, and robustness of the KCF-based identifcation
approach. It is worth noting that each traditional LDS
mounted at the column height is almost identical to the
targets. Te sampling frequencies of the LDS and high-speed
cameras are 256Hz and 120Hz, respectively. Moreover,
both methods did not simultaneously record the vibration
displacement due to the limitations of the equipment.
Terefore, the peak value alignment retrieval was used to
synchronize the time series of vibration displacements ob-
tained from the high-speed camera and the LDS.

Te geometric parameters of the targets were determined
from the coordinates in the 2-D pixel space and the 3-D
physical space of the targets, as shown in Figure 10. Te red
coordinates represent the target position in the pixel
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Figure 12: Displacement responses and the corresponding frequency contents along the column height of Case 3. (a) Displacement
responses. (b) Frequency contents of displacement.
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coordinate system.Te blue lines and numbers represent the
distance between both targets in the 3-D physical space. Te
scale ratios were calculated from the geometric parameters
for various targets, resulting in the pixel coordinate dis-
placements of the target transformed into the physical space
displacements of the target. Similarly, the scale ratios of the
natural targets were obtained from the adjacent structural
dimensions or the geometric spacings between adjacent
screws. In particular, the diferent scale ratios were calcu-
lated for various targets in diferent depths of the feld.

3.2. Validation of the Identifcation Accuracy. For simplicity,
only representative experimental displacements from
shaking table tests were taken as comparisons to assess the
feasibility, accuracy, efectiveness, and robustness of the
KCF-based identifcation approach when the two-column
pier with energy dissipation beams subjected to various
seismic waves with diferent amplitudes and frequency
contents. For comparisons, the vibration displacements
identifed by the KCF-based identifcation approach based

on artifcial and natural targets were referred to as KCF-AT
and KCF-NT, respectively. Te vibration displacements
measured with laser displacement sensors were referred to as
LDS. Furthermore, the RMSE and peak displacement errors
were computed to evaluate the accuracy and robustness of
the KCF-based identifcation approach. Te RMSE and peak
displacement errors are calculated as follows.

RMSE �

������������������

1
N

􏽘

N

w�1
d

w
LDS − d

w
KCF( 􏼁

2

􏽶
􏽴

, (23)

Peak Error �
max d

w
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􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − max d

w
KCF
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max d
w
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× 100%, (24)

where N represents the number of vibration displacement
data, the vector, dLDS, is the vibration displacement recorded
by the laser displacement sensor, the vector, dKCF, is the
vibration displacement identifed by the KCF-based iden-
tifcation approach, max|dw

LDS| and max|dw
KCF| represents the
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Figure 13: Displacement responses and the corresponding frequency contents along the column height of Case 5. (a) Displacement
responses. (b) Frequency contents of displacement.
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displacement with the maximum absolute values of dKCF and
dLDS, respectively.

3.2.1. Displacement Response and the Corresponding PSD of
the Column under Chi-Chi Seismic Wave. TeChi-Chi wave
has a pulse efect, which signifcantly afects the displace-
ment response of the test model. Terefore, the infuences of
shaking intensities on the accuracy of the KCF-based
identifcation approach for the vibration displacement
were studied using gradually increasing the PGAs of the Chi-
Chi wave (see Table 1). However, the vibration displace-
ments identifed by the KCF-based identifcation approach
were compared with the results recorded by the LDS for the
test model under the Chi-Chi wave with typical PGAs (0.1 g,
0.3 g, 0.5 g, 0.68 g, and 0.9 g), as shown in Figures 11(a)–
15(a). Te corresponding power spectrum density (PSD) of
the vibration displacement is shown in Figures 11(b)–15(b),
presenting the frequency spectra contents. Te PSD was

calculated using the Welch average power diagram
method [44].

Te vibration displacements identifed by the KCF-based
identifcation approach are almost identical to the wave-
forms, change trends, and peak values of those recorded by
the LDS for the test model under the Chi-Chi wave with
various PGAs (see Figures 11(a)– 15(a)). Te peak dis-
placement errors and RMSE values between the vibration
displacements measured by diferent methods are low (see
Figure 16), indicating that the KCF-based identifcation
approach identifying the vibration displacements of the test
model has high accuracy. For example, the peak displace-
ment errors between KCF-AT and LDS are within 4%, and
the peak displacement errors between KCF-NTand LDS are
less than 5%. Te peak displacement errors and the RMS
between the KCF-AT and KCF-NT are within 4.8%. Te
RMSE values between KCF-AT, KCF-NT, and LDS are
within 6mm, and the maximum value is 5.9mm.Te RMSE
values between the KCF-ATand KCF-NTare within 6.6mm
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Figure 14: Displacement responses and the corresponding frequency contents along the column height of Case 7. (a) Displacement
responses. (b) Frequency contents of displacement.
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responses. (b) Frequency contents of displacement.
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Figure 16: Continued.
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(Figure 16). However, the peak displacement errors between
KCF-NT and LDS are slightly higher than those between
KCF-AT and LDS. It is because the contrast of the natural
targets is lower than that of the artifcial targets under
natural illumination. Terefore, the KCF-based identifca-
tion approach according to natural targets is a higher level of
difculty. Te identifcation accuracy is slightly lower for the
KCF-NT (see Figure 17).

