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In this study, an autonomous computer vision-based method is presented to quantitatively detect loose bolts. Te method
integrates keypoint detection via YOLOv5 and PIPNet, distortion correction via perspective transformation, and rotation angles
quantifcation via geometric imaging. Distortion correction is incorporated to address skewed angles and improve the accuracy of
rotation angles. A representative experiment on bolted connection of steel structures is conducted to evaluate the presented
approach.Te efects of the focal distance, skewed angle, and lighting conditions on the detection and quantifcation performance
are evaluated by varying the imaging conditions. Te results demonstrate that the presented approach automatically detects all
bolts and their corners, irrespective of the imaging conditions. No false detection occurs, and the quantifcation errors are lower
than 1°. Te proposed method can be deployed for automatic detection of loose bolts and quantifcation of rotation angles in
bolted connections under diferent imaging conditions.

1. Introduction

Bolted connections are widely used in engineering structures
due to the advantages of easy construction [1]. However, the
bolts are prone to loosening under operation and envi-
ronmental efects such as dynamic loads and extreme
temperature. Loosening of bolts compromises the load ca-
pacity of the connections and may lead to catastrophic
consequences such as structural collapse. Te traditional
approaches to detect loosening use torque wrench and
percussion, which however are costly and labor-intensive.
Te approaches also involve delayed detection and have
limited reliability as the detection results are dependent on
the experience of the inspector. Moreover, the safety of
inspectors is another concern in the cases of bridges and
transmission towers. It is signifcant to develop more ef-
fective and efcient approaches to assess the condition of
bolted connections and detect loosening timely.

Various sensing technologies have been proposed to
detect loosening of bolts. Te previous eforts mainly fo-
cused on the development of advanced sensors and data

analysis techniques such as mechanistic-data fusion [2–4].
Various types of sensors, such as piezoelectric sensors [5],
strain gauges [6], and fber optic sensors [7], and acoustic
collector [8] were deployed on structures to assess bolting
forces [9]. Te sensor data often involve substantial non-
linearity and uncertainties, making it difcult to accurately
assess loose bolts. Advanced data analysis approaches were
proposed to handle the complex sensor data [10–12]. Te
advances in sensors and data analysis showed successes in
prior research, but they require sophisticated sensors and
sensing instruments to collect unique sensor data. Te de-
ployment of sensors can be inconvenient in many scenarios.

Machine learning-based computer vision methods are
attracting increasing attention [13–33]. Some early research
classifed loose and tight bolts using support vector ma-
chines combined with the Hough transform and the Canny
edge detection [13] or the Viola–Jones detection [14].
However, it was difcult to use those approaches to detect
bolts from images with complex backgrounds. Improved
detection performance was achieved by convolutional neural
networks (CNNs) such as region-based CNN (RCNN) [15],

Hindawi
Structural Control and Health Monitoring
Volume 2023, Article ID 8817058, 17 pages
https://doi.org/10.1155/2023/8817058

https://orcid.org/0009-0005-4289-3809
https://orcid.org/0000-0002-9923-5066
https://orcid.org/0009-0005-6965-3354
https://orcid.org/0000-0002-7565-0548
https://orcid.org/0000-0002-2766-2077
mailto:ccui@swjtu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/8817058


fast-RCNN [16], faster-RCNN [17], mask RCNN [18], you
only look once (YOLO) [19], and single shot multibox
detector (SSD) [20]. Tose CNNs were trained using large
datasets to classify bolts into loose and tight for qualitative
assessment of bolts [21–23].

To enable quantitative assessment, the rotation angles of
loose bolts were calculated [24, 26]. Perspective trans-
formation was applied to correct the geometric distortion of
the images of bolt connections [26]. Te rotation angles of
loose bolts were determined by quantifying the rotation
angles of the edge lines of the bolts, which were detected by
using the Hough transform line detection algorithm [27, 28].
Images of bolts were synthesized to enlarge the dataset size
by supplementing the real photos of bolts [29].Te efciency
of these approaches was improved by using efcient algo-
rithms [30]. However, it was difcult to completely detect
the edge lines of bolts. To tackle this problem, the YOLO and
an optical fow tracking algorithm were integrated to detect
the feature points of bolts and quantify the rotation angles of
loose bolts [31], but this approach requires a fxed image
acquisition device such as a fxed camera. In recent papers
[32, 33], a cascaded pyramid network and a keypoint-RCNN
were separately used to detect keypoints on exposed screws
without having to fx the camera, but these papers focused
on a single bolt and the results were subjected to errors due
to distortion of photos.

