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According to the International Union of Railways, railway networks count more than one million kilometers of tracks worldwide,
a number that is to rise further as the goal is to promote rail transportation as a sustainable means to face the challenge of increased
mobility. However, such a vast expansion further necessitates efcient and reliable infrastructure monitoring schemes able to
guarantee the quality and safety of rail transportation. Traditional monitoring approaches, relying on visual inspection and
portable measuring devices, cannot rise to the task as they do not allow for continuous inspection of extended portions of rail
infrastructure. Terefore, mobile monitoring methodologies based on dedicated diagnostic vehicles have emerged as an al-
ternative. Despite revolutionizing traditional monitoring methods, such vehicles are usually expensive and can only operate under
the suspension of regular rail service. In this work, we propose an alternative approach for mobile sensing of railway infrastructure
based on on-board monitoring data collected from low-cost vibration sensors, e.g., accelerometers, which can be mounted on in-
service trains. Specifcally, we focus on identifying the roughness profle of the tracks and propose a fusion of reduced-order
vehicle models with a Bayesian inference approach for joint input-state estimation. To enhance the inference, we opt for a prior
updating of the vehicle model parameters on the basis of an unscented Kalman flter and available measurements from a di-
agnostic vehicle.Te key contributions of this work are (i) the consideration of the dynamic interaction between trains and tracks,
which is usually ignored in rail roughness estimation, (ii) the adoption of reduced train vehicle models that decrease the
computational efort of the identifcation task, (iii) the updating of the vehicle parameters to account for inconsistencies in the
model used, and (iv) the application of the proposed methodology to actual acceleration measurements collected from a di-
agnostic vehicle of the Swiss Federal Railways network.

1. Introduction

To guarantee the quality and safety of rail transportation,
monitoring and assessing the condition of rail infrastructure
is imperative. Focusing on the track system, continuous
monitoring can prohibit the development of faults at an
early stage, alleviating damage to rail and vehicle compo-
nents, rolling noise, and passenger discomfort due to

excessive vibrations, and ensuring rail transport safety. Such
monitoring traditionally relies on visual inspection or
nondestructive evaluation techniques that employ portable
measuring devices, such as hand-held trolleys (Figure 1(a)),
that perform ultrasonic inspection and eddy-current tests, or
gauges that measure the geometry of tracks [1]. Despite
refecting a high degree of fdelity, these techniques entail
high costs and efort, while they cannot cover extended
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portions of rail infrastructure on a frequent basis. As a result,
mobile sensing approaches have been explored as an
alternative [4].

Recently used mobile sensing solutions comprise track
recording vehicles (TRVs) equipped with optical and inertial
sensors, such as laser scanners and high-speed cameras,
collecting geometric data by periodically traveling on specifc
sections of a railway network. Such vehicles gather in-
formation about the track geometry along the longitudinal
and alignment levels, track twists, and track gradients [5].Te
gezogenes Diagnosefahrzeug (gDfZ) vehicle of the Swiss
Federal Railways (SBB) comprises such a recording vehicle
(Figure 1(b)) [2, 6]. Te gDfZ uses laser scanners to assess rail
roughness and employs acceleration sensors placed at dif-
ferent locations of the vehicle to capture vibration acceleration
data [7]. While such diagnostic vehicles provide valuable
insights into track properties, including roughness and iso-
lated defects, and allow for a more dense coverage of the
railway network compared to traditional monitoring ap-
proaches, they come with some drawbacks. Tey typically
operate at lower speeds than regular trains, especially high-
speed trains, to ensure accurate scanning of the roughness
profle [8]. Terefore, they can only operate while regular rail
service is suspended, hindering the continuous supply of data
regarding the condition of tracks. Moreover, these diagnostic
vehicles are typically costly due to their advanced sensor
equipment, such as laser proflometers, and require frequent
maintenance and updates of their measuring systems [8].

A more recent mobile sensing direction involves ftting in-
service trains with simple and low-cost sensing systems, most
commonly micro-electromechanical system (MEMS) acceler-
ation sensors [3]. Tis approach enables the continuous
gathering of data from railway tracks in a cost-efectivemanner.
Tis enhances track monitoring over time, allowing tracking
potential degradation and planning scheduled maintenance.
SBB has deployed solutions in this direction, with the roll-out of
the ICN passenger train (Figure 1(c)) [3], which is equipped
with accelerometers in various locations and a pair of ten-
siometric wheels to measure contact forces [4]. Te objective is
to create a comprehensive monitoring platform by integrating
the high-quality, diverse data collected by the dedicated gDfZ
diagnostic vehicle with the extensive vibration data collected by
the ICN passenger train. Te ICN train regularly traverses
diferent parts of the SBB network, ofering an abundance of
data thatfacilitates continuous track monitoring.

Likely, the most straightforward method to determine
rail roughness profles based on vibration data is yielded via
double integration of acceleration measurements from
diferent vehicle parts [9, 10]. However, integrating the
measured signals often leads to low accuracy due to in-
tegration errors relating to noise content and associated
drifts at low frequencies. In alleviating this issue, diferent
signal fltering techniques have alternatively been used to
infer roughness profles or detect and assess defects in track
systems. Lee et al. [11] used axle box and bogie vibration
acceleration data and used a mixed fltering approach, in-
cluding Kalman, bandpass, and compensation flters, to
estimate the underlying rail roughness profle. A diferent
approach, proposed by O’Brien et al. [12], estimated

roughness profles based on bogie vertical accelerations and
angular velocities using a cross-entropy optimization
technique. Te common element of these identifcation
approaches is that they neglect the interaction between
vehicles and tracks, i.e., they ignore the physics of the system
while solving the inverse problem.

Recent studies have moved toward the incorporation of
the dynamic interaction between rail vehicles and tracks into
the identifcation task. Dertimanis et al. [13] simulated
a simple 6 degree-of-freedom (DOF) vehicle running on
a specifed roughness profle and applied a Bayesian in-
ference approach, i.e., a dual Kalman flter (DKF) [14], to
recover the employed roughness profle based on simulated
acceleration data from the vehicle’s front wheel. Tis work
forms an initiating study towards incorporating coupled
dynamics in roughness identifcation approaches. However,
it relies on a simple vehicle-track confguration that cannot
demonstrate the method’s applicability to real train-track
systems. Later, Li et al. [15] used an adaptive Kalman flter to
estimate the roughness of rails using a three-dimensional
(3D) vehicle model. Tis method demonstrated very good
results for the identifcation of rail roughness; however, the
acceleration and velocity of all DOFs of the system’s body
and bogies were used in the analysis to ensure sufcient
quality in the identifcation. In addition, the proposed
method was verifed only in simulated data derived from the
same system as the one that was used for the inverse analysis
[15]; this procedure, sometimes referred to as an “inverse
crime,” [16] somewhat facilitates the inference task. Te
approaches of Dertimanis et al. [13] and Li et al. [15] re-
construct rail roughness profles on the basis of measured
accelerations. Other studies examine the possibility of es-
timating roughness profles based on further types of data,
e.g., strain measurements collected from strain gauges and
angular velocities measured via gyroscopes [17, 18]. In this
work, we do not further elaborate on such studies, as this
research exploits accelerations as a form of low cost, easily
measurable data for developing an on-board monitoring
(OBM) methodology for reconstructing roughness profles.

To this end, we propose a hybrid approach, fusing
a physics-based model with monitoring data, in order to
identify rail roughness profles from acceleration data col-
lected from the axle boxes of instrumented train vehicles.We
here account for the physics underpinning the coupled train-
track interaction system [19, 20] and perform the identif-
cation of rail roughness based on reduced-order railroad
vehicle models and a recursive Bayesian inference method
[14]. Specifcally, the vehicles are modeled as multibody
systems, where diferent bodies are connected with springs
and dampers. Te contact between the vehicles and the rails
assumes an elastic normal contact model [21]. Te vehicle
models are frst reduced and then employed in the identi-
fcation task via their state-space representation. Te iden-
tifcation of roughness relies on a dual implementation of the
Kalman flter, the DKF [14], which estimates the input and
states of the vehicle system in a sequential manner. Before
this identifcation task, which can be assumed to be also
executed in near real time, an updating of the interaction
model is carried out. Specifcally, assuming the availability of
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a prior measurement of a part of the roughness profle,
possibly from a previous diagnostic measurement, we em-
ploy an unscented Kalman flter (UKF) [22] to accomplish
a joint state-parameter estimation, which allows us to cal-
ibrate certain parameters of the vehicle model that afect the
identifcation of the input. Although this implementation is
inspired by the joint input-state-parameter estimation
scheme proposed by Dertimanis et al. [23], the tasks of state-
parameter and input-state estimation are herein executed
asynchronously, capitalizing on the availability of diferent
types of information: (i) geometric data from diagnostic
trains (even if infrequent) and (ii) accelerations from in-
service OBM trains. Te goal of the proposed approach is to
make use of measurement acceleration data from diagnostic
or in-service trains equipped with low-cost acceleration
sensors. Terefore, for our initial feld application, we utilize
readily available actual OBM data from the gDfZ diagnostic
vehicle of SBB. Tis implementation attests to the feasibility
of the proposed approach for practical applications
employing also in-service trains.

