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Dynamic-vibration-based structural damage identifcation (SDI) represents the main target for structural health monitoring
(SHM). It is signifcant to consider the unavoidable uncertainties arising from both the structure and measuring noise. On the
other hand, nonuniformmeasurement conditions often appear in actual SHM applications, which consist of two parts, i.e., spatial
nonuniform characteristics for noises are induced by various intensities of input noise in every single sampling channel and
multisensor stays in a damaged state. Tis paper proposes a new method for the SDI considering uncertainties in nonuniform
measurement conditions integrating convolutional neural network (CNN). Herein, the great ability of feature extraction from the
measurement associated with the convolutional network is used to handle the input data, and the mapping connection between
the selected features and damage states is established. Time histories of structural responses, such as acceleration, are applied for
damage identifcation. Te application and accuracy of the CNN, which is trained with input uncertain parameters contaminated
by stochastic noises, are verifed by the fnite element numerical and experimental results. Both uncertain parameters and
measurement conditions are considered in the verifcation. Te responses obtained from the numerical and experimental
approach show that the proposed neural network model can identify the structural damage with high accuracy. Te great
robustness of the proposed method is examined by studying the infuence of uncertainties, even considering the nonuniform
measurement condition.

1. Introduction

Structural damage identifcation (SDI), as the most im-
portant issue for the structural health monitoring system,
has attracted extensive attention in civil engineering pro-
jects. Identifying damage is signifcant and adopted in the
evaluation of the structural operating conditions and en-
suring its safety, especially for important infrastructure.
Various SDI methods using changes in dynamic analysis
have been improved in the past decades. Doebling et al.
provide a summary review of SDI techniques and applica-
tions before 1998 [1]. However, most traditional identif-
cation approaches are based on some modal information
(i.e., frequency, modal shape, and curvature). Since the

numbers and measuring accuracy of monitoring points are
limited, the complete modal parameters before damage are
difcult to conduct for the SDI systems. More measuring
points should be settled, and a more signifcant requirement
for modal experiment also needs to be obtained in practical
engineering, which rapidly reduces the economic cost.

Te novel studies of the SDI, from 2010 to 2019, are also
summarized by Hou and Xia [2]. With the essential im-
provement of artifcial intelligence, the machine learning on
the SDI has been widely used [3, 4]. Based on the principle of
the machine learning method, SDI can be assumed as the
sample acknowledgment situation. Training data is always
conducted from laboratory testing and structural fnite el-
ement simulations. Secondly, statistical or signal processing
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approaches are applied to deal with the tested responses for
feature extraction. Finally, through the chosen feature, the
presence, position, and severity of the structural damage can
be identifed based on the classifcation algorithm. Com-
pared with the traditional network architecture, deep
learning algorithms can automatically capture more sig-
nifcant information from the input training samples by
using numerous hidden layers. Convolutional neural net-
work (CNN) is one of the state-of-the-art deep neural
networks, which has been widely employed for SDI using
vibration responses [5]. Abdeljaber et al. proposed 1D CNNs
to establish a signifcant structural damage detection system,
which can automatically extract damage features from vi-
bration signals and input to locate damage in real-time [6].
Duan et al. presented an automated damage identifcation
method based on a CNN. Te raw measurement accelera-
tions are transformed into Fourier amplitude spectra for the
training data of the neural network [7]. Bao et al. combined
the application of computer vision with a deep learning-
based data anomaly detection method, which was applied to
an actual cable-stayed bridge for the verifcation of the
proposed method [8]. Wang et al. adopted a densely con-
nected layer to optimize the CNN for SDI, which takes the
advantage of a limited number of sensors to extract the
damage feature for the SDI [9]. Xu considered the multilevel
and multiscale features of the input information, and a fu-
sion CNN was proposed to deal with crack identifcation in
bridge engineering projects [10]. Seventekidis et al. estab-
lished an optimal fnite element (FE) model to generate the
training data for the deep learning CNN, which is verifed by
the experimental data on the benchmark structure [11]. Li
et al. proposed a new method combining the inverse fnite
element method and CNN, and the strain mode diferences
are considered. Its localization ability and damage quanti-
fcation prediction accuracy are verifed [12]. Zhang et al.
listed a hybrid method that connected phase-based motion
estimation with CNNs to address the situation that training
data for CNN is difcult to obtain in actual engineering
projects [13]. Ai et al. proposed a 2D CNN integrated with
electromechanical admittance, which was applied to identify
compressive stress and external excitation-induced damage,
and the accuracy and efciency of the method were
proved [14].

Since the quantity of modal information adopted is
always larger than the actual number of elements, the SDI is
regarded as a determined problem in most of the afore-
mentioned studies. However, it is impossible to conduct
enough input modal data for the SDI with the limitation of
monitoring sensors or external environmental infuences. In
addition, uncertainties inevitably arise from either the
structure or measurement [15–17], which will undermine
the accuracy of SDI [15]. In addition, the damage identif-
cation of uncertain structures will cost too much in the
experimental tests. Terefore, the efect of uncertainties on
the SDI is always investigated based on the fnite element
(FE) model analysis, which includes uncertain structural
parameters and modeling errors [18]. During the numerical
modeling process for the structures, the input structural
parameters present the random characteristics of every