Te goal of this research is to develop an approach to
detect loose bolts and quantify their rotation angles for
connections with many bolts without having to use a fxed
image acquisition device. To this end, this study presents
a comprehensive framework that integrates the detection
of corner points as keypoints for all bolts in a bolted
connection, the correction of distortion, and the calcu-
lation of rotation angles of loose bolts. Tere are three
main challenges of detecting the corner points of many
bolts: (1) some corners are blur in images because the
geometry of bolts involves varying focal distances, (2) it is
difcult to accurately capture all corners of bolts from
connections with many bolts because some corners are
partially hidden, and (3) the images involve many vari-
ables such as the varying background condition of images.
To address these challenges, this research adopted a top-
down keypoint detection approach integrating YOLOv5
[34] to detect and locate bolts and a pixel-in-pixel net
(PIPNet) [35] to detect the corner points of bolts. Te
reason for using PIPNet is its high detection accuracy and
fast detection speed compared to HRNet and Hour-
glassNet and other classical networks [35].

Tis research has three novelties: (1) the proposed ap-
proach does not require fxed cameras and is applicable to
multiple bolts in connections rather than single bolts, (2)
a top-down keypoint detection approach is incorporated
into detection of the corners of bolts to achieve high ac-
curacy, and (3) distortion correction is incorporated into the
presented framework to improve the accuracy and enhance
the robustness of the skewed angles of images. Tis research
signifcantly advances the capability of automatically
detecting loose bolts and quantifying the rotation angles of
loose bolts for civil engineering structures.

2. Methods

2.1. Overview. Figure 1 shows the proposed framework that
consists of three main steps which are as follows:

(1) Detection of the corners through integration of
YOLOv5 and PIPNet. Te center of the ellipse ftted
by the corner points is used as the center of each bolt.

(2) Correction of distortion through the homography
matrix of an arbitrary view. Tis is performed for
both the initial and the loose states, and the corner
points in the initial state are set as baseline to
evaluate the rotation angles in the loose state.

(3) Quantifcation of the rotation angles of loose bolts.

2.2. Detection of Corner Points. A top-down approach was
adopted to detect the corner points of bolts in two steps.
First, YOLOv5 is utilized to detect bolts from the original
images. Ten, PIPNet is utilized to detect the corner points
of the bolts with high precision.Tese two steps are executed
sequentially to avoid missing any bolts while achieving high
precision in locating the corner points.

2.2.1. Detection of Bolts Using YOLOv5. Figure 2 shows the
architecture of the bolt detector based on YOLOv5 [36]. Te
backbone is responsible for extracting contextual in-
formation from the input image, followed by the neck that
aggregates as much information as possible, and fnally the
head that outputs the detection result.

In the backbone, the DarkNet53 [37] uses CSP to pre-
serve as much information as possible as it moves through
the network. A focus is used before the DarkNet53 to im-
prove efciency by reducing computation. A spatial pyramid
pooling (SPP) [38] is used after the DarkNet53 to improve
the diversity of information scales. Te neck is a path ag-
gregation network [39] implemented by upsampling (UP)
and concatenating (Concat) to prevent small-object in-
formation from being lost when transferred to higher levels
of abstraction.

In the head, dense prediction is performed by taking in
aggregated feature maps from the neck. Te dimensions are
3× 80× 80× 6, 3× 40× 40× 6, and 3× 20× 20× 6. Each in-
put image has 640× 640 pixels and is divided into 80× 80,
40× 40, and 20× 20 grid cells. Each grid cell has three anchor
boxes, and each anchor box has 6 parameters to be predicted,
which are the horizontal and the vertical coordinates, the
height of the box, the width of the box, the confdence score,
and the category distribution. Finally, nonmaximum sup-
pression (NMS) [40] is performed to flter poorly predicted
boxes and only retain the boxes with high response.