Te remainder of this manuscript is organized as follows:
Section 2 describes a generic railroad vehicle model excited
by rail roughness, which is then used to formulate the in-
verse problem of estimating the states and input of the
vehicle. Ten, Section 3 describes two alternative schemes to
reduce the order of the multibody vehicle model. Section 4
demonstrates the proposed Bayesian inference framework
for estimating rail roughness profles in tracks. Section 5
presents verifcations and validations on numerically sim-
ulated and on-board measured vibration data, respectively,
proving the applicability of the proposed scheme to real-
world problems, and, lastly, Section 6 summarizes the
presented methodology.

2. Problem Formulation

With respect to Figure 2, the vertical dynamics of a single
railroad vehicle traveling along a fxed track can be described
by a second-order vector diferential equation of motion
(EOM) of the form

m€u t( ) + c _u t( ) + ku t( ) � Wp t( ), (1)

wherem, c, and k are the [N × N] mass, non-proportional
damping, and stifness matrices, respectively, u is the
[N × 1] vector of displacements and rotations of the
vehicle’s DOFs (refer to Sections 3.1 and 3.2 and Table 1),
and p t( ) is the vector of contact forces between the ve-
hicle and the track. Te latter is applied to the vehicle via
the contact direction matrix W and follows an elastic
normal contact model [21], i.e.,

p t( ) � kr x � vt( ), (2)

where k is the contact stifness between the wheels and the
rails and r x( ) is the vector of the roughness profle of the
rails at the contact points with the wheels. Te roughness
profle changes in space with respect to the location of the
vehicle x, which is a function of the running speed v and
time t.

By forming the [2N × 1] state vector

x t( ) �
u t( )

u
.

t( )
􏼢 􏼣, (3)

and by assuming the availability of vibration acceleration
response measurements, equation (1) can be transformed
into state-space as

x
.

t( ) � Acx t( ) + Bcp t( ), (4a)

y t( ) � Ccx t( ) + Dcp t( ), (4b)

in which

Ac �
0 I

−m− 1k −m− 1c
􏼢 􏼣,Bc �

0

m−1W
􏼢 􏼣,

Cc � −Sm− 1k − Sm− 1c􏽨 􏽩,

Dc � Sm− 1W,

(5)

are the state, input, output, and feedforward matrices, re-
spectively, and S is a DOF selection matrix of appropriate
dimensions.

Under this setting, the aim of the current study is the
estimation of the rail roughness using noise-corrupted vi-
bration acceleration data and Bayesian inference. Our ap-
proach is built on the following assumptions:

(a) (b) (c)

Figure 1: Track monitoring methods: (a) hand-push trolley for direct inspection of tracks [1], (b) diagnostic vehicle of SBB network for
testing rail infrastructure [2], and (c) revenue train of SBB equipped with accelerometers [3].
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(1) Te contact force modeling assumes the track system
as a rough surface, comprising the rail roughness
profle, which introduces an external excitation to
the vehicle system.

(2) Each set of wheels runs on the same roughness
profle, i.e., the left/right wheel of each wheelset
traverses the same left/right roughness profle.

It is further noted that full-order vehicle models typically
entail a large number of DOFs. Te induced computational
cost renders such models inappropriate for online estimation,
without necessarily adding value to the inference task. To this
end, prior to the implementation of the Bayesian observer,
model-order reduction (MOR) is applied, using eigenvalue-
based modal truncation and substructuring. MOR also allows
for eliminating unstable modes and ensuring that the vehicle
system used for the inverse analysis is controllable and ob-
servable. Tis is outlined in the next section.

3. Model Reduction

3.1. Eigenvalue Analysis. MOR based on eigenvalue analysis
is a well-known approach for reducing the size of compli-
cated models. It relies on a decomposition of the EOM of the
system in modal equations and, subsequently, truncation of
modes. Diferent from common systems, the train vehicle
adopted herein is a multibody, not proportionally damped
system, while zero-mass elements corresponding to springs
and dampers of the suspension system of the model may
exist (depending on the complexity of the train model).
Terefore, the eigenvalue decomposition is performed based

on a factorization of the state-space system matrix of the
vehicle as [24]

Ac � VLV− 1
, (6)

where L � diag Λ,Λ∗( ) is a diagonal matrix consisting of the
complex conjugate eigenvalues of the system and V is the
eigenvector matrix written as

V �
Ψ Ψ∗

ΨΛ Ψ∗Λ∗
􏼢 􏼣. (7)

MatrixV contains the complex conjugate eigenmode pairs,
where □∗ denotes the complex conjugate and Ψ is a matrix
containing the modal vectors in the physical space. Since the
system is not proportionally damped, Ψ is a complex matrix.

Having defned the modal basis of the system, the state-
space system of equation (2) assumes the form

ζ t( ) � Amζ t( ) + Bmp t( ), (8a)

y t( ) � Cmζ t( ) + Dmp t( ), (8b)

where ζ t( ) is the modal state vector. Te state and mea-
surement matrices, initially defned by equation (5), become

Am � V− 1AcV,Bm � V− 1Bc,Cm � CcV,

Dm � Dc.
(9)

To reduce the size of the model, only a subset 􏽥ζ t( ) of ζ t( )

is retained, while the rest of the modes are truncated. Te
modes that remain are chosen based on a dominance

Table 1: DOFs of the multibody railroad vehicle model of Figure 2.

DOFs Car body Bogies i � 1 − 2( ) Wheelsets i � 1 − 4( )

Vertical displacement zc zti zwi

Lateral displacement yc yti ywi

Yawing rotation ψc ψti ψwi

Rolling rotation ϕc ϕti ϕwi

Pitching rotation θc θti θwi

car body
speed vθc

zc

z y, θ

x

bogie 

wheelset

θt1

zt1

θ t2

zt2

zw4 zw3 zw2 zw1

bogie 

wheelset
θw4 θw3 θw2 θw1

A

A’
p3r

p3r
p4r

p4r

p2r

p2r

p1r

p1r

(a)

zc

yc φc

zt2

zw4

yw4

yt2 φt2

φw4

p4l

p4l

p4r

p4r

(b)

Figure 2: A 3Dmodel of the vertical dynamics of a railroad vehicle, indicating the dominant DOFs and contact forces: (a) pitch-bounce view
and (b) roll-bounce view (section A-A’).
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measure Dr proposed by Föllinger et al. [25]. Tis measure
represents the signifcance of each mode on the transfer
function of the system, and it is expressed as

Dr �
cr,ibr,j

λr

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (10)

where the coefcient cr,i is the i-th element of the r-th
column of Cm matrix connecting the i-th output to the r-th
mode of the system. Accordingly, the coefcient br,j is the
j-th element of the r-th row of Bm matrix connecting the
j-th input to the r-th mode. Lastly, λr is the eigenvalue of
each mode. Eventually, the reduced-order system consists of
a reduced number of modes encapsulated in 􏽥Λ and 􏽥Ψ,
representing the matrices of the selected eigenvalues and
eigenvectors, respectively. Accordingly, the state-space
matrices of equation (9) are transformed into 􏽥Am, 􏽥Bm, and
􏽥Cm. Te feedforward matrix Dm remains unchanged as it is
not associated with the truncated state vector.

3.2. Substructuring. MOR based on substructuring allows
for component-based monitoring, i.e., monitoring only
a subsystem (substructure) of the entire assembly [26]. Te
specifcation of the substructure to be modeled depends on
the point of application of the applied input as well as the
position of the deployed sensors, where the output is
measured. Following such an approach, the number of
model parameters that need to be specifed is signifcantly
decreased. For example, in the case of roughness identif-
cation on the basis of axle box acceleration (ABA) mea-
surements from the vehicle, the objective is to identify the
force input on the vehicle wheels (in contact with the tracks).
In this case, the monitored substructure consists of the
respective wheelsets (where the input is applied) and axle
boxes (where the measurements are collected from).