structure in nature. And no matter how complex and
comprehensive the FE model is, it still has some unavoidable
diferences from the actual structure. Based on the short
review of the stochastic modeling of uncertainties in com-
putational structural dynamics [19], variations can be
simulated and input into the structural parameters to study
the coupling efects of several uncertainties. Pathirage et al.
proposed an autoencoder-based architecture for SDI. It can
use deep neural networks and be applied to learn a mapping
between the dynamic characteristics and damage situations
[20]. Villani et al. applied the discrete-time Volterra series
expanded with Kautz flters to study the responses of a beam
in an experimental test, and the uncertainties of the structure
were involved. Based on the random index and hypothesis
test, the method of damage detection is applied to consider
the simulated damage and the loss of mass [21, 22]. Ding
et al. proposed a new approach of SDI, which was based on
the clustering-based tree seed algorithm and considered the
FE modal errors and measuring noise. Te accuracy of the
proposed approach was verifed by comparing it with the
results from the numerical and experimental testing [23].
Fan et al. proposed a vibration signal denoising method for
structural health monitoring based on residual CNN [24].
Shi et al. deduced the matrix between strain mode and the
structure’s element stifness parameter, and the connection
between modal information and damage coefcients of
structures was established. Its applicability was proved, and
its efciency and robustness were also studied [25]. Silva
et al. investigated the negative infuence caused by modeling
uncertainties on SDI and proposed a method for damage
identifcation under uncertain conditions. Te results esti-
mated by approximate marginalization under uncertainties
were feasible, but those by standard maximum were not
[26, 27].

Recent achievements [20, 28, 29] utilized modal in-
formation to identify structural damage. Numerous sensors
should be settled to cover all the structural messages, which
are to conduct modal information. However, it is not re-
alistic in data acquisition for the large-scale structure.
Terefore, the time-domain SDI methods are applied to
measure acceleration responses by certain sensors, which is
signifcant that much fewer sensors are required to provide
the whole dynamic information for establishing the iden-
tifcation equation and sample the sufcient data points.
Zhang et al. have utilized the raw acceleration responses to
identify the structural damage, directly [30]. Although the
measured time-domain responses include the unavoidable
and essential efect of noise, the deep learning methods can
solve this situation because of their powerful ability to scale
large data and extract underlying feature distributions [31].
However, most operating sensors are sufering damage from
extreme weather, equipment technical problems, measuring
environmental noise, and other factors, so the data collected
by the sensors become faulty. Te most common of all types
of data abnormity is data loss [32]. Loss of data will result in
the abandonment of signifcant measuring information and
a serious reduction in SDI accuracy. Additionally, many
deep learning-based algorithms for structural monitoring
information require a sufcient training dataset to establish
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the analysis framework, while data loss will cause the col-
lapse of the calculation. Fan et al. applied a CNN with
bottleneck framework and connection, which included the
relationship between data loss and the complete information
[33] and also presented a dynamic response reconstruction
method for structural health monitoring using densely
connected convolutional networks [34]. Li et al. exhibited
the connection between the whole true signals and the re-
alistic hypotheses for the lost signals [35]. If the SDI is in
multisensor damaged condition, the collected signals be-
come meaningless noises and present strong nonuniform
characteristics in measuring accuracy of sensors. Terefore,
the situation of the losing data for the sensors can be
regarded as the extremely issue of SDI. Terefore, it is
worthwhile to study the efect of the nonuniform measuring
conditions on the SDI by the CNN.

In this paper, a new deep learning neural network
framework for SDI with uncertain parameters is proposed.
And the time-domain acceleration responses of structure,
which are conducted by both the fnite element analysis and
experimental testing, are explored to extract the damage-
related samples for SDI. In addition, since the signals
captured by random sensors include the stochastic noises,
the nonuniform characteristics in measurement condition
are involved and their efects on the identifcation by CNN
are studied. Te extreme issue for the nonuniform mea-
surement condition, namely, the multisensor damaged state,
is also considered.

2. Methodologies

CNNs have a signifcantly powerful capability for feature
extraction. Te intact and damaged states of the target
structure are regarded as the training information for the
CNNs. Te distribution information of the intact and
damaged states of the structure can be learned, and the
features of the intact and damaged structure can be
extracted. If a new structure is an input into the established
CNN model, it can immediately make judgments and
identify whether the structure is damaged so as to achieve
the target of SDI. Te relationship of signals obtained by
a series of sensors can be simulated as themodal information
of the target structure, which can be applied to identify the
damaged state based on CNNs. In this paper, the structural
dynamic accelerations are used to establish a two-
dimensional matrix which can refect the structural modal
shape. Tis matrix and the corresponding labels are severed
as input training data for the CNNs and get through con-
volution and pooling layers, and the local receptive feld can
realize the feature extraction of acceleration responses. Fi-
nally, moving through the full connection layers, the
mapping relationship between input dynamic responses and
the structurally damaged state is established, as shown in
Figure 1, which presents strong distinguishing ability and
generalization performance.

Te CNN model for SDI can be divided into two parts:
the training and prediction networks, as shown in Figure 2.

Te training network deals with learning the feature from
the structural modal and damaged information and cap-
turing the weight and threshold value. In addition, the
conducted acceleration responses are used as input in-
formation for the prediction network, and the structural
damage probability can be carried out based on the weight
and threshold value, so as to identify whether the structure is
damaged or not.