Typically, the loss function of YOLOv5 (Lall) consists of
three components, which are the BBox (bounding box) loss
(LCIoU), the object confdence loss (Lobj), and the classif-
cation loss (Lcls). In this study, there is only one class, so Lcls
is set at zero. Ten, Lall is equal to LCIoU plus Lobj. LCIoU
considers the overlap area, the central point distance, and the
aspect ratio of BBoxes [41]. Te focal loss is adopted for Lobj
to deal with the unbalanced sample classifcation [42].
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Four YOLOv5, namely YOLOv5s, YOLOv5m, YOLOv5l,
and YOLOv5x, were investigated to optimize the detection
performance [34]. In the four YOLOv5 models, the depth of
each CSP is progressively increased, thus increasing the
feature extraction and feature fusion capabilities. However,
because there is only one class to be detected, the appropriate
depth is determined to achieve both high accuracy and high
efciency.

Te performance metrics adopted to evaluate the
YOLOv5 models were precision (p), recall (r), and dice
coefcient (F1), which are defned as follows [43]:

p �
TP

TP + FP
, (1a)

r �
TP

TP + FN
, (1b)

F1 �
2pr

p + r
�

2TP
2TP + FP + FN

, (1c)

where TP, FP, and FN are the true positive, false positive,
false negative, respectively. T (true) or F (false) means the
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Figure 1: Overview of the multibolt loosening detection method.
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YOLOv5 gives a correct or incorrect detection. P (positive)
or N (negative) means the actual result is or is not a bolt.
Terefore, pmeans the proportion of correctly detected bolts
to the total bolts, and r means the proportion of correctly
detected bolts to the total detected bolts. F1 is the summed
average of the p and r.

2.2.2. Detection of Corners Using PIPNet. Figure 3 shows the
architecture of the PIPNet. In the backbone, ResNet [43]
pretrained on ImageNet is used to extract information from
a single bolt. Te default input of the ResNet is 256× 256
pixels, so all images of single bolts are resized to 256× 256
pixels. Te default stride of the ResNet is 32. To get PIPNets
with diferent strides, deconvolutional and convolutional
layers are added at the end of the ResNet [44]. Four strides
(S), which are 16, 32, 64, and 128, are applied to generate
diferent dimensions (G) of the feature map. In the head,
convolutional layers are used to predict the corner points,
which are the most likely grids on the heatmap for each
point, ofset within each grid on the x-axis and y-axis relative
to the top-left corner of the grid. Te ofsets of C number of
neighbor corners are also predicted. Te outputs are a score
map (6×G×G), an ofset map (2× 6×G×G), and
a neighbor map (2× 6×C×G×G), where “6” is the number
of corner points of a hexagonal bolt and C is the number of
neighbor corners. Each corner point has 5 neighbor corners
which have diferent distances. As the distance varies, C can
be equal to 2, 4, or 5.Te score, ofset, and neighbormaps are
independent and computed in parallel to improve efciency.

Figure 4 shows an example of the score, ofset, and
neighbor maps of an image (S� 64). Only one neighbor is
shown. Te red dot is the current corner point to be located,
and the blue dot is the neighbor corner.Te gird with the red

dot is denoted as the positive grid. In the score map, the
positive grid is 1 and the other grids are 0. In the ofset map,
the ofset distances of the red dot along the x-axis and y-axis
are 20% and 40% of the grid side length, respectively, so the
positive grid is 0.2 on the x-ofset map and 0.4 on the y-ofset
map. Te neighbor maps are determined in a similar way.
Te ofset distances of the blue dot along the x-axis and y-
axis are 180% and 40%, respectively, so the positive grid is
1.8 on the x-ofset map and 0.4 on the y-ofset map. In-
tuitively, a large S yields higher accuracy for the score maps
but also lead to more difculty for the prediction of the ofset
and neighbor map. Terefore, a moderate S gives the best
overall performance.

Te loss function of the PIPNet model is formulated as
follows:

L � LS + λLO + λLN, (2)

where LS, LO, and LN are the losses for the score maps, ofset
maps, and neighbor maps, respectively, and λ is a balancing
coefcient and set to 0.1. Te losses for the three types of
maps are defned as follows:
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where s∗ijk, o∗ijkl, and n∗ijklm denote the ground truth generated
from the location of the corner points and sijkl′, oijkl′, and nijklm′
denote the values predicted by the PIPNet.