To this end, in view of Figure 3, the vehicle model is
partitioned into two substructures: the upper part sub-
structure, consisting of the car body and bogies, and the
lower part substructure, consisting of the wheelsets and axle
boxes. Subsequently, equation (1) can be written as

mu 0

0 ml
􏼢 􏼣

€uu
t( )

€ul
t( )

􏼢 􏼣 +
cu cul

clu cl
⎡⎣ ⎤⎦

_uu
t( )

_ul
t( )

􏼢 􏼣 +
ku kul

klu kl
⎡⎣ ⎤⎦

uu
t( )

ul
t( )

􏼢 􏼣 �
0

Wl
􏼢 􏼣p t( ), (11)

where the superscript□u denotes the upper substructure and
□l the lower substructure, or in other words, the wheelset-
axle box system. Superscripts □ul and □lu indicate the

matrices that connect the upper to the lower substructure of
the vehicle. To create independent, non-overlapping sub-
structures, equation (11) can be rewritten as

mu 0

0 ml
􏼢 􏼣

€uu t( )

€ul
t( )

􏼢 􏼣 +
cu 0

0 cl
􏼢 􏼣

_uu
t( )

_ul
t( )

􏼢 􏼣 +
ku 0

0 kl
􏼢 􏼣

uu
t( )

ul
t( )

􏼢 􏼣 �
0

Wl
􏼢 􏼣p t( ) −

cul 0

0 clu
⎡⎣ ⎤⎦

_ul
t( )

_uu
t( )

⎡⎣ ⎤⎦ −
kul 0

0 kwu
⎡⎣ ⎤⎦

ul
t( )

uu
t( )

⎡⎣ ⎤⎦, (12)

where the last two terms of the right-hand side of equation
(12) denote the internal forces between diferent sub-
structures. Subsequently, the substructure of interest, i.e., the
lower part, is isolated as

ml
€ul t( ) + cl

_ul
t( ) + klul

t( ) � Wlp t( ) − clu _uu
t( ) − kluuu

t( ),

(13)

and it can be written as

ml
€ul t( ) + cl

_ul
t( ) + klul

t( ) � Wlp t( ) + g t( ), (14)

where Wlp t( ) represents the external forces and g t( ) rep-
resents the internal forces acting on the substructure.
Equation (14) can then be expanded as

mw 0

0 ma
􏼢 􏼣

€uw
t( )

€ua
t( )

􏼢 􏼣 +
cw cwa

caw ca
􏼢 􏼣

_uw
t( )

_ua
t( )

􏼢 􏼣 +
kw kwa

kaw ka
􏼢 􏼣

uw
t( )

ua
t( )

􏼢 􏼣 �
Wwp t( )

0
􏼢 􏼣 +

0

ga
t( )

􏼢 􏼣, (15)

where the superscript □w denotes the wheelsets and □a

indicates the axle boxes connecting the lower part of the
vehicle to the upper part. Tus, the axle boxes can be
considered as the boundary DOFs, and the wheelsets as the
internal ones. Consequently, the contact force vector p t( )

acts only on the wheelsets and corresponds to external
forces. At the same time, ga t( ) is an internal force vector

acting on the axle boxes, and is typically orders of magnitude
smaller than the contact force vector [20].

Tis substructuring of the system allows for isolating
components from further pieces whose structural parame-
ters are either unknown or sufer uncertainties in their
defnition. Equation (15) can be further reduced following
the eigenmode analysis described in Section 3.1; thus, the
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state-space system assumes the form of equations (8a) and
(8b). To this end, potential rigid body motions should be
considered [26].

Te substructure-based system of equation (15) indicates
that data are collected from sensors on the axle boxes of the
railroad vehicle. Alternatively, if data are collected from
sensors mounted on other parts of the vehicle, e.g., the
bogies, these components need to also be considered in the
substructure of interest.

4. Rail Roughness Identification

4.1.Discrete-TimeEquations. Since the acquired data arrives
in digital format, the state-space system of equations (8a)
and (8b) needs to be discretized at an appropriate sampling
rate fs. In doing so, the Tustin approximation [27] is herein
applied. By notating as Ha s( ) and Hd z( ) the associated
input-output transfer functions of the analog and digital
systems, respectively, it follows that

Hd z( ) � Ha s( )|s� 2/Ts( )· z−1/z+1( ), (16)

where Ts � 1/fs. By applying equation (16) to equations (8a)
and (8b), the digital state-space model of the system is
written as

􏽥ζk+1 � 􏽥Ad
􏽥ζk + 􏽥Bdpk, (17a)

yk � 􏽥Cd
􏽥ζk + 􏽥Ddpk, (17b)

in which

􏽥Ad � I −
fs

2
Am􏼠 􏼡

− 1

I +
fs

2
Am􏼠 􏼡, 􏽥Bd �

��
fs

2

􏽲

I −
fs

2
Am􏼠 􏼡

− 1

Bm,

􏽥Cd �

��
fs

2

􏽲

Cm I −
fs

2
Am􏼠 􏼡

− 1

, 􏽥Dd � Dm +
1

2
��
fs

􏽰 Cm
􏽥Bd.

(18)

Since the identifcation of rail roughness relies on
a Bayesian inference approach, zero-mean Gaussian
white noise is superimposed to the state and output
equations as

􏽥ζk+1 � 􏽥Ad
􏽥ζk + 􏽥Bdpk + wk, (19a)

yk � 􏽥Cd
􏽥ζk + Ddpk + rk, (19b)

where wk and rk denote the discrete-time process and
measurement noise terms, with known covariance matrices
Qw � E[wkwT

k ] and Qr � E[rkrT
k ], respectively. Te sto-

chastic discrete-time state-space representation of the sys-
tem, as described by equations (19a) and (19b), is henceforth
implemented to the reconstruction of the roughness profle.

4.2. Input Estimation via a Bayesian Inference Approach.
Te identifcation of rail roughness relies on estimating the
contact forces acting on the vehicle, assuming that a state-
space representation of the vehicle is known. In this case, the
DKF for joint input-state estimation can directly be
employed for estimating the unknown contact forces.
However, certain parameter values of the assumed vehicle
model may signifcantly deviate from the real parameter
values of the actual railroad vehicle used to collect accel-
eration data. Te contact stifness between the wheels and
the rails comprises such a parameter, which, on the one
hand, is typically unknown and, on the other hand, can
signifcantly afect the identifcation task. Tis problem
implies that this unknown parameter should also be
inferred.

One way to achieve such a task is to opt for joint input-
state-parameter estimation by frst estimating the input via
a Kalman flter, assuming known states and parameters, and
then augmenting the parameters with the state vector and
applying a UKF for state-parameter estimation [23]. Tis
approach works well when certain parameters of the system
Ac or output Cc matrices are unknown or partially known.
However, in this case, this approach of joint or synchronous
estimation is not applicable, since the unknown contact
stifness parameter and input quantities appear in a bivariate
product (equation (2)), rendering their individual identif-
cation task an ill-posed one.

Under this setting, the applied methodology for rail
roughness profle identifcation depends on the quality of the
assumed vehicle model and the prior availability of data. To

θc
zc

p4

zw1
θw1θt1

p3 p2 p1

unknown excitation

sensing points
zt1

(a)

a
1
ga

2
ga

3g

θc
zc

p4

zw1
θw1

p3 p2 p1

zt1

θt1

a
4g upper part 

lower part 

(b)

Figure 3: Schematic representation of (a) the full-order vehicle model and (b) the substructure-based reduced-order model for joint input-state
estimation.

6 Structural Control and Health Monitoring



this end, this study proposes diferent classes of Bayesian
observers, illustrated in Figure 4 and discussed in the fol-
lowing sections.

4.2.1. Case I: “Perfectly” Known Vehicle Model. Te simplest
scenario calls for the availability of a vehicle model that
resembles the dynamics of the actual measurement vehicle to
a great extent. It is noted that model errors may still be
present; however, these can be efectively handled by the
process andmeasurement noise terms of equations (19a) and
(19b). In this case, the roughness profle of the rails is es-
timated by a double implementation of the Kalman flter that
allows for concurrent identifcation of the states and inputs
of the reduced-order vehicle system. Tis recursive Bayesian
inference approach constitutes the DKF proposed by Efte-
khar Azam et al. [14]. Tis method adopts a random walk
model for the temporal evolution of the unknown input, i.e.,

pk+1 � pk + vk, (20)

where vk is a discrete-time input noise term with covariance
matrix Qv � E[vkvT

k ]. According to Eftekhar Azam et al.
[14], assuming that an estimate of the state 􏽥ζk at time tk is
available, a dual state-space equation can be formulated as

pk+1 � pk + vk, (21a)

yk � 􏽥Cd
􏽥ζk + Ddpk + rk, (21b)

where the state 􏽥ζk plays the role of the “known input.” Tis
way the implementation of a typical Kalman flter allows for
the estimation of pk through equations (21a) and (21b).
Ten, the estimated input pk is employed in equations (19a)
and (19b), and a successive Kalman flter is applied for the
estimation of 􏽥ζk+1.