Te frequency spectra characteristics and the wave crests
of the vibration displacements identifed by the KCF-ATand
KCF-NTare in agreement well with those of the LDS for the
test model under the Chi-Chi waves with diferent PGAs (see
Figures 11(b)–15(b)). For example, the spectra values cor-
responding to the dominant frequency for the identifcation
displacement at the column top are 4774.6, 4714.6, and

4774.5 for the KCF-AT, the KCF-NT, and LDS, respectively,
when the test model subjected to the Chi-Chi wave with 0.3 g
(Case 3). Te corresponding errors between the KCF-AT,
KCF-NT, and LDS are 0.002% and 1.26%, respectively. For
the Chi-Chi wave with 0.68 g (Case 7), the spectra values at
the dominant frequency for the identifcation displacement
at the middle of the column are 5861.1, 5729.7, and 6016,4
for the KCF-AT, KCF-NT, and LDS, respectively. Te
corresponding diferences for the KCF-AT and KCF-NT are
2.58% and 4.77%, respectively, compared to the results from
the LDS. Under the Chi-Chi wave with 0.9 g (Case 9), the
spectra values at the dominant frequency for the identif-
cation displacement at the column top are 17541.3, 17052.9,
and 17766.7 for the KCF-AT, KCF-NT, and LDS, re-
spectively. Te corresponding errors between the KCF-AT,
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Figure 16: Peak displacement errors and RMSE of various vibration displacement of the test model under Chi-Chi wave with various PGAs.
(a) Peak displacement errors between KCF-AT vs. LDS. (b) Peak displacement errors between KCF-NT vs. LDS. (c) Peak displacement
errors between KCF-NTvs. KCF-AT. (d) RMSE between KCF-ATvs. LDS. (e) RMSE between KCF-NTvs. LDS. (f ) RMSE between KCF-NT
vs. KCF-AT.
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Figure 17:Te contrast of the natural targets and the artifcial targets under natural illumination: (a) column top; (b).3/4 column height; (c)
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KCF-NT, and LDS are 1.27% and 4.02%, respectively.
Consequently, the identifcation accuracy was verifed from
the frequency spectra contents of the vibration displacement
recorded by the KCF-based identifcation approach and
the LDS.

3.2.2. Displacement Response and the Corresponding PSD of
the Column under Diferent Seismic Waves. Other seismic
waves with diferent frequency contents are also selected as
inputs to validate the robustness and efectiveness of the
KCF-based identifcation approach. Te vibration dis-
placements identifed by the KCF-AT and KCF-NT are
compared with the results recorded by the LDS for the test
model under four seismic waves with 0.68 g, as shown in
Figures 14(a), 18(a)–20(a). Te corresponding frequency
spectra characteristics of the measurement displacements
between diferent methods are illustrated in Figures 14(b),
18(b)–20(b) for the test model.

Te vibration displacements identifed by the KCF-AT
and KCF-NT are consistent with the waveforms, variation
tendencies, and peak responses of the results recorded by
the LDS for the test model under the seismic waves with
diferent frequency contents (see Figures 14(a) and 18(a)–
20(a)). Te peak displacement errors and RMSE values
between various vibration displacements measured by the
three methods (KCF-AT, KCF-NT, and LDS) are small (see
Figure 21), indicating the high robustness and accuracy of
the KCF-based identifcation approach identifying the
structural vibration displacements. For example, the RMSE
values of the vibration displacements between the KCF-AT,
KCF-NT, and LDS are within 6mm. Te RMSE values
between the KCF-AT and KCF-NT are within 7.3mm. Te
peak displacement errors between the KCF-ATand LDS are
lower than 4%, and the peak displacement errors between
the KCF-NT and LDS are less than 6%. Te peak dis-
placement errors between the KCF-AT and KCF-NT are
fewer than 7.2% (Figure 21). However, the peak
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Figure 18: Displacement responses and the corresponding frequency contents along the column height of Case 10. (a) Displacement
responses. (b) Frequency contents of displacement.
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displacement errors between the KCF-NT and LDS are
slightly higher than those between the KCF-ATand LDS. It
is since that the natural targets showed lower contrast
compared to the artifcial targets under the natural illu-
mination in the shaking table lab (see Figure 17).