Terefore, the framework of the CNN model, which is
used to identify the structural damage, is proposed and
shown in Figure 3. It consists of 12 layers, including 1 input
layer, 3 convolution layers, 3 pooling layers, 3 full con-
nection layers, 1 Softmax layer, and 1 output layer. Te
parameters of the CNNs framework are listed in Table 1.

(1) Te frst layer is the input layer, and the size of the
input samples is based on the corresponding input
data. A matrix, which can be written as 1 @, is taken
as an example to explain the working process of
CNN framework. n represents the number of sen-
sors, and m is the sampling number in every sensor.

(2) Te 2nd, 4th, and 6th layers, respectively, are con-
volution layers, marked as C1, C2, and C3, and the
same convolution operation mode is suitable for
them. Te number of convolution kernels is c1, c2,
and c3, and the size of every convolution kernel is
a1 × a1, a2 × a2, and a3 × a3, and the sliding step is sc.
Te ReLU function is applied as the activation
function.

(3) Te 3rd, 5th, and 7th layers are pooling layers, marked
as P1, P2, and P3, and the maximum pooling method
is adopted. Te number of pooling bins is p1, p2, and
p3, and their sizes are b1 × b1, b2 × b2, and b3 × b3, and
the sliding step is sp. After going through 3 convo-
lution and 3 pooling layers, the original matrix 1 @ is
extracted as c3 @ ceil (ceil (ceil (n/b1)/b2)/b3)× ceil
(ceil (ceil(m/b1)/b2)/b3), which is recorded as the t0
vector. ceil(·) represents ceil rounding function.

(4) Te 8th, 9th, and 10th layers are full connected layers,
denoted as F1, F2, and F3, which apply the sigmoid
activation function. Te full connected layer F1
“fattens” the convolutional pooled t0 vector into
a vector 1@1 × (ceil(ceil(ceil(m/b1)/b2)/b3) · c3),
and the “fattened” vector is denoted as t1 vector.Te
“fattened” t1 vector is transmitted and compressed
through the F2 and F3, and the t2 and t3 vector,
respectively, is obtained in F2 and F3.

(5) Te 11th layer is also the full connection layer, but the
Softmax function is severed as the highest layer of the
network and called the Softmax layer. Te com-
pressed t3 vector in F3 is classifed into two cate-
gories, “0” and “1.”

(6) Te 12th layer is the output layer. When the output is
“1,” it means the structure stays in a good operational
situation. On the contract, the structure is damaged
if the output is “0.”
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which are positive integers that are less than z or bigger
than 2.

3. Verification of the SDI Based on CNNs

3.1. SDI of Finite ElementModel. A simply supported bridge
for the testing experiment is applied, and the settlement of
sensors is shown in Figure 4, which is taken to verify the
application of the CNNs to identify the structural damaged
condition. Firstly, the fnite element model is established
according to the selected structure, and the acceleration

responses of the structure are obtained through numerical
simulation. Secondly, they are used as the input data, and
the CNN model is obtained based on the acceleration
responses, which are used as training data for CNNs. Fi-
nally, the accuracy of CNN is verifed by the experimental
testing.

As shown in Figure 5, the I-beam is applied for the simply
supported bridge. Te full length of each main beam is 2.2m,
the calculated span is 2.1m, and the center spacing of the main
beam is 0.2m. Steel batten plates are used as the transverse
connection, which has a size of 0.15m× × 0.22m× 0.05m.
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Figure 3: Te framework of CNN model.

Structural Control and Health Monitoring 5



Ta
bl

e
1:

Pa
ra
m
et
er
s
of

C
N
N

m
od

el
.

N
et
w
or
k
la
ye
r

M
od

ul
e

In
pu

t
C
om

pu
tin

g
co
re
s

C
om

pu
tin

g
co
re
s

Sl
id
in
g
st
ep

O
ut
pu

t
po

in
ts

L1
In
pu

tl
ay
er

1
@

n
×
m

—
—

—
1
@

n
×
m

L2
C
on

vo
lu
tio

na
ll
ay
er

C
1

1
@

n
×
m

c 1
a 1

×
a 1

s c
c 1

@
n

×
m

L3
Po

ol
in
g
la
ye
r
P1

c 1
@

n
×
m

p 1
b 1

×
b 1

s p
O

3
�→

L4
C
on

vo
lu
tio

na
ll
ay
er

C
2

O
3

�→
c 2

a 2
×
a 2

s c
O

4
�→

L5
Po

ol
in
g
la
ye
r
P2

O
4

�→
p 2

b 2
×
b 2

s p
O

5
�→

L6
C
on

vo
lu
tio

na
ll
ay
er

C
3

O
5

�→
c 3

a 3
×
a 3

s c
O

6
�→

L7
Po

ol
in
g
la
ye
r
P3

O
6

�→
p 3

b 3
×
b 3

s p
t 0

L8
Fu

lly
co
nn

ec
te
d
la
ye
r
F1

t 0
—

—
—

t 1
L9

Fu
lly

co
nn

ec
te
d
la
ye
r
F2

t 1
—

—
—

t 2
L1

0
Fu

lly
co
nn

ec
te
d
la
ye
r
F3

t 2
—

—
—

t 3
L1

1
So
ftm

ax
la
ye
r

t 3
—

—
—

1@
1

×
2

L1
2

O
ut
pu

tl
ay
er

1@
1

×
2

—
—

—
T

e
pr
ob

ab
ili
ty

of
tw
o
ca
te
go
ri
es

of
“0
”
an
d
“1
”

6 Structural Control and Health Monitoring



Te center spacing between adjacent batten plates is 0.35m,
and the net distance is 0.2m.