Algorithm 1 shows the detailed steps of the DKF for the
estimation of the unknown states and inputs. Eftekhar Azam
et al. [14] demonstrated that the accuracy of the identif-
cation task via the DKF relies on three parameters: the
process noise covariance Qw, the input noise covariance Qv,
and themeasurement noise covarianceQr.Te process noise
covariance matrixQw represents the accuracy of the adopted
physical model,Qv depends on the noise of the input, andQr

depends on the accuracy of the measurement instruments
used. Qw and Qr can be specifed for a given model and
measurement device. On the other hand, Qv is typically
adopted as the tuning parameter. Terefore, an L-curve is
used to tune the input noise and optimize the performance
of the adopted flter [28].

4.2.2. Case II: Imperfect Vehicle Model and Part of Input
Available. When a small portion of the roughness profle is
known, e.g., from former measurement campaigns, a model
calibration task may be realized prior to the implementation
of the DKF. Such an example constitutes measurements of
the longitudinal level of tracks from a diagnostic vehicle
equipped with laser scanners. In this case, a prior inference
of the uncertain contact stifness parameter between the
vehicle model and the track can be accomplished.

Accordingly, the calibrated vehicle model is used to identify
the rail roughness profle, as described in Algorithm 1.
Model calibration is herein realized via the UKF [22, 29] for
joint state-parameter estimation. To this end, the state vector
is augmented with the parameter vector as

x �
􏽥ζ

k

⎡⎣ ⎤⎦, (22)

where k corresponds to the uncertain stifness parameter.
Te corresponding covariance matrix Qz includes the dis-
crete-time process and parameter noise terms. Tus, the
UKF only solves for one single state vector, the augmented
vector x.

Te UKF models the augmented state vector as
a Gaussian random variable with a distribution approxi-
mated by a set of deterministic points termed the sigma
points [29]. Sigma points capture the prior mean and co-
variance of the state and, when propagated through the
nonlinear function, provide an improved posterior estimate
of the transformed state, which constitutes the unscented
transformation [22]. Te spread of the Sigma points around
the mean state value is controlled by α and κ parameters.Te
spread of the Sigma points is proportional to a, which is
usually a small positive value, and proportional to the square
root of κ, which is often set to zero. A third parameter β
afects the weights of the propagated states when calculating
the state and measurement covariance. Parameter β in-
corporates prior knowledge of the distribution of the states,
which for Gaussian distribution is optimally set as β � 2.Te
calculation of the weights for the mean of the predicted
measurements is as follows:

W
0
m � 1 −

N

α2 N + κ( )
, (23a)

W
i
m �

1
2α2 N + κ( )

, i � 1, . . . , 2N, (23b)

where N is the number of states. Accordingly, the calcu-
lation of the weights for the covariance of the predicted
measurements is as follows:

W
0
c � 2 − α2 + β2􏼐 􏼑 −

N

α2 N + κ( )
, (24a)

W
i
c �

1
2α2 N + κ( )

, i � 1, . . . , 2N. (24b)

Algorithm 2 demonstrates in detail the successive steps
of the UKF.

4.2.3. Case III: Imperfect Vehicle Model and Part of Filtered
Input Available. In case a fltered portion of the input,
rather than the input itself, is known, the UKF cannot di-
rectly be applied for the estimation of the unknown pa-
rameter. For example, as shown later in Section 5.3,
a portion of the roughness profle is scanned with laser
scanners, but the measurements need to be fltered in certain
wavelengths before being used to calibrate the contact
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stifness parameter. Terefore, this section demonstrates
a sequential Bayesian inference approach that frst estimates
the input to the system based on a Kalman flter, then flters
the obtained input to appropriate wavelengths, and fnally
estimates the unknown parameter via a UKF for state-pa-
rameter estimation. Algorithm 3 demonstrates in detail this
sequential Bayesian inference scheme. Specifcally, for the
frst step (Algorithm 3), assuming known the state vector x−

k

as predicted in the previous time step, the input to the
vehicle, i.e., the contact force pk, is estimated based on
equations (21a) and (21b). Ten, in the second step (Al-
gorithm 3), the contact force is written as the product of the
contact stifness k and the roughness profle rk x( ) (equation
(2)). Subsequently, the roughness profle is fltered and gives
rfiltk . For the implementation of the UKF in the last step, the
joint input vector that includes the contact forces estimated

in the frst step and the fltered roughness estimated in the
second step is written as

uk �
pk

rfiltk

⎡⎣ ⎤⎦. (25)

Tus, in the third step (Algorithm 3), a UKF imple-
mentation estimates the augmented state-parameter vector
xk (equation (22)) assuming known the joint input vector uk

and considering as output vector the measured accelerations
and the fltered roughness profle recorded by the laser
scanners. After estimating the unknown stifness parameter
k, assuming known a small fltered portion of the roughness
profle of a railway network, the DKF (Algorithm 1) can be
applied to identify the roughness profle of the entire railway
network.

Initialize
Set the initial values for the state vector mean 􏽥ζ0 and the input vector mean p0. Set the initial values for the respective covariance

matrices P
􏽥ζ
0 and Pp

0 . Defne the noise parameters Qw, Qv, and Qr.
Update input and state vectors based on observations
(1) Calculate the Kalman gain for the input: Kp

k � Pp−

k DT
d DdP

p−

k DT
d + Qr􏼐 􏼑

− 1

(2) Update the input mean and covariance:
pk � p−

k + Kp

k yk − Cd
􏽥ζ

−

k − Ddp
−
k􏼐 􏼑

Pp

k � Pp−

k − Kp

kDdP
p−

k

(3) Calculate the Kalman gain for the state vector: K
􏽥ζ
k � P

􏽥ζ−
k CT

d CdP
􏽥ζ−
k CT

d + Qr􏼒 􏼓
− 1

(4) Update the state vector mean and covariance:
􏽥ζk � 􏽥ζ

−

k + K
􏽥ζ
k yk − Cd

􏽥ζ
−

k − Ddpk􏼐 􏼑

P
􏽥ζ
k � P

􏽥ζ−
k + K

􏽥ζ
kCdP

􏽥ζ−
k

Predict the input mean and covariance and state vector mean and covariance
(1) Predict the input mean and covariance at step k + 1:
p−

k+1 � pk

Pp−

k+1 � Pp

k + Qv

(2) Predict the state vector mean and covariance at step k + 1:
􏽥ζ

−

k+1 � Ad
􏽥ζk + Bdpk

P
􏽥ζ−
k+1 � AdP

􏽥ζ
kA

T
d + Qw

ALGORITHM 1: Te DKF for joint input-stateestimation [14].

“perfectly” known
vehicle model

DKF for
input estimation

YES

part of
input is known

NO

UKF for model
optimization

YES

filtered part
of input is known

NO

UKF-DKF for
model optimization

YES

unsuitable model

NO

Figure 4: Flowchart for the selection of the appropriate Bayesian framework for the estimation of rail roughness profles in tracks.
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5. Applications on Simulated and Field Data

5.1. Application on Simulated Data from a 3D Vehicle Tra-
versing Tracks on Solid Ground. Te frst numerical appli-
cation concerns a simple 3D train vehicle model traversing
tracks comprising random vertical roughness profles for
both left and right rails along the longitudinal direction.Tis
example aims at demonstrating the efcacy of the DKF in
identifying rail roughness profles on the basis of the sole
availability of acceleration data collected from the axle boxes
of traversing vehicles. In this case, the vehicle is modeled as
a multibody assembly consisting of seven rigid bodies: one
car body, two bogies, and four wheelsets connected with
linear springs and dashpots [30], as illustrated in Figure 2.
Each body has fve DOFs: two translational in the vertical z

and lateral y directions and three rotational, namely, yawing
ψ, rolling ϕ, and pitching θ. Table 1 summarizes the DOFs of
the employed train vehicle model. Te properties of the
vehicle are derived from the study of Zeng and Dimi-
trakopoulos [31]. Te track is modeled as a rough surface,
and the assumed roughness profle is considered a stationary
stochastic process with the spectral representation method
[32]. Diferent roughness profles are assumed for the left
and right rails.