Te PIPNet has two important hyperparameters which
are the stride S and the number of neighbors C. To tune the
hyperparameters, ResNet-18 was taken as the backbone to
train the PIPNets with diferent S and C. ResNet-50 and
ResNet-101 were used to improve the results. MobileNets
were also adopted as the backbone since they were efcient
and easy to deploy [45]. Te performance of diferent
PIPNets was evaluated by the normalized mean error
(NME):

ei �

�������������������

x
∗
i − xi
′( 
2

+ y
∗
i − yi
′( 
2



(1/6)
6
i�1di

, (4a)

NME �
1
6



6

i�1
ei, (4b)

where (x∗i , y∗i ) and (xi
′, yi
′) are the ground-truth and pre-

dicted coordinates of the corner points, respectively, di is the
distance between adjacent corner points, and ei is the
normalized error of the i-th corner point.

2.3. Distortion Correction. Projective transformation is
performed to correct the distortion caused by the skewed
angle of images in two steps, as shown in Figure 5. First, the
relative positions of all center points are matched. Second,
the coordinates of the matched points are used to calculate
the homography matrix. Te object plane, perspective plane,
and viewpoint constitute the initial perspective imaging
model. Distortion correction is performed to re-establish the
perspective imaging model and project the image onto
a reperspective plane parallel to the object plane.

2.3.1. Position Matching of Center Points. Figure 6(a) shows
the center points of all bolts.Te center points are numbered
from O1 to O16, and their arrangement indicates that the
bolts are grouped into two layers, from the outside to the
inside of the array of bolts. Te set of points closest to Oi
forms a polygonal region,Vi, called the Voronoi region ofOi,
as shown in Figure 6(b), where the red lines are the boundary
of these regions. Such a diagram is called a Voronoi diagram
[46], which divides the infnite plane into many regions,
denoted as {V1, V2, ..., V16}. When Vi is unbounded, the
corresponding Oi is judged as the boundary. In this case, the
frst layer of center points (O1 to O12) is classifed as the frst
boundary and they form a quadrilateral when they are
connected in a sequence, as indicated by the blue line in
Figure 6(b). Similarly, the Voronoi diagram of the second
layer of center points (O13 to O16) is classifed as the second

boundary, as shown in Figure 6(c). Tis process is repeated
until all Vi of the Voronoi diagram are unbounded. It should
be noted that this classifcation method is applicable to bolts
deployed in rectangular rows, which is common in civil
engineering. Te last boundary layer may be a point or
multiple points along a line.

After the classifcation, the vertices of the quadrilateral
boundaries are determined by the magnitude of the hori-
zontal and the vertical coordinates of the points. For ex-
ample, given (xo, yo) as the pixel coordinates of a point in an
image, when the value (xo+yo) is the minimum or the
maximum among all the points, the point is located at the
top left or the bottom right vertex; when the value of (xo−yo)

is the minimum or the maximum, the point is located at the
top right or the bottom left vertex.Terefore,O1,O4,O7, and
O10 are classifed as the four vertices of the frst boundary, as
depicted in Figure 6(b). Ten, the rows and the columns of
the rectangular array of the bolts, as well as the position of
each bolt can be determined.

2.3.2. Homography Matrix. Perspective transformation is
a coordinate system transformation [47], which is expressed
by equation (5), whereM is the homographymatrix, (xo, yo)

and (xo
′, yo
′) are the pixel coordinates of the center point

before and after transformation, respectively, and s is the
scale factor. Tere are eight independent elements in M,
which relate (xo, yo) to (xo

′, yo
′), as shown in equation (6). At

least four pairs of pixel coordinates before and after the
transformation are required to solve the eight elements inM.
Tis research uses the center points of all bolts to solve M.
Te optimal solutions of the eight elements are obtained
using the least square approach.
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Figure 5: Illustration of the distortion correction.
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2.4. Rotation Angle of Loose Bolts. Figure 7 illustrates the
principle of determining the rotation angle of loose bolts.
Te corner points of bolts in the tight state are the baseline to
evaluate the rotation angles in the loose state. Te rotation
angle (∆θ) is calculated as follows:

∆θ �
1
6



6

i�1
∆θi, (7)

where ∆θi(i � 1 ∼ 6) is the rotation angle of each corner
point of a bolt. Due to symmetry of the corner points, the
discriminable range of rotation angles is 0° to 60°. When the
rotation angle is greater than or equal to 60°, the method fails.
It is still feasible to use this method to detect and track ro-
tation angles in small steps, since the bolt loosening is slow.