Te fnite element model is established by ANSYS
software. To make the fnite element model closer to the test
structure, Shell 63 element is used formodeling and is shown
in Figure 6. Te parameters of the fnite element are shown
in Table 2.

For the fnite element model, the total length of the
structure is 2.1m which is divided into 24 segments, and
each segment is composed of 5 plate elements. Te center
distance between the two main beams is 0.2m, and they are
connected by batten plates. Te simulation of battens
consists of four plate elements. Tere are 370 nodes and 280
plate elements in the whole model, and the total mass of the
structure is 71.60 kg, of which the mass of the main beam is
47.58 kg. According to the actual structural damage location,
the elements at the corresponding damaged position should
be deleted, which is applied to simulate the damaged con-
dition for the FEmodel.Temethod of simulating structural
damage in the fnite element model is to directly delete the
element corresponding to the actual structural damage lo-
cation. In addition, the pulse excitation input is adopted as
the external load for the SDI in the FE model, which ver-
tically afects the random position of the top of the main
beams. During the loading process of the simulation, the
initial efect time is randomly selected from the range
0.0∼1.2 s.Terefore, there are 5 channels, which are the same
as 5 sensors at the experimental testing, to capture dynamic
acceleration responses, as shown in Figure 6. Te sampling
frequency of each channel is 200Hz, which means the
capturing time of 300 data points is 1.5 s. Terefore, the size
of every sample in CNNs is 5× 300. Figure 7 shows the
structural acceleration responses of the FE model under
certain pulse excitation.

3.2. SDI Based on Experimental Testing. Te experimental
model for the testing is shown in Figure 8, which is similar to
the FEmodel.Temonitoring point is settled at the center of
the top of the batten plate, and the acceleration sensor and

the structure are bonded with grease, which ensures that
there is no relative displacement between them.

Tere are 4 sections for the testing structure, named
1#∼4#, as shown in Figure 4. Te structural damage con-
dition in the test is achieved by cutting the outer lower
fanges of each segment of the two main beams. Terefore, 4
damaged working conditions are considered, as shown in
Table 3, in which the midpoint of the cutting block is the
center of every segment, the length of the block is 17 cm, and
the width is 2 cm, as shown in Figure 9.

Te pulse excitation is efected on the testing structure,
as shown in Figure 10. Te details of the external loads are
listed in Table 4. 5 sensors were used in the testing, and the
sampling frequency was 200Hz. Figure 11 shows the ac-
celeration responses of the structure under certain pulse
excitation. According to the principle of CNN for SDI and
the size of the training sample in this experiment, the
framework and parameters of the CNN model are designed
as shown in Table 5.

4000 groups of acceleration calculated by the FE model
are applied as the training data for the CNN model, in-
cluding 2000 groups for no-damaged structures and others
for damaged ones. Te size of every group of acceleration is
5× × 300. In addition, there are 2000 groups of acceleration
obtained from the FE model and experimental testing, re-
spectively, which are involving no-damaged and damaged
structure and adopted as the prediction samples for the
CNN. Te prediction samples include 2000 groups of no-
damaged structural responses and 2000 groups of damaged
ones, which is a randomization. Te ratio of the number of
groups of identifed results by CNN to the number of groups
of prediction samples is defned as the identifed accuracy of
the CNN for SDI, also named the identifed ratio (IR).Te IR
obtained by comparing CNN with the FE model or the
experimental testing is listed in Figures 12 and 13. For the FE
model, the minimum IR of CNN is 84.6%, and themaximum
of that is 93.8% among all the four cases. In addition, the
range of IR of CNN with the experimental testing is from
81.9% to 90.1%. Terefore, the identifed accuracy of CNN
for SDI satisfes the computational requirement, and CNN is
a reliable tool for structural damage detection.

4. Effect of Structural Uncertainties on SDI
Based on CNN

Te acceleration responses conducted by numerical simu-
lation are regarded as the input training data for CNN when
the CNN is applied to identify the structural damage situ-
ation. Te CNN is trained by the deterministic structural
responses; however, the uncertainties arising from the
structure are unavoidable, and the structural damage con-
dition will make the matrix of stifness, mass, and damping
ratio change. Terefore, it is signifcant to investigate the
efect of the uncertain parameters on the accuracy of the SDI
based on CNN. Te cross-section of the simply supported
bridge is rectangular with a height of 0.3m and a width of
0.2m.Te span of the bridge is 2.0m, and the whole beam is
divided into 20 elements, which is shown in Figure 6. Te
mass density of the structure is 2500 kg/m3, the elastic

Steel batten plate
10#I-beam

Abutment
Pedestal

1#

2#

3#

4#No.1
Sensor

No.2
Sensor

No.3
Sensor

No.4
Sensor

No.5
Sensor

Figure 4: Settlement of the sensors of the experimental structure.
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Figure 5: Detailed dimensions of the test structure (unit: mm). (a) Structural cross-section size. (b) Structural plane size. (c) Structural
facade size.

No. 1 acceleration
sampling channel

No. 2 acceleration
sampling channel

No. 3 acceleration
sampling channel

No. 4 acceleration
sampling channel

No. 5 acceleration
sampling channel

Figure 6: Finite element model of the test structure.

Table 2: Model parameter.