First, simulated acceleration data are generated via forward
modeling of the full vehicle-track system. Te vehicle runs on
straight rails at 200km/h, a typical operating speed for high-
speed trains. Te properties of the profle are defned according
to the German spectra for high-speed railways [33]. Tis case
study assumes the following parameters for the involved

roughness profle: Av � 4.032 · 10− 7m2 · rad/m,
Ωc � 0.8246  rad/m, and Ωr � 0.0206  rad/m [33]. Te corre-
sponding wavelength range is 0.5 m to 80 m. Data are collected
from the axle boxes (placed on the left and right sides of each
wheelset) at a sampling frequency of fs � 1000 Hz. Accelera-
tion measurements are utilized as displacement data are gen-
erally more challenging to measure. Te acceleration
measurements are fnally contaminated with 5% Gaussian noise
in order to simulate sensor noise contamination.

Before moving to the identifcation task, the train model
is reduced. In this case, the model-order reduction follows
the eigenvalue analysis of Section 3.1. Te modes retained
are decided based on a dominance measure for each mode
and each input/output to the system [25]. Eventually, the
total number of modes after truncation is 18. Te retained
modes frequency range is from 1Hz to 8.4Hz. Decreasing
the number of modes to less than 18 further enhances the
computational efciency at the cost of the estimation ac-
curacy for the roughness profle.

Te rail roughness is estimated using a DKF (Section
4.2.1 and Algorithm 1) with a bilinear transform assumed
for the discretization of the system and a sampling period
Ts � 0.001  s. Assuming an accurate train model, the co-
variance matrix of the process noise is set to
Qw � 10− 8 · I1, where I1 ∈ R18×18 is an identity matrix with
dimension equal to the number of states of the reduced
system. Te measurement noise covariance matrix is
Qr � 10− 1 · I2, where I2 ∈ R8×8 is an identity matrix with
dimension equal to the number of measurements. Te
estimation of the covariance matrix of the input noise

Initialize
(1) Set the initial values for the augmented state vector mean x0 and for the respective covariance matrix Px

0 . Defne the noise
parameters Qz and Qr.
(2) Set the parameters for the UKF, α, β, and κ, and estimate the weights for the mean and covariance of the predicted measurements:
W0

m, Wi
m, W0

c , and Wi
c for, i � 1, . . . , 2N where N is the number of states.

Update the augmented state vector based on observations:

(1) Calculate the Sigma points: X0−
k � x−

k ,Xi−
k � x−

k +

����

cPx−

k

􏽱

􏼒 􏼓
i
  for  i � 1, . . . , N, Xi−

k � x−
k −

����

cPx−

k

􏽱

􏼒 􏼓
i
  for  i � N + 1, . . . , 2N where

c � α2 N + κ( )

(2) Propagate the Sigma points through the output equation: 􏽢y−
k � h X−

k ,pk( 􏼁

(3) Calculate the output mean and covariance:
yk � 􏽘

2N

i�0W
i
m􏽢yi−

k

Py

k � 􏽘
2N

i�0W
i
c 􏽢yi−

k − yk􏼐 􏼑 􏽢yi−
k − yk􏼐 􏼑

T
+ Qr

(4) Calculate the cross-covariance between the states and output: Pxy

k
� 1/2c( )􏽐

2N
i�1W

i
c Xi−

k − x−
k( 􏼁 􏽢yi−

k − yk􏼐 􏼑
T

(5) Calculate the Kalman gain for the states: Kx
k � Pxy

k Py

k􏼐 􏼑
− 1

(6) Update the state mean and covariance:
xk � x−

k + Kx
k yk − yk( 􏼁

Px
k � Px−

k − Kx
kP

y

k Kx
k􏼐 􏼑

T

Predict the augmented state vector mean and covariance for the next step:

(1) Calculate the Sigma points: X0
k � xk,Xi

k � xk +

���

cPx

k

􏽱

􏼒 􏼓
i
  for  i � 1, . . . , N,Xi

k � xk −

���

cPx

k

􏽱

􏼒 􏼓
i
for i � N + 1, . . . , 2N

(2) Propagate the Sigma points through the state equation: 􏽢xk � f Xk, pk( 􏼁

(3) Predict the state mean and covariance at step k + 1:
x−

k+1 � 􏽘
2N

i�0W
i
m􏽢xi

k

Px
k+1 � 􏽘

2N

i�0W
i
c 􏽢xi

k − x−
k+1􏼐 􏼑 􏽢xi

k − x−
k+1􏼐 􏼑

T
+ Qz

ALGORITHM 2: Te UKF for joint state-parameter estimation [22].
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follows an L-curve analysis [28], where the input noise is
considered to be the regularization parameter. Tis study
calibrates the input noise based on the L-curve of the
acceleration measured on the left axle box of the frst
wheelset, as demonstrated in Figure 5. Figure 5 plots the
mean squared error (MSE) of the novelty term of the
Kalman flter 􏽐

Ns
k�1‖yk − 􏽥Cd

􏽥ζ
−

k − 􏽥Ddpk‖
2
2/Ns against the

corresponding values of the covariance of the input noise
Qv. In the innovation term, 􏽥ζ

−

k is the predicted value of the
state vector at step k and Ns is the total number of steps.
Te plot of Figure 5 shows that the value Qv � 10− 4 · I3,
where I3 ∈ R8×8 is an identity matrix with dimension equal
to the number of inputs of the system, should be chosen as
the covariance of the input noise for the DKF, as this is the
infection point of the L-curve minimizing both the MSE
for the innovation term and the corresponding Qv.

Figure 6 demonstrates the estimated roughness profles
of the left (Figures 6(a) and 6(b)) and right (Figures 6(c) and
6(d)) rails of the track system and their corresponding

one-sided power spectral density (PSD) using Welch’s av-
eraged, modifed periodogram method assuming a Ham-
ming window. Te identifcation task returns a very good

mean squared error (MSE) [mm2] × 10-4

10-4

1.5 2 2.5

100

10-10

Q
v

Figure 5: L-curve of the acceleration of the left axle box of the frst
wheelset: input noise Qv against the mean squared error of the
innovation term of the DKF.

Initialize
(1) Set the initial values for the state vector mean x0, the augmented state vector mean x0 (equation (22)), and the input vector mean
p0. Set the initial values for the respective covariance matrices Px

0 , P
x
0 , and Pp

0 . Defne the noise parameters Qz, Qv, and Qr.
(2) Set the parameters for the UKF, α, β, and κ, and estimate the weights for the mean and covariance of the predicted measurements:
W0

m, Wi
m, W0

c , and Wi
c for i � 1, . . . , 2N where N is the number of states.

First step: Update input (Kalman flter)
(1) Calculate the Kalman gain for the input: Kp

k � Pp−

k DT DPp−

k DT + Qr􏼐 􏼑
− 1

(2) Update the input mean and covariance:
pk � p−

k + Kp

k yk − Cx−
k − Dp−

k( 􏼁

Pp

k � Pp−

k − Kp

kDPp−

k

Second step: Filter estimated input to the wavelengths of Eurocode
(1) Write the estimated input as the product of the unknown parameter k and roughness profle rk (equation (2))
(2) Filter the roughness profle to D0–D2: rfiltk

(3) Formulate the joint input vector uk assuming known the contact force pk and fltered roughness rfiltk : uk �
pk

rfiltk

􏼢 􏼣 (equation (25))
Tird step: Update state-parameter vector (UKF)
(1) Calculate the Sigma points: X0−

k � x−
k ,Xi−

k � x−
k +

����

cPx−

k

􏽱

􏼒 􏼓
i
  for  i � 1, . . . , N,Xi−

k � x−
k −

����

cPx−

k

􏽱

􏼒 􏼓
i
  for  i � N + 1, . . . , 2N where

c � α2 N + κ( )