It should be noted that the congruent relationship of the
corner points between tight and loose is essential to the rotation
angle calculation. Te corner points have similar characteristics,
but each point is distributed in a diferent orientation.Terefore,
the corner points can be clearly classifed according to their

relative position. As shown in Figure 8, OP0� [1], the vectorwith
the smallest counterclockwise angle to OP0 is noted as OP1 and
then the other vectors are noted as OP2 to OP6 along the
counterclockwise direction. When detecting the corner points,
the categories of the corner points are determined by their
relative positions. Ten, after considering the direction of ro-
tation of the loosened bolt, the matching of the congruent re-
lationship before and after loosening can be completed.

Tere are errors in the detection of the corner points,
which afect the accuracy of the rotation angle
∆θi(i � 1 ∼ 6). It is necessary to analyze the errors in the
angles and determine the threshold (T) of loose bolts.
Considering that the corner points should form a positive
hexagon, θi(i � 1 ∼ 6) should be 60°.Te value of θ is used to
evaluate the angle accuracy as follows:

θ �
1
6
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i�1
θi − 60


. (8)
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Figure 6: Process of position matching: (a) the center points, (b) classifcation of the frst layer, and (c) classifcation of the second layer.
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To simplify the procedure, T is defned by the value of θ,
as elaborated in the subsequent experimental studies.

3. Experiments and Results

3.1. Preparation and Augmentation of Datasets. Two dif-
ferent datasets were created to train the YOLOv5 and the
PIPNet models, separately. A smartphone camera of iPhone
13 was used to acquire images of bolted connections. Te
shooting angle, distance, and lighting conditions were varied
to obtain diverse photos. A total of 1,340 images were ac-
quired. Te bolts in the raw photos were manually labelled
by the red boxes for training the YOLOv5 model, as shown
in Figure 9(a).Te red boxes were enlarged by 20% and were
subsequently used to extract the subimages, as shown in
Figure 9(b). Te corner points of those subimages were
labelled by yellow dots for training the PIPNet model. Te
subimages with incomplete corner points were eliminated.
Finally, 13,000 subimages were obtained.

To enlarge the datasets, augmentation techniques such as
horizontal fipping, rotation, and blurring were applied. In
addition, mosaic (random mix of 4 images) and occlusion
(random occlusion by rectangular blocks) were applied to
the datasets for the YOLOv5 and PIPNet, respectively, as
shown in Figure 10.

Mosaic allows multiple images to be passed at the same
time to increase the variety of the image background. Oc-
clusion strengthens coherence across neighboring corner

points, which can improve the consistency of the neighbor
maps. Te generated data were combined with the raw data
to form the total datasets for the YOLOv5 and the PIPNet
models. Each of the two datasets was randomly divided into
a training set (80%) and a testing set (20%).

3.2. Training of the YOLOv5. Te YOLOv5 models were
trained through transfer learning. Te model parameters
obtained from pretraining by MS COCO (test-dev 2017)
dataset were incorporated to make the YOLOv5 converge
quickly. Te related training parameters included the
epochs, batch size, learning rate, and momentum, which
were set at 100, 16, 0.01, and 0.937, respectively. Te Cosine
annealing scheduler was used to adjust the learning rate
during the training process. Te weight decay and the
warmup epochs were set at 0.0005 and 3, respectively. Te
training process were performed on a desktop computer
(GPU: RTX3090 and 24G; CPU: Intel Core i9-10850K,
3.7GHz, RAM 32G).

Figure 11 shows the evolution of the loss function of
diferent YOLOv5 models, indicating that the model con-
verged after 80 epochs. Table 1 shows the parameter size,
speed, p, r, and F1 of diferent YOLOv5 models based on the
testing set. As the parameter size increases, the model slows
down but F1 do not show a signifcant diference. To achieve
good results in terms of both accuracy and speed, the
YOLOv5l model was selected for the bolt detection.