Parameter type Parameter name Take value

Parameters of section properties

Tickness of I-beam roof plate 7.6mm
Tickness of I-beam bottom plate 7.6mm

Tickness of I-beam web 4.5mm
Tickness of batten plate 5.0mm

Parameters of material properties

Mass density 8006 kg/m3

Elastic modulus 2.06 ×105MPa
Poisson’s ratio 0.31
Damping ratio 0.01

Parameters of structure properties

Length of main beam 2.1m
Total number of nodes 370个

Total number of elements 280个
Boundary constraints Simply supported beam constraint
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modulus E= 3.0× ×104MPa, the moment of inertia
I= 4.5× ×10−4m4, and the damping ratio is 0.02. Te
damage issue can be expressed as the stifness reduction of
the structure. Terefore, the decreasing material stifness EI
is used to simulate the damage issue, in which the original
stifness EI of every element multiplies with a reducing
coefcient αi. Te new stifness is shown as αi·EI, and the
reducing coefcient αi is selected from random numbers that

follow a uniform distribution in the range of 0.3∼1.0. Te
external excitation is also severed as the pulse excitation, and
its details are listed in Table 6. Taking 5 nodes (No. 4, 7, 11,
15, and 18) as the target points to list their acceleration
responses, whose sampling frequency is 1000Hz. Every
point should capture 100 series of acceleration responses.
Terefore, a size of 5×100 matrix, shown in Figure 14, can
be simulated based on the conducted acceleration responses,
which is similar to the size of a 5×100 photo and is adopted
as training data for CNN.

Te uncertain parameters of structure, such as mass,
elastic modulus, and damping ratio, are considered in the
SDI based on CNN, which follows a normal distribution.Te
mean value and coefcient of variation (COV) of the in-
volved parameters are shown in Table 7. Four cases are
selected to investigate the application of CNN on uncertain
SDI, and they are exhibited in Table 8.

As shown in the table, the efect of single one parameter
on the IR by CNN is studied in Case 1∼3, and corresponding
time histories of acceleration are shown in Figures 15–17. In
addition, the coupling efect of three parameters is also
calculated, and the results of Case 4 are shown in Figure 18.

Te parameters of the CNN for SDI are listed in Table 9.
For the aforementioned cases with uncertainties, 4000
groups of acceleration with the size of 5×100 matrix are
adopted as the training sample sets, including no-damaged
and damaged conditions. And the number of the prediction
for CNN is also 4000 with two structural conditions (no-
damaged and damaged). Te sampling noises are ignored.
Te datasets from simulation are selected randomly as the
training data, and those from experiment are chosen as the
prediction data. Te IR is applied to evaluate the identifed
accuracy of structural damage by CNN, which is shown in
Figure 19. As shown in the fgure, the uncertain damping
ratio has little infuence on the IR of the structural damage by
the CNN, the IRs are bigger than 99.4% with diferent COVs
of damping ratio. For the other three cases, the IRs are
decreasing with the development of COV of the involved
uncertainties.Te efect of the uncertain mass is equal to that
of elastic modulus. Te IR in Case 1 is 81.13% and that in
Case 2 is 81.55%, when the COV of the corresponding
random variable is 0.30. In addition, the IR in Case 4
presents a more rapid reduction than in Case 1 and 2, which
means the efect of the coupling of three parameters is
enhanced and further reduces the IR. Te IR of structural
damage by CNN is smaller than 80%, which cannot satisfy
the requirements of the SDI based on CNN in Case 4.
Terefore, based on the training data without uncertainties,
the established CNN framework cannot guarantee the
identifed accuracy of the structural damage when several
structural uncertainties are considered in prediction and the
corresponding COVs are large.

In addition, to further investigate the efect of un-
certainties on the identifed accuracy of structural damage by
CNN, a new CNN framework is proposed whose training
data need to consider the efect of uncertain parameters. In
this part, the original CNN is named CNN 1 based on the
training data without uncertainties, and the new CNN is
named CNN 2 based on that with three uncertainties. Te
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Figure 7: Finite element data of the test.

No.1
Sensor

No. 2
Sensor

No. 3
Sensor

No. 4
Sensor

No. 5
Sensor

Figure 8: Actual model of the test structure.

Table 3: Case of the test.

Numbering
Description of the

case of the
test

Damage case 1 Damage 2# sections outer lower fange
Damage case 2 Damage 2# and 3# sections outer lower fange
Damage case 3 Damage2#, 3#, and 4# sections outer lower fange

Damage case 4 Damage1#, 2#, 3#, and 4# sections outer lower
fange

Structural Control and Health Monitoring 9



prediction results involve all the uncertainties for two types
of CNN framework. Te sampling noises are also ignored.
Te IR of the two types of CNN models is presented in
Table 10. As a result, without input signal noises, the un-
certainties involved in training data have few efects on the
identifed accuracy of structural damage.

However, the measuring noises are unavoidable during
the process of capturing acceleration responses by sensors.
Terefore, to further refect the authenticity of the CNN to
identify the actual structural damage situation, the original
acceleration signals should add the measuring noise, which
is based on the principle of signal noise ratio (SNR) [36].Te
mean value of noise refects the intensity of noise, the in-
tensity of noise is expressed by the signal-to-noise ratio, and
the variance of noise refects the nonuniform characteristics
of noise. Te defnition of the signal-to-noise ratio is shown
as follows:

Centerline of support Centerline of support

4#Centerline of segment

1# Segment

A#Main beam

B#Main beam

2# Segment 3# Segment 4# Segment

A

A

17

2

(a) (b)

Figure 9: Test structure after damage. (a) Plane (unit: mm). (b) Actual damage.