(2) Propagate the Sigma points through the output equation: 􏽢y−
k � h X−

k ,uk( 􏼁

(3) Calculate the output mean and covariance:
yk � 􏽘

2N

i�0W
i
m􏽢yi−

k

Py

k � 􏽘
2N

i�0W
i
c 􏽢yi−

k − yk􏼐 􏼑 􏽢yi−
k − yk􏼐 􏼑

T
+ Qr

(4) Calculate the cross-covariance between the states and output: Pxy

k � 1/2c( )􏽐
2N
i�1W

i
c Xi−

k − x−
k( 􏼁 􏽢yi−

k − yk􏼐 􏼑
T

(5) Calculate the Kalman gain for the states: Kx
k � Pxy

k Py

k􏼐 􏼑
− 1

(6) Update the state mean and covariance:
xk � x−

k + Kx
k yk − yk( 􏼁

Px
k � Px−

k − Kx
kP

y

k Kx
k􏼐 􏼑

T

Predict the input and state mean and covariance for the next step:
(1) Predict the input mean and covariance at step k + 1:
p−

k+1 � pk

Pp−

k+1 � Pp

k + Qv

(2) Calculate the Sigma points: X0
k � xk,Xi

k � xk +

���

cPx

k

􏽱

􏼒 􏼓
i
  for  i � 1, . . . , N,Xi

k � xk −

���

cPx

k

􏽱

􏼒 􏼓
i
for i � N + 1, . . . , 2N

(3) Propagate the Sigma points through the state equation: 􏽢xk � f Xk, uk( 􏼁

(4) Predict the state mean and covariance at step k + 1:
x−

k+1 � 􏽘
2N

i�0W
i
m􏽢xi

k

Px
k+1 � 􏽘

2N

i�0W
i
c 􏽢xi

k − x−
k+1􏼐 􏼑 􏽢xi

k − x−
k+1􏼐 􏼑

T
+ Qz

ALGORITHM 3: A sequential Bayesian inference scheme for contact stifness parameter optimization.
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estimate of the reference (used in the forward analysis)
roughness profles, despite the use of a reduced-order model.
It should be further mentioned that using the full-order
model would not be advisable in this case since the iden-
tifcation task should avoid the use of the same forward and
inverse models in order to alleviate an inverse crime [16].

To check the efcacy of the proposed methodology to
reconstruct the reference roughness profle, this study
adopts a ft value based on the normalized root mean square
error (NRMSE) between the reference and estimated
roughness profles. Te ft between the profles is given as

fitNRMSE � 100 1 −
r − rest

����
����

‖r − r‖
􏼠 􏼡, (26)

where r is the reference roughness profle, r is the mean
value of the reference profle, and rest is the estimated
roughness profle. Te NRMSE fts of the time histories for
the roughness profles of the left and right rails are 91.3% and
90.3%, respectively. A cosine similarity criterion is also used
to measure the correlation between the estimated and ref-
erence roughness profles. Cosine similarity can measure the
shape similarity of data series vectors based on their angles
but cannot capture variations in their magnitude.Te cosine
similarities between the estimated and reference profles for
the left and right wheels are, respectively, 0.99 and 0.98,
indicating a very good agreement. When performing the
inverse analysis utilizing the full train model, the results are
similar to those of the reduced model, so they are omitted
from Figure 6 for clarity.

5.2. Application on Simulated Data from an SBB Diagnostic
Vehicle Traversing a Measured Roughness Profle. Tis sec-
tion employs a realistic railroad vehicle model of the SBB
network running on a roughness profle measured by SBB.
Both vehicle and track systems are modeled in SIMPACK
software [34]. Te adopted vehicle is the diagnostic (gDfZ)
vehicle of SBB, consisting of one car body, two bogies, and
four wheelsets with their respective axle boxes. For the car
body, its torsional stifness around the longitudinal axis is
also considered. Te primary suspension system consists of
coil springs, axle bushing elements, and primary dampers.
Te secondary suspension system includes springs, vertical,
lateral, and yaw dampers, as well as a detailed modeling of
the antiroll bar and push-pull rods. Te contact between the
wheels of the diagnostic train and the track system follows an
elastic normal contact model (Hertzian contact) with stif-
ness determined based on the modulus of elasticity and
Poisson’s ratio. Figure 7 illustrates the confguration of the
diagnostic vehicle. Te assumed roughness profle is mea-
sured by SBB and corresponds to wavelengths between 0.5m
and 70m. Tis vehicle-track model simulated in SIMPACK
software is used to produce acceleration measurements of
the axle boxes at a sampling frequency fs � 1000 Hz. Te
acceleration data are then used in the identifcation task.

Te identifcation task, i.e., the inverse modeling of the
system, is realized in MATLAB software [35]. To this end,
the frst step is to export the state-space model of the di-
agnostic vehicle and the acceleration measurements from

the axle boxes from SIMPACK to MATLAB. Te vehicle
model, which is simulated in SIMPACK software, includes
nonlinear elements, e.g., nonlinear dampers and a nonlinear
contact stifness model. Te proposed Bayesian inference
scheme assumes linear state-space matrices. To this end, the
state-space model is linearized around the initial equilibrium
state of the vehicle. Tis is implemented in SIMPACK by
running an online static solver that performs Newton
equilibrium, i.e., it brings the vehicle model to a state of zero
acceleration [36]. Once static equilibrium is achieved,
a linearized state-space model of the vehicle is exported,
which is then used for the identifcation task realized in
MATLAB. Te total number of states of the exported lin-
earized system is 144, and the number of inputs is eight,
corresponding to the eight wheels of the four wheelsets of the
vehicle. Te number of outputs is four, corresponding to the
four accelerometers mounted on the diagnostic train—two
on the two axle boxes of the frst wheelset and another two
on the axle boxes of the last wheelset. To reduce the com-
putational efort of the identifcation task, we frst reduce the
model based on the eigenvalue analysis of Section 3.1 and by
estimating the dominance measure of each mode according
to equation (10). Te total number of modes retained is 23,
including 15 complex conjugate modes and 8 modes with
unit damping (corresponding to damping elements of the
model). Te frequency content of the retained complex
conjugate modes varies between 5Hz and 189Hz, which is
higher than that of the simple 3D vehicle model of Section
5.1. Tis is attributed to the increased complexity of the
diagnostic vehicle model, which also includes higher fre-
quency components. Tus, the total number of states in the
state-space representation of the system is 38, which is less
than one-third of the initial number of states (144). Finally,
the exported acceleration measurements are contaminated
with 5% Gaussian white noise representing the actual
measurement noise in real systems. Note that in this case, the
acceleration data used as output for the identifcation task
are exported from SIMPACK software using the detailed
full-order vehicle model simulated therein. On the other
hand, the vehicle model used for the realization of the
identifcation scheme is a linearized, reduced-order vehicle
model, thus diferent from the one used for the production
of measured data.

Te estimation of the roughness profles follows the DKF
(Section 4.2.1 and Algorithm 1) with a bilinear trans-
formation assumed for the discretization of the state-space
system. Te covariance matrix of the process noise is set to
Qw � 10− 8 · I1, the measurement noise covariance matrix is
Qr � 10− 1 · I2, and the covariance matrix of the input noise
is estimated as Qv � 10− 8 · I3, based on an L-curve analysis.
Figure 8 plots the estimated rail roughness profles
(Figures 8(a) and 8(c)) and the corresponding PSDs
(Figures 8(b) and 8(d)) when using the reduced-order model
and the full train model. For comparison, Figure 8 also
shows the roughness profle used in the forward analysis to
generate measurement data, referred to in the following as
the reference roughness profle (ground truth). For this case
study, the roughness profle estimated with the reduced-
order vehicle model is slightly closer to the reference
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roughness profle compared to that estimated with the full
vehicle model. Tis is confrmed by the NRMSE ft between
the estimated and reference roughness profles, illustrated in
Table 2, which in the case of the eigenvalue-based reduced-
order model is 71.6% while for the full model this is 64.7%.
Te corresponding cosine similarity values are 0.96 and 0.95,
respectively. Tis shows that the shape of the estimated
roughness profle is very close to that of the reference
roughness profle in both cases. On the other hand, in the
PSD of the roughness profle estimated based on the re-
duced-order model (Figures 8(b) and 8(d)), small peaks

appear in the frequency band of 0.5–2m− 1 (Figure 8(d)),
which do not appear when the full-order vehicle model is
employed for the inverse analysis. Tese peaks denote that
the reduced-order model misses some modes that dampen
its response in the band of 0.5–2m− 1. Shouldmoremodes be
considered, the size of the model would considerably in-
crease, close to the size of the full-order vehicle model,
increasing the computational efort of the analysis.