Te frequency spectra characteristics and corre-
sponding wave crests of the vibration displacements
measured by the KCF-AT and KCF-NT are the same as
those of the vibration displacement recorded by the LDS
for the test model under four seismic waves with 0.68 g
(see Figures 14(b) and 18(b)–20(b)). For instance, the
frequency spectra peaks at the dominant frequency of the
vibration displacements at the column top from the KCF-
AT, KCF-NT, and LDS are 897.6, 924.6, and 943.9, re-
spectively, when the test model subjected to the Artifcial
wave with 0.68 g. Te corresponding peak errors between

the KCF-AT, KCF-NT, and LDS are 4.91% and 2.04%,
respectively. Under the El-Centro wave with 0.68 g, the
frequency spectra peaks at the dominant frequency of the
vibration displacement at the column top identifed by the
KCF-AT and KCF-NT are 2.30% and 14.14% less than
those recorded by the LDS, respectively. For the case of the
Mexico City wave with 0.68 g, the frequency spectra peaks
of the dominant frequency of the vibration displacement
at the column middle measured by the KCF-AT and
KCF-NT are 97.30% and 94.58% compared to the results
recorded by the LDS, respectively. Consequently, the
KCF-based identifcation approach identifying the vi-
bration displacement has high robustness and accuracy
for the test model under seismic waves with diferent
frequency contents.
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Figure 19: Displacement responses and the corresponding frequency contents along the column height of Case 11. (a) Displacement
responses. (b) Frequency contents of displacement.
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Figure 20: Displacement responses and the corresponding frequency contents along the column height of Case 12. (a) Displacement
responses. (b) Frequency contents of displacement.
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Figure 21: Continued.
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4. Conclusions

Tis paper proposes a KCF-based identifcation approach
considering various targets in diferent depths of the feld
based on monocular vision, which is employed to identify
vibration displacements of bridges. A two-column pier with
energy dissipation beams was designed and tested using
shaking table tests under the diferent seismic waves. Te
vibration displacements of the two-column pier with energy
dissipation beams were recorded by the proposed KCF-AT,
KCF-NT, and conventional LDS approaches. Te mea-
surement vibration displacements between the three
methods were compared to verify the feasibility, accuracy,
efectiveness, and robustness of the proposed KCF-based
identifcation approach. Te crucial conclusions were
summarized from the series of analyses:

(1) A conversion method associated with the scale ratio
was established and adapted to various targets in
diferent depths of the feld, which is incorporated
into the KCF-based tracking algorithm. Te scale
ratio could be used to directly achieve the physical
space displacement of artifcial and natural targets at
diferent depths of the feld. Te vibration dis-
placement identifed by the proposed KCF-based
identifcation approach was consistent with the re-
sults recorded by the LDS. Te results show that the
KCF-based identifcation approach has high accu-
racy and robustness in identifying vibration
displacements.

(2) Te vibration displacements and the corresponding
frequency spectra contents identifed by the KCF-
based identifcation approach are almost consistent
with the measurement results obtained by the laser
displacement sensors for the test model under the
Chi-Chi wave with diferent PGAs and other seismic
waves with various frequency contents. Te peak
displacement errors and RMSE values between the

vibration displacement recorded by diferent
methods are small. Te peak displacement errors
between the vibration displacement recorded by
KCF-AT, KCF-NT, and LDS are less than 5% and
6%, respectively. Te RMSE values between the vi-
bration displacement recorded by the KCF-based
identifcation approach and LDS are within 6mm.
It is indicated that the proposed KCF-based iden-
tifcation approach has good accuracy and
robustness.

(3) Te vibration displacements and the corresponding
frequency spectra contents from the KCF-based
identifcation approach according to natural tar-
gets are almost identical to the results from the KCF-
based identifcation approach according to artifcial
targets. Te peak displacement errors and RMSE
values between the vibration displacement recorded
by KCF-NT and KCF-AT are within 7.2% and
7.3mm, respectively. It is indicated that the KCF-
based identifcation approach based on the natural
targets has the same identifcation accuracy and
robustness. Terefore, the KCF-based identifcation
approach based on the natural targets is more
convenient in applying practical bridge engineering.

(4) Te infuences of complex environmental factors,
such as climatic environments and low contrast
natural targets, on the identifcation accuracy and
robustness of the KCF-based identifcation approach
in future work, especially for practical bridge engi-
neering in more complex environments. Moreover,
the KCF-based identifcation approach will be ap-
plied in more scenarios.

Data Availability

Te data that support the fndings of this study are available
from the corresponding author upon reasonable request.
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Figure 21: Peak displacement errors and RMSE of various vibration displacement of the test model under seismic waves with various
frequency contents. (a) Peak displacement errors between KCF-ATvs. LDS. (b) Peak displacement errors between KCF-NTvs. LDS. (c) Peak
displacement errors between KCF-NT vs. KCF-AT. (d) RMSE between KCF-AT vs. LDS. (e) RMSE between KCF-NT vs. LDS. (f ) RMSE
between KCF-NT vs. KCF-AT.
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