3.3. Training andOptimization of the PIPNet. Te number of
training epochs was 80. Te learning rate was 0.0001. Te
equipment used for training PIPNet is the same as that used
for training YOLOv5. Figure 12(a) shows the evolution of
the loss function of some PIPNets (S� 16, 32, 64, and 128;
C� 5), indicating that these models converged after 40
epochs. Tese models were evaluated by the NME on the
testing set. Figure 12(b) shows the NME of diferent PIP-
Nets, which indicate that the NME achieves a minimum of
3.8% when S� 32 and C� 4.

Te combination of the two hyperparameters (S� 32 and
C� 4) was used in the subsequent PIPNets. Table 2 shows the
parameter size, speed, and NME of diferent PIPNets. As the
backbone grows larger, the trend of decreasing NME is less
signifcant, but the speed decreases rapidly. To achieve good
results in terms of both accuracy and speed, the PIPNet with
ResNet-50 as backbone was selected for the corner point
detection.

Figure 13 shows representative results of the original and
occluded images, where the yellow dots represent the ground
truth and the red dots are predicted results. Table 3 shows
the specifc error data for each bolt. Te random occlusion
has adverse efects on the predicted results, but the results
are acceptable. Overall, the PIPNet has high adequate ac-
curacy and robustness.

To obtain the optimal estimate of the center point po-
sition, random sample consensus algorithm (RANSAC) [48]
is used to fnd the possible outliers in six corner points.
Ideally, the six corner points are on an ellipse, but this is

P1

P2

P3

P4

P5

P6

P0

O

Figure 8: Classifcation of the corner points.
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Figure 7: Illustration of the rotation angles of loose bolts.
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(a) (b)

Figure 9: Illustration of the labelled data for (a) YOLOv5 and (b) PIPNet.

(a) (b)

Figure 10: Data augmentation: (a) mosaic for the YOLOv5 and (b) occlusion for the PIPNet.
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Figure 11: Loss functions of diferent YOLOv5 models.
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usually not satisfed due to corner point detection errors.
RANSAC can take a random sample of fve points to solve
the elliptic equation based on algebraic relations. Te dis-
tance between another point and that ellipse can then be
calculated. Te distances of each corner point from the
ellipse solved by the other corner points can be given by
repeating the process. Te threshold for determining
a corner point as an outlier is simply computed as three
standard deviation of the six distances. When there are no
outliers, the center of the ellipse with six corner points ftted
by least squares is the center point. When there is one
outlier, the center of the ellipse solved by the other fve
corner points is the center point. Actually, for the testing set
of 2600 subimages, only 75 subimages had two outliers and
no subimages had more than two. Terefore, when the
number of outliers is greater than one, it is simple and
feasible to ft the ellipse using the six corner points. Figure 14

shows representative results with multiple bolts whose
corner points are detected and whose center point are ftted
by those corner points.

3.4. Results of Distortion Correction. Figure 15(a) shows the
results of position matching for the center points of bolts.
Te row and column numbers of the center points are
denoted by (x, y), which indicate the coordinates of the
center points. Figure 15(b) shows the images after per-
spective transportation. Figure 15(c) shows the angle errors
(θ) of all bolts in the connection.

In general, most of the θ were within 1°, except for some
bolts exceeding 1°, and the maximum value was only 1.6°.
Te abovementioned value indicated high accuracy of the
corner point detection and perspective transformation. T
was defned as the maximum value of θ and 1°.

Table 1: Parameter size, FPS, p, r, and F1 of diferent YOLOv5 models.

Model #Param. (M) FPS (GPU) p r F1
YOLOv5s 7.5 476 0.989 0.991 0.990
YOLOv5m 21.8 333 0.993 0.992 0.993
YOLOv5l 47.8 256 0.996 0.993 0.994
YOLOv5x 89.0 164 0.993 0.998 0.995
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Figure 12: Training of the PIPNets: (a) the loss function and (b) the NME.

Table 2: Parameter size, GFLOPs, and FPS of PIPNets.

Backbone #Param. (M) FPS (GPU) NME (%)
MobileNetV2 4.2 121 4.1
MobileNetV3 4.5 80 3.9
ResNet-18 12.0 200 3.8
ResNet-50 26.7 99 3.4
ResNet-101 45.7 56 3.3
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In addition, the homography matrix calculation method
requires the center points to be on the same plane. If the bolt
is loose, the plane where the corner points are located
theoretically is not on the same plane as before. To analyze

this efect, images before and after bolt loosening under the
same shooting conditions were used to calculate the
homography matrix. Figure 16 shows the results of the
corner point detection and homography matrix solution.