To reduce the order of the system, we also employ the
substructure-based approach of Section 3.2. In this case, the
wheelset-axle box system is separated from the upper part of
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the train (car body and bogies), and internal forces arise at
the connection with the upper part, as in equation (15).
Figure 3 illustrates the retained bodies. Te total number of
states retained is 64. Figure 9 illustrates the identifed profle
of the rails based on the substructure-based reduced model
of the train. For comparison, it also shows the estimated
roughness profle when the full-order model is used. Te
identifed profle and its PSD show a good agreement with
the reference roughness profle (Figure 9), while they are
exactly the same as those estimated with the full-order
vehicle model. Tis is also confrmed by the NRMSE ft and
cosine similarity between the estimated and reference
roughness profles, demonstrated in Table 2, which are the
same in the case of the full and reduced-order via sub-
structuring vehicle models. In addition, opposite to the
analysis with the aid of the eigenvalue-based reduced model
(Figure 8), no peak appears in the frequency band between
0.5 and 2m− 1. To summarize, as illustrated in Figures 8 and
9 and Table 2, for this system and measured acceleration
data, the eigenvalue-based reduced model returns a some-
what more accurate roughness profle, while the sub-
structure-based reduced model gives a better estimate of the
frequency content of the identifed signal. However, note
that in all cases (full- and reduced-order vehicle models),
a mismatch is present in the PSD of the estimated roughness

profle with respect to the reference one for wavenumbers
between 0.5m− 1 and 3m− 1. Tis is possibly attributed to the
assumed model for the temporal evolution of the unknown
input, which is chosen to be a random walk model (Section
4.2.1). Alternative latent force models, such as those
employing a Gaussian process assumption [37–40], could be
explored to potentially improve the performance of the
identifcation task; however, this lies outside the scope of
this study.

As illustrated in the substructure-based model of Fig-
ure 3, each wheelset-axle box system appears to be in-
dependent of the other. Tus, the adopted model for the
identifcation of rail roughness profles is further reduced to
solely the frst wheelset-axle box of the vehicle. According to
Table 2, the identifcation results are exactly the same as
those in the case that all four wheelset-axle box systems are
employed, but the time cost of the analysis signifcantly
decreases. Table 2 summarizes the NRMSE ft and cosine
similarity values between the reference roughness profle
and the roughness profles estimated with the full- and
reduced-order train models, as well as the computational
cost of each analysis. Te NRMSE ft and cosine similarity
values of the estimated roughness profles are comparable in
all cases. In addition, the computational efort for the re-
duced vehicle models is signifcantly lower than that of the
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Table 2: NRMSE ft and cosine similarity between the reference roughness profle and the estimated roughness profles, and corresponding
time cost ratios.

Train model NRMSE ft (%) Cosine similarity Time cost ratio
Full train model 64.7 0.95 1.0
Reduced model: eigenvalue analysis 71.6 0.96 7.6
Reduced model: substructure-based 64.7 0.95 4.0
Reduced model: substructure-based (frst wheelset) 64.7 0.95 14.0
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full model (a higher number indicates higher efciency
compared to the full model), demonstrating the importance
of reduced-order models in inverse problems, especially
when online schemes are of interest.

Before moving to the last application of this study, which
employs a set of real-world feld OBM acceleration data, this
section examines the case of uncertain model parameters.
Tis is particularly important for real-world applications like
the one demonstrated in Section 5.3, as specifc structural
parameters of the train, e.g., the contact stifness between the
tracks and the wheels, are usually approximated based on
assumptions and engineering judgment.Tis section focuses
on the optimization of the contact stifness parameter k, as
this highly afects the identifcation of the roughness profle,
as demonstrated in equation (2). Specifcally, to determine
the value of k, it assumes that part of the input, i.e., of the
roughness profle, is known and applies a UKF for state-
parameter estimation (Section 4.2.2 and Algorithm 2). To
demonstrate the parameter updating scheme, an artifcial
error is introduced to the state-space model used for the
identifcation task. Specifcally, a “false” value of the contact
stifness parameter k“false” is assumed, which is double the
original contact stifness parameter k of the train model. Te
parameters used for the application of the UKF are α � 1,
β � 2, and κ � 0. As shown in Figure 10, applying the UKF,
the ratio of the estimated stifness parameter kUKF to the
assumed “false” stifness parameter k“false” (black line)
quickly drops and converges to 0.5, i.e., to the ratio of the
original stifness parameter k to the “false” stifness pa-
rameter k“false” (red line). Tus, the UKF can adequately
estimate the actual stifness parameter of the model, con-
sidering that part of the input is known. Te ratio between
kUKF and k“false” fuctuates around 0.5 as the estimated pa-
rameter kUKF is considered a random variable that is aug-
mented with the state vector for the application of the UKF

for the task of joint state-parameter estimation. Certain
peaks that occur at around 800m (Figure 10) are attributed
to localized peaks at the measured output, which cause local
instabilities during the identifcation task. Note that this
application makes use of simulated acceleration data col-
lected by a forward analysis of the vehicle-track system in
SIMPACK software; thus, numerical peaks may appear in
the collected output data.

5.3. Application on Field OBM Data from an SBB Diagnostic
Vehicle Traversing the SBB Network. Te previous appli-
cations on simulated data successfully proved the efcacy
of the proposed methodology in identifying rail roughness
profles. However, such applications are still biased as the
simulated data are generated from models that are then
used (in a reduced form) in the identifcation task. At the
same time, external noise or other unpredicted distur-
bances are not taken into account. Terefore, the pro-
posed methodology is here also applied to real-world
OBM data collected by the gDfZ diagnostic vehicle of SBB.
Te diagnostic vehicle is equipped with three-axial ac-
celerometers on the axle boxes of the frst and fourth
wheelsets (four in total)—the frst and fourth wheelsets
are tensiometric, i.e., they can measure contact force-
s—one-axis accelerometers on the bogie frames (four in
total), two-axial accelerometers on the vehicle’s car body
(two, one in the front and one in the back), two sensors to
measure moisture in rails, laser scanners to scan rail
roughness profles, and analog to digital converters. Te
accelerometers measure data at a sampling frequency
fs � 24000 Hz, and the laser scanners have a spatial
measurement frequency of 0.25 m− 1. Figure 7 illustrates
the location of sensors on the vehicle. Tis section uses the
vertical acceleration data recorded by the sensors installed

20

0

-20
0 1000 2000 3000 4000 5000 6000

distance (m)

r (
x)

 [m
m

]

10-1 100

wavenumber (m-1)
(a) (b)

-100

-150

-200am
pl

itu
de

 (d
B)

rail roughness profle
estimated profle (full model)
estimated profle (reduced model)

10

0

-10

distance (m)

r (
x)

 [m
m

]

600 700 800 900 1000 1100
wavenumber (m-1)

(c) (d)

-160

-180

-200

-220

am
pl

itu
de

 (d
B)

0.5 1 21.5

Figure 9: (a) Profles and (b) corresponding one-sided PSDs of the reference rail roughness (blue) and of the rail roughness estimated via
DKF with the full-order train model (green) and with the substructure-based reduced-order train model (orange), (c) zoom-in of
(a) between 600m and 1100m, and (d) zoom-in of (b) between 0.5m− 1 and 2m− 1.

14 Structural Control and Health Monitoring



on the axle boxes of the diagnostic vehicle and the rail
roughness profles measured by the laser scanners. Te
measured roughness profles are considered the ground
truth to examine the accuracy of the identifed roughness
profle via acceleration data. Te diagnostic vehicle tra-
verses more than 1000 km of the SBB network at frequent
intervals, but a smaller part is considered herein for better
visualization of the obtained results.

Te identifcation scheme is implemented in MATLAB
software with the aid of the reduced state-space models
employed in Section 5.2. Specifcally, the eigenvalue-based
reduced vehicle model and the substructure-based reduced
model that only consider the vehicle’s frst wheelset are used
for this application. On the other hand, the OBM data are
fltered and down-sampled to avoid noisy results, low-fre-
quency drifts, and aliasing. Te band-pass flter applied has
a low cut-of frequency of 0.2Hz and an upper cut-of
frequency of 40Hz. Te data are downsampled to 1000Hz.

Prior to estimating the rail roughness profle, the contact
stifness parameter needs to be calibrated.Tis is achieved by
assuming a known portion of the roughness profle as
measured by the laser scanners. However, the roughness
profle measured by the scanners needs to be fltered to the
wavelengths specifed by Eurocode, i.e., D0: 0.5m to 3m, D1:
3m to 25m, and D2: 25m to 70m. Terefore, in this case,
a fltered portion of the input rather than the input itself is
known; thus, the sequential Bayesian inference scheme
presented in Section 4.2.3 and Algorithm 3 is implemented
to estimate an optimized contact stifness parameter kUKF.