Figure 10: Test structure subjected to pulse excitation.

Table 4: Parameters of pulse excitation.

Category Range
of taking values

Direction of pulse excitation Vertical down
Pulse excitation point of
action

Te two main beam roofs without
support

Te time point of pulse
excitation Any random number in 0 s∼1.2 s
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Figure 12: Identifcation accuracy of CNN model for the verifcation.
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Figure 13: Te training acc and loss of the CNN model.

Table 6: Parameter of the external excitation in these cases.

Category Range
of taking value

Reduction coefcient αi Random numbers evenly distributed between 0.3 and 1.0
Magnitude of pulse excitation 30N∼100N uniformly distributed random number
Direction of pulse excitation Vertical down
Action position of pulse excitation Random number of 2∼20 nodes uniformly distributed

Measurement points 1

Measurement points 2

Measurement points 3

Measurement points 4

Measurement points 5
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Figure 14: CNN’s input data.

12 Structural Control and Health Monitoring



SNR �
signal energy
noise energy

�
pure signal2

(noisy signal − pure signal)2
. (2)

Based on two types of the established CNN model
considering various COVs for uncertainties, three cases with
diferent SNR, such as SNR� 10, 5, and 1, are simulated to
investigate the applicability of SDI by CNN, and the results
are shown in Figure 20. It is signifcantly noted that the
efects of the SNR on the IR for the CNN 1 model are much
bigger than those for the CNN 2model.Te diferences in IR
calculated by two CNN models are increasing with the
development of the COVs of uncertainties and the noise
involved in measuring information. When the COVs of
uncertainties is 0.1, the diferences in IR by two CNNmodels
can reach 10% for SNR� 1. However, those diferences can
nearly be 1% without any noise. Terefore, due to the un-
avoidable noises arising from the measurement, the un-
certain parameters should be considered in the training data
for the CNN model, and the accuracy of the structural
damage situation identifed by CNN is more essential with
more noises involved in the measurement.

5. Effect of Nonuniform Measuring
Condition on the SDI Based on CNN

For the actual operating SDI environment, the sensors must
face the situation of unavoidable measuring noise and
damage, which induce the nonuniform characteristics of
measurement for the SDI. During the collecting signals
process of SDI, there should be measuring noises with ir-
regularity and varying intensities. Most of these are additive
noise, which is independent of the available signals. Similar
to Image Recognition, when the eyes deal with the signifcant
signals from the image, the noise will afect the uniformity of
the key information in the signals. As shown in Figure 21, the
letter “A” in the picture is required information, and the
background of the picture means noise. Te noise is uni-
formly flled in the background, and the intensity of the
noise is increasing with the darker background. Te efect of
the intensities of uniform noise on image recognition is
signifcant.

However, if the efect of noise on every measuring
channel is the same, uniform characteristics are exhibited. In
contrast to this, the intensities of noises are diferent, which
will present the spatial nonuniform characteristics of
measurement. As shown in Figure 22, the background has
been divided into 25 subspaces, and the varying intensities of
noise afect the random independent subspaces. For the SDI
based on CNN, it is necessary to investigate the efect of
nonuniform noises on the accuracy of recognition.

Meanwhile, multisensor damage is an extreme situation
for the nonuniform condition in measurement. As shown in
Figure 23, there are 5 sensors to collect information, and the
accuracy of every sensor is independent and random. When
a certain sensor is damaged, themeasured signal is defned as
noise. It is also signifcant to study the efect of the multi-
sensor damaged situation on the accuracy of the CNN for
the SDI.

To increase the computational efciency of the CNN in
nonuniform measuring conditions, the Latin hypercube
sampling (LHS) is applied to deal with the randomness of the
noise. Te cases of noise are listed in Table 11.

As listed in the table, SNR (15, 1) shows that the mean
value of noise is 15 based on the signal-to-noise ratio, and
the variance is 1 which refects the nonuniformity. To in-
vestigate the efect of the nonuniform noise on CNNs, the
mean value stays constant and the variance varies in all
the cases.

Taking Issue 1 as an example to show the application of
LHS, the prepared condition is listed in Table 12.Tere are 5
channels in this testing, so the number of random variable
(n) is defned as 5 and the sampling time (N) is 10. A random
integer arrangement r

j
i of 1∼10 is generated based on every

random variable Xi, and r
j
i will be rearranged from small to

big. Te rearranged samples are selected to build the CNN
framework, and the samples of three cases are listed in
Tables 12–15.

Te simulated nonuniform acceleration responses are
selected as the prediction samples which are used to identify
structural damage based on CNNs. As a result, the non-
uniform conditions in measurement have a signifcant in-
fuence on the identifed accuracy by CNNs. Te mean value
of identifed results is decreasing with the development of
the variance of nonuniform noise, but the variance of that is
increasing. Te biggest variance of the noise, which belongs
to Issue 3, leads to the smallest mean value and biggest
variance of the results identifed by CNN. In addition, Issue 1
has the smallest variance of identifed results, which means
the distributing range of the identifed result is the smallest
and the most stable of results is exhibited. Te stability of
identifed results is increasing with the development of
nonuniform characteristics of noise. Terefore, the mean
value of identifed results refects the accuracy of SDI based
on CNNs, and variance shows the stability of identifcation.
If the measuring noises present more obvious nonuniform
characteristics, the accuracy and stability of SDI based on
CNNs will deteriorate.