Table 3: Corner point detection error of Figure 13.

Points number
Original images Occluded images

(a) (b) (c) (d) (a) (b) (c) (d)
e1 1.05 1.06 1.22 1.85 0.87 0.80 1.47 2.21
e2 0.80 1.68 1.42 1.03 0.39 2.74 2.00 1.87
e3 1.84 1.28 3.85 1.15 1.20 1.16 2.83 3.19
e4 1.12 1.28 3.00 0.87 1.88 0.78 2.78 1.06
e5 0.39 0.39 6.92 0.59 3.82 0.73 7.57 0.97
e6 1.66 0.68 1.75 1.33 4.42 0.18 2.03 1.53
NME 1.14 1.06 3.03 1.14 2.10 1.06 3.11 1.80
Unit: %.

(a) (b)

(c) (d)

Figure 13: Prediction results of the original and occluded images.

Figure 14: Results of corner point detection and center point ftting for all bolts in the connections.
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Te bolt loosening has minimal efect on the homography
matrix calculation. Terefore, the efect of this factor on the
angle calculation will not be considered.

3.5. Validation. Detection of loose bolts was performed for
a bolted connection with many bolts under diferent con-
ditions. A bolted connection with rectangular arrangement
of bolts was used, as shown in Figure 17. First, all the bolts
were tight, and an image of the connection was captured

using a camera. Te tight state is denoted by I0. Ten, three
bolts were loosened using a torque wrench. Te rotation
angles were 10°, 25°, and 35°, respectively. Four images of the
connection were captured using the same camera under
diferent conditions, denoted by I1 and I4. Specifcally, I1
represents the loose state, and the other conditions were the
same as those of I0; I2 had a distance of 50 cm, which is twice
that of I0; I3 had a skewed angle of 30° in relation to the angle
of zero in I0 to I2; and I4 had dark light while the other
conditions were the same as those of I0.

(a)
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Figure 15: Automatic distortion correction: (a) position matching, (b) perspective transformation, and (c) θ of the bolts (unit: degree).
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Figure 16: Corner point detection and homography matrix solving under the same image shooting conditions for (a) tight and (b) loose.

(a) (b) (c) (d) (e)

Figure 17: Images acquisition under diferent shooting conditions: (a) I0: tight (distance � 25 cm); (b) I1: loose (distance � 25 cm);
(c) I2: loose (distance � 50 cm); (d) I3: loose (distance � 25 cm and angle � 30 degree); (e) I4: loose (distance � 25 cm, dark).
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Figure 18: Continued.
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Figure 18: Detection results (unit of angle errors in degree): (a) detection of bolts and corner points, (b) θ in I0, (c) θ in I1, (d) θ in I2, (e) θ in
I3, and (f) θ in I4.
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Figure 19: Detection results of rotation angles of bolts: (a) I1, (b) I2, (c) I3, and (d) I4.

Table 4: Result of rotation angle quantifcation.