Figure 11(a) demonstrates the ratio between the opti-
mized contact stifness parameter kUKF and the initial
contact stifness parameter of the vehicle model kinitial. For
the UKF, the flter parameters are α � 1, β � 2, and κ � 0.
Tis ratio appears to fuctuate around 1.2. Tus, to estimate
the actual contact stifness parameter to be used in the
identifcation of the rail roughness profle, the contact
stifness of the initial vehicle model, directly exported from
SIMPACK software, is multiplied by 1.2. Figure 11(b) shows
the rail roughness profle fltered to the wavelengths of
Eurocode estimated according to the OBM acceleration data
collected from the axle box sensors of the diagnostic vehicle

(gDfZ) against the fltered roughness profle recorded by the
laser scanners. Note that Figure 11 assumes the sub-
structure-based reduced model of the vehicle that only
considers the frst wheelset. Moreover, for clarity, only
a portion of 8.0 km is demonstrated. Te rail roughness
profle estimated via OBM acceleration data is in very good
agreement with the roughness profle measured by the laser
scanners. Figure 11(d), which shows a zoom-in of Figure
11(b) between 7000m and 7600m, further attests to the
good agreement between the two profles. Figure 11(c) il-
lustrates the PSDs of the roughness profles and shows that
the PSD of the estimated roughness profle is very close to
that of the roughness profle recorded via laser scanners.
Some discrepancies that appear at very low wavelengths can
be attributed to the inevitable shortcomings of modeling
approximations. As a comparison, Figure 11 also shows the
obtained fltered roughness profle when integrating twice
the OBM acceleration data. Tis is a common approach to
obtain the roughness profles of rails [9, 10] that is char-
acterized by simplicity and ease of implementation. Al-
though double integration returns acceptable results, the
profle estimated via DKF after model updating shows
a better agreement with the roughness profle measured by
the laser scanners (considered here the ground truth).
Specifcally, the NRMSE ft of the roughness profles esti-
mated with the proposed UKF-DKF and with double in-
tegration with respect to the reference roughness profle
measured by the laser scanners are, respectively, 66.4% and
56.5%. Note that the NRMSE ft of the roughness profle
estimated via UKF-DKF before updating the contact stif-
ness parameter is 64.1%. Te better performance of the
proposed methodology is attributed to its model-based
character that considers the dynamics of the adopted vehicle
in the identifcation task. In addition, the employment of the
UKF tunes uncertain parameters of the vehicle that could
afect the identifcation task, such as the contact stifness
parameter between the rails and the wheels, thus increasing
the accuracy of the identifed input. On the other hand, the
cosine similarity of the estimated via UKF-DKF roughness
profle with respect to the reference roughness profle is 0.94,
against 0.93 when double integration is used. Both values
show that the shape of the estimated profle is very close to
the reference one. However, cosine similarity does not
capture variations in the amplitude of the estimated profles.

Lastly, Figure 12 demonstrates the estimated roughness
profle and the corresponding PSD employing the eigen-
value-based reduced-order model of the vehicle. Te esti-
mated roughness profle shows an NRMSE ft of 47.9% and
a cosine similarity of 0.85 with respect to that recorded from
the laser scanners. As expected, according to the application
of Section 5.2, the corresponding PSD shows some peaks in
the frequency band between 0.5m− 1 and 2m− 1. Te sub-
structure-based reduced order vehicle model appears to
capture better the dynamics of the diagnostic vehicle, thus
achieving a higher match with respect to the recorded
roughness profle. Tis is because this MOR method retains
the physics of the full-order model.
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6. Conclusions

Tis study proposes an indirect approach to estimate rail
roughness profles based on OBM data extracted from
traversing trains. A distinct characteristic of the proposed
methodology is that it accounts for the dynamic interaction
between trains and tracks, identifying roughness profles via
a model-based Bayesian inference method. To this end, frst,
the adopted vehicle model is reduced in order to avoid
excessive computational efort during the identifcation task.
Te reduction of the model is here attempted via two al-
ternate schemes; an eigenvalue analysis approach that de-
composes the vehicle EOM into independent modal
coordinates and retains a set of modes that can efciently

describe the dynamics of the system, and a substructure-
based reduction method that partitions the vehicle system
into independent, non-overlapping structures. Following, to
increase the accuracy of the employed reduced vehicle model
and, thus, the accuracy of the identifcation task, this study
updates uncertain parameters of the model via a nonlinear
Bayesian fltering algorithm, namely, a UKF, which performs
joint state and parameter identifcation.Tis is implemented
on a portion of the network where the input (roughness) has
been measured via a diagnostic vehicle. Finally, using the
updated reduced vehicle model, the identifcation of the
roughness profle, i.e., the input to this algorithmic setup, is
achieved via a dual implementation of the Kalman flter that
frst estimates the input and then, assuming known input,
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estimates the system’s state vector. Note that the roughness
identifcation task is implemented on portions of the net-
work where OBM acceleration data are available.

To assess the efcacy of the proposed methodology, this
paper examines three case studies. Te frst assumes sim-
ulated data generated by a simple 3D vehicle running on
roughness profles, which are assumed to be diferent for the
left and right rails. For the inverse problem, i.e., the rail
roughness identifcation task, the reduction of the vehicle is
performed based on an eigenvalue analysis. Te identifed
roughness profles of both rails agree very well with the
roughness profles used for the forward analysis. In addition,
the identifcation results assuming a reduced vehicle model
match very well those obtained when the full vehicle model
is considered. Te second case study examines a real di-
agnostic vehicle of SBB that runs on tracks of the SBB
network. Tis application still employs simulated data
extracted from a run of the vehicle on a measured track
profle of the SBB network with the aid of SIMPACK
software. Te reduction of the vehicle model follows both
eigenvalue analysis and substructuring. Te reduced-order
models return results close to those of the full-order vehicle
model, achieving, at the same time, higher computational
efciency and paving the way for online applications. Lastly,
the third case study uses actual OBM data measured from
the axle boxes of the gDfZ diagnostic vehicle of SBB when
that runs across the SBB network. In this case, the identi-
fcation of rail roughness follows three approaches: esti-
mation of the roughness profle based on acceleration data
from the axle boxes via a UKF for parameter update and then
a DKF for state-input estimation, double integration of the
collected acceleration data, and direct measurement of the
roughness profles of the tracks via laser scanners. Assuming
that direct measurements via laser scanners constitute the
ground truth, the proposed UKF-DKF approach returns
more accurate results compared to double integration when
a substructure-based reduced model of the diagnostic ve-
hicle is adopted. On the other hand, when using an ei-
genvalue-based reduced model of the vehicle, the agreement
between the estimated and reference (ground truth)
roughness profles decreases. Tus, for realistic, multibody
train systems, the substructure-based reductionmethodmay
return a better representation of the dynamics of the full
train model.

Te proposed methodology has so far been applied to
data from a diagnostic vehicle of SBB, whose parameters are
carefully measured and then calibrated. Te ultimate goal is
the development of a comprehensive methodology that is
also applicable to in-service trains, which come with more
uncertainties compared to dedicated diagnostic vehicles.
Employing in-service trains that frequently traverse the
railway network allows for continuous monitoring of the
state of tracks and, thus, timely identifcation of damage or
progression of faults. Towards this direction, a distinct
advantage of the proposed scheme lies in the consideration
of the physics of the underlying problem, i.e., the adoption of
a physical model. Considering the physics of the problem
increases the identifcation accuracy while enabling the
utilization of measurements from other parts of the vehicle.

In addition, it allows the fusion of data frommultiple sources
or the fusion of diferent types of data, i.e., accelerations and
strains. Another key feature is the adoption of a UKF for
state-parameter estimation that allows for updating of un-
certain parameters that can possibly afect the identifcation
task, i.e., the contact stifness between the tracks and the
wheels or the mass of the vehicle in the case of in-service
trains. Te proposed approach is herein applied to the
identifcation of longitudinal roughness profles in the
vertical direction but can also be extended to the lateral
direction.

Data Availability

Tedata used to support this studymay be available from the
corresponding author upon request and only after per-
mission from the Swiss Federal Railways (SBB).

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis study was supported by the Stavros Niarchos Foun-
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[34] Dassault Systémes, “Simpack,” 2021, https://www.3ds.com/
products-services/simulia/products/simpack/.

[35] MathWorks, “Matlab,” 2021, https://ch.mathworks.com/de/
products/matlab.html.
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