Several sensors settle on the structure, which are ap-
plied to capture dynamic responses, and structural health
monitoring systems contain diferent types of sensors with
diferent capturing accuracy. Missing data will cause

Table 7: Mean value and COV of structural parameters.

Structural parameters Mass density (kg/m3) Modulus
of elasticity (MPa) Damping ratio

Mean value μ 2500 3.0×104 0.02
COV δ Both 0, 0.05, 0.10, 0.15, 0.20, 0.25 and 0.30
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Figure 15: Acceleration response of structure under a pulse excitation in case 1 (a) when COV is 0.1; (b) when COV is 0.2; (c) when COV is
0.3.
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Figure 16: Continued.
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signifcant information to get lost and decrease the re-
liability of SDI, and it is an extreme situation for the
nonuniform condition in measurement. Terefore, it is
essential to investigate the efect of missing data on the SDI

based on CNN. Based on the simply supported bridge, the
multisensor damage state is simulated in experimental
testing, and the details of the cases are exhibited in Figure 8.
As an assumption, a working sensor can capture the
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Figure 16: Acceleration response of the structure under a pulse excitation in case 2 (a) when COV is 0.1; (b) when COV is 0.2; (c) when COV
is 0.3.
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Figure 17: Acceleration response of the structure under a pulse excitation in case 3 (a) when COV is 0.1; (b) when COV is 0.2; (c) when COV
is 0.3.
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responses without noise, and a damaged sensor just gets
noise. Te acceleration responses conducted by sensors in
tests are listed in Figures 24 and 25.

Te results conducted by the FEmodel and experimental
testing are, respectively, selected as training data for the
CNN model, and the IR of the SDI based on CNN is shown
in Figure 26. When one sensor is damaged, the nonuniform
characteristics are not strong. However, the corresponding
IRs stay in a range of 60∼78% for Case 2∼4 which nearly
cannot satisfy the requirement of the SDI. In addition, as the
damaged sensors settle closer to the midspan of the bridge,

the IR gets smaller. With 2-3 damaged sensors, the accu-
racies of the SDI based on CNN are further decreasing, and
their IRs are just bigger than 50%, which cannot be adopted
in the engineering application. If only one sensor is working,
the IR is smaller than 40%. Terefore, the multisensor
damaged condition, which is the extreme issue of the
nonuniform condition in measurement, has a signifcant
infuence on the SDI based on CNN.

Te accuracy of SDI is rapidly decreasing with the de-
velopment of nonuniform characteristics presented in the
capturing signals.
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Figure 18: Acceleration response of the structure under a pulse excitation in case 4 (a) when COV is 0.1; (b) when COV is 0.2; (c) when COV
is 0.3.
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Figure 19: CNN identifcation accuracy of the uncertain structure.

Table 10: Identifcation accuracy of two network models without noise infuence.

COV (%) 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Network model 1 99.95 99.60 95.25 88.90 82.43 77.93 72.55
Network model 2 99.98 99.95 97.25 90.53 83.83 78.20 72.68
Diference 2-1 0.03 0.04 2.00 1.63 1.40 0.27 0.13
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Figure 20: Identifcation accuracy between network model 1 and 2 under diferent SNRs.
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①No noise ②Noise of lower
intensity

④Noise of
moderate intensity

⑥Noise of
higher intensity

⑤Noise of high
intensity noise

③Noise of low
intensity

Figure 21: Efect of uniform noise on recognized information.

Figure 22: Efect of nonuniform noise on recognized information.

①The sensors are not
completely damaged

②Sensor 1 is
completely damaged

④Sensor 1 and 2 are
completely damaged

⑥Sensor 2, 3 and 4 are
completely damaged

⑤Sensor 3 and 4 are
completely damaged

③Sensor 3 is
completely damaged

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sensor 5

Sensor 1
Sensor 2
Sensor 3
Sensor 4
Sensor 5

Figure 23: Multisensors damaged condition in the measurement.
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Table 11: Case of adding noise.

Serial number
Normal distribution of
noise (mean, variance)

N (μ, σ)
Issue 1 N (15, 1.0)
Issue 2 N (15, 2.5)
Issue 3 N (15, 5.0)

Table 12: Calculation process of LHS with Issue 1.

N PDF Pj X
j

i � f(Pj, μ, σ) r
j
1 r

j
2 r

j
3 r

j
4 r

j
5

1 0.0∼0.1 0.05 X1
i � (0.05, 15, 1) � 13.3551 1 9 4 7 7

2 0.1∼0.2 0.15 X2
i � (0.15, 15, 1) � 13.9636 6 6 8 6 8

3 0.2∼0.3 0.25 X3
i � (0.25, 15, 1) � 14.3255 7 5 9 1 4

4 0.3∼0.4 0.35 X4
i � (0.35, 15, 1) � 14.6147 5 2 5 10 3

5 0.4∼0.5 0.45 X5
i � (0.45, 15, 1) � 14.8743 9 10 6 9 9

6 0.5∼0.6 0.55 X6
i � (0.55, 15, 1) � 15.1257 4 8 1 4 2

7 0.6∼0.7 0.65 X7
i � (0.65, 15, 1) � 15.3853 10 4 2 2 5

8 0.7∼0.8 0.75 X8
i � (0.75, 15, 1) � 15.6745 8 3 7 5 10

9 0.8∼0.9 0.85 X9
i � (0.85, 15, 1) � 16.0364 3 7 3 3 1

10 0.9∼1.0 0.95 X10
i � (0.95, 15, 1) � 16.6449 2 1 10 8 6

Table 13: Value of LHS with Issue 1.