Bolt
number

I1 I2 I3 I4
∆θ T Error ∆θ T Error ∆θ T Error ∆θ T Error

[0, 0] 0.6 1.0 0.7 1.0 0.9 1.0 0.6 1.0
[0, 1] 0.4 1.0 0.5 1.0 0.5 1.0 0.7 1.0
[0, 2] 0.6 1.0 0.5 1.0 0.7 1.0 0.6 1.0
[0, 3] 0.5 1.0 0.5 1.0 0.4 1.0 0.4 1.0
[0, 4] 0.2 1.0 0.3 1.0 0.4 1.0 0.7 1.0
[1, 0] 0.4 1.0 0.5 1.0 0.4 1.0 0.5 1.0
[1, 1] 35.2 1.0 0.2 35.0 1.0 0.0 34.9 1.0 −0.1 34.8 1.0 −0.2
[1, 2] 0.2 1.0 0.1 1.0 0.4 1.0 0.4 1.0
[1, 3] 10.2 1.2 0.2 10.3 1.1 0.3 9.8 1.0 −0.2 10.1 1.0 0.1
[1, 4] 0.4 1.0 0.4 1.0 0.8 1.0 0.4 1.0
[2, 0] 0.3 1.0 0.5 1.0 0.8 1.1 0.3 1.0
[2, 1] 0.4 1.0 0.4 1.0 0.5 1.0 0.4 1.0
[2, 2] 25.0 1.0 0.0 25.1 1.0 0.1 24.8 1.0 −0.2 25.4 1.0 0.4
[2, 3] 0.3 1.0 0.4 1.0 0.6 1.0 0.4 1.0
[2, 4] 0.1 1.0 0.4 1.0 0.4 1.0 0.4 1.0
[3, 0] 0.5 1.0 0.4 1.0 1.0 1.7 0.6 1.1
[3, 1] 0.3 1.0 0.3 1.0 0.4 1.0 0.6 1.0
[3, 2] 0.5 1.0 0.5 1.0 0.7 1.0 0.6 1.0
[3, 3] 0.3 1.0 0.3 1.0 0.3 1.0 0.5 1.0
[3, 4] 0.2 1.0 0.5 1.0 0.6 1.0 0.4 1.1
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Figure 18 shows the detection results for I0 – I4. Te
corner points of each bolt under diferent conditions were
detected by the YOLOv5 and the PIPNet, and the angles θ of
the bolts were determined after distortion correction. θ in I3
was 1.7° due to the skewed angle which caused occlusion of
corner points.

Figure 19 shows the rotation angles (∆θ), which are
compared with T to judge whether a bolt is tight or loose.
Table 4 shows the comparison of ∆θ and T for all bolts. Most
Twere 1°, with very few exceeding 1° and a maximum value
of 1.7°, indicating a lower limit of 1° for the detectable ro-
tation angle. Most ∆θ of the tight bolts were less than 1°,
except for one bolt in I3 reached 1.0°. Tey were all smaller
than T, which means there is no false detection. For the loose
bolts, whose rotation angles were 10°, 25°, and 35°, re-
spectively, the errors of the ∆θ were lower than 1°. Overall,
the proposed method can detect multiple loose bolts in
bolted connections under diferent imaging conditions.

4. Conclusions

Tis study presents an approach to detect loose bolts and
quantitatively determine the rotation angles of the loose
bolts based on advanced computer vision techniques. Te
presented approach integrates the capabilities of keypoint
detection, distortion correction, and rotation angle quan-
tifcation. Based on the abovementioned investigations, the
following conclusions are drawn:

(i) Te presented approach is able to detect multiple
loose bolts from the connections with many bolts.
Te YOLOv5 model is able to detect bolts, and the
PIPNet model is able to detect the corner points of
the bolts under diferent imaging conditions with
varying skewed angles and lighting conditions.

(ii) Four YOLOv5 versions and diferent PIPNets were
investigated to get better detection performance.
Te YOLOv5l model and the PIPNet with ResNet-
50 as backbone were selected for the keypoint de-
tection. Teir detection speeds can reach 256 FPS
and 99 FPS, respectively, while the dice coefcient of
the YOLOv5l is 0.994, and the normalized mean
error of the PIPNet is 3.4%.

(iii) Te presented approach is able to quantify the
rotation angles of loose bolts. In most cases, the
lower limit of the detectable rotation angles is up to
1°. Tere is no false detection under diferent im-
aging conditions, and the errors of the rotation
angles were lower than 1°.

Based on the established capabilities of loose bolts de-
tection and rotation angles quantifcation, there are three
potential directions for further research in the future as
follows:

(i) In the process of creating the PIPNet model dataset,
the corner points were manually labelled. However,
the accuracy of the labelling process is difcult to
guarantee. In the future, advanced digital image
processing algorithms will be used to assist the

annotation process to reduce human annotation
errors.

(ii) Te accuracy of corner point detection can be af-
fected by changes in image shooting conditions. To
improve the accuracy, it is necessary to add sub-
images with diferent shooting conditions to the
dataset. Generating subimages using generative
adversarial networks [49, 50] will be considered to
expand the dataset diversity.

(iii) With the innovation and development of computer
vision, the advanced keypoint detection method can
be applied to improve the accuracy of corner point
detection. Tis makes it possible to reduce the
detectable rotation angle to less than 1°.
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