Sample number SNR in channel
1

SNR in channel
2

SNR in channel
3

SNR in channel
4

SNR in channel
5

Sample 1-1 13.3551 16.6449 15.1257 14.3255 16.0364
Sample 1-2 16.6449 14.6147 15.3853 15.3853 15.1257
Sample 1-3 16.0364 15.6745 16.0364 16.0364 14.6147
Sample 1-4 15.1257 15.3853 13.3551 15.1257 14.3255
Sample 1-5 14.6147 14.3255 14.6147 15.6745 15.3853
Sample 1-6 13.9636 13.9636 14.8743 13.9636 16.6449
Sample 1-7 14.3255 16.0364 15.6745 13.3551 13.3551
Sample 1-8 15.6745 15.1257 13.9636 16.6449 13.9636
Sample 1-9 14.8743 13.3551 14.3255 14.8743 14.8743
Sample 1-10 15.3853 14.8743 16.6449 14.6147 15.6745

Table 14: Value of LHS with Issue 2.

Sample number SNR in channel
1

SNR in channel
2

SNR in channel
3

SNR in channel
4

SNR in channel
5

Sample 2-1 13.3138 10.8879 15.3142 13.3138 15.3142
Sample 2-2 12.4089 19.1121 12.4089 19.1121 19.1121
Sample 2-3 15.9633 14.0367 14.0367 10.8879 14.0367
Sample 2-4 17.5911 14.6858 17.5911 15.3142 14.6858
Sample 2-5 19.1121 12.4089 13.3138 16.6862 13.3138
Sample 2-6 14.0367 15.3142 16.6862 17.5911 10.8879
Sample 2-7 16.6862 13.3138 15.9633 12.4089 17.5911
Sample 2-8 15.3142 15.9633 19.1121 14.6858 16.6862
Sample 2-9 10.8879 16.6862 10.8879 14.0367 15.9633
Sample 2-10 14.6858 17.5911 14.6858 15.9633 12.4089

Structural Control and Health Monitoring 21



Table 15: Value of LHS with noise Issue 3.

Sample number SNR in channel
1

SNR in channel
2

SNR in channel
3

SNR in channel
4

SNR in channel
5

Sample 3-1 15.6283 9.8178 14.3717 18.3724 11.6276
Sample 3-2 16.9266 23.2243 6.7757 6.7757 9.8178
Sample 3-3 9.8178 18.3724 20.1822 14.3717 20.1822
Sample 3-4 18.3724 13.0734 23.2243 11.6276 23.2243
Sample 3-5 14.3717 15.6283 15.6283 13.0734 6.7757
Sample 3-6 6.7757 6.7757 18.3724 20.1822 14.3717
Sample 3-7 11.6276 11.6276 16.9266 16.9266 13.0734
Sample 3-8 13.0734 16.9266 11.6276 15.6283 15.6283
Sample 3-9 20.1822 14.3717 13.0734 23.2243 16.9266
Sample 3-10 23.2243 20.1822 9.8178 9.8178 18.3724

No.1
Sensor

No.2
Sensor

No.3
Sensor

No.4
Sensor

No.5
Sensor

Case 1
Case 2
Case 3
Case 4
Case 5
Case 6
Case 7
Case 8
Case 9

Indicates that the sensor is damaged
Indicates that the sensor is not damaged

Figure 24: Schematic of sensor to simulate nonuniform.
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Figure 25: Continued.
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Figure 25: Acceleration response signals collected by sensors under various cases. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. (e) Case 5.
(f ) Case 6. (g) Case 7. (h) Case 8. (i) Case 9.
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Figure 26: Comparison of CNN identifcation accuracy under diferent cases.
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6. Conclusion

Tis study proposes a novel CNN architecture for SDI and
investigates the accuracy and efectiveness by fnite element
analysis and experimental testing. Te efects of the un-
avoidable uncertainties and nonuniform characteristics in
measurement condition on the identifcation accuracy of the
CNNs for SDI are studied.Temain details of the conclusion
are listed as follows.

(1) Te proposed architecture of CNN for SDI consists
of 12 layers, including 1 input layer, 3 convolution
layers, 3 pooling layers, 3 full connection layers, 1
Softmax layer, and 1 output layer, whose identif-
cation accuracy is verifed by comparison with the
numerical and experimental data.

(2) Te structure uncertainties have a signifcant infu-
ence on the identifcation accuracy of the CNN, and
the IRs are decreasing with the increasing COV of
elastic modulus and mass. If the captured signals by
sensors consider the measuring noise, the training
data for the CNN should also adopt the acceleration
responses with structural uncertainties.

(3) Te strong nonuniform characteristics in measure-
ment condition make the identifcation accuracy of
CNN for SDI not satisfy the computational re-
quirement, especially for the multisensors damaged
states.Terefore, the data imputation method should
be studied to handle the missing data situation in the
future work.
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