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Structural condition identifcation based on monitoring data is important for automatic civil infrastructure asset management.
Nevertheless, the monitoring data are almost always insufcient because the real-time monitoring data of a structure only refect
a limited number of structural conditions, while the number of possible structural conditions is infnite.With insufcient monitoring
data, the identifcation performance may signifcantly degrade. Tis study aims to tackle this challenge by proposing a deep transfer
learning (TL) approach for structural condition identifcation. It efectively integrates physics-based and data-driven methods by
generating various training data based on the calibrated fnite element (FE) model, pretraining a deep learning (DL) network, and
transferring its embedded knowledge to the real monitoring/testing domain. Its performance is demonstrated in a challenging case,
vibration-based condition identifcation of steel frame structures with bolted connection damage. First, disparate subsets of test data
are used as training data, and the identifcation accuracy of the whole dataset is evaluated.Te results demonstrate that the proposed
approach can achieve high identifcation accuracy with limited types of training data, with the identifcation accuracy increasing up to
8.57%. Second, numerical simulation data are used as training data, and then diferent TL strategies and diferent DL architectures are
compared on the performance of structural condition identifcation. Te results show that even though the training data are from
a diferent domain and with diferent types of labels, intrinsic physics can be learned through the pretraining process, and the TL
results can be clearly improved, with the identifcation accuracy increasing from 81.8% to 89.1%.Te comparative studies show that
SHMnet with three convolutional layers stands out as the pretraining DL architecture, with 21.8% and 25.5% higher identifcation
accuracy values over the other two networks, VGGNet-16 and ResNet-18.Te fndings of this study advance the potential application
of the proposed approach towards expert-level condition identifcation based on limited real-world training data.

1. Introduction

Metallic structures are an important structural type for trans-
port infrastructure, energy infrastructure, and prefabricated
buildings [1]. As load-transferring elements, bolted connections
in such structures are vulnerable due to stress concentrations,
with localised damage being particularly hard to detect even
under close inspection. However, bolts often sufer from local
failure due to progressive corrosion when exposed to harsh

environments such as moisture or heavy air contaminants [2].
Previous research including [3] showed that loose bolts could
lead to complete loosening of the structural joints, which de-
grades the overall performance of the infrastructure. Terefore,
condition identifcation of bolted connections is essential to
ensure the integrity and safety of the structures.

Structural health monitoring (SHM), which aims to
assess structural conditions accurately and timely, has been
one of the most active research areas in civil engineering in
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the last 30 years [4–7]. Many researchers have investigated
SHMmethods for bolted connections to ensure the safety of
structures in service, which can be categorised as local and
global methods. Local methods include impedance-based
methods [8], methods based on acoustoelastic efects [9],
displacement sensor-based methods [10], and vision-based
methods [11]. However, these methods require the sensors
to be located near the target element.

Compared with local methods, vibration-based methods
have beenmore common in civil infrastructure, as a network
of closely spaced sensors is not necessary [12]. Research on
connection conditions has focused on the development of
analytical models with the change in rotational stifness
taken as a damage indicator [13, 14]. While most existing
studies focus on frame structures, the rotational stifness of
bridge connections shows similar trends (it decreases with
the increase in fatigue damage) [15]. A pilot study [16]
demonstrated that the decay rate of vibration signals in
impact hammer testing, mostly afected by the damping
parameters of connections, can be valuable in understanding
connection conditions. It provides not only additional
features but also the possibility of the direct usage of time-
domain signals in detecting connection conditions.

Compared to the abovementioned methods based on the
calculation and comparison of damage indicators, model
updating [17] can deliver better performance. Simply
speaking, model updating is to fnd the best match of FE-
derived parameters to those obtained from the monitoring
data by iteratively changing the physical parameters in the
FE model using an optimization algorithm, which has been
widely applied to structural condition identifcation [18, 19].
For bolted connection damage, a virtual damper concept
and a two-stage model updating scheme have been pro-
posed, which achieved time-domain simulation consistency
with real test results [20].

It should be noticed that the computational efciency of
model updating methods is usually low. Terefore, recent
research attention has been placed on data-driven methods
employing DL algorithms, which have shown promising re-
sults. Cha et al. proposed to use convolutional neural networks
(CNNs) to detect civil infrastructure defects to partially replace
human-conducted on-site inspections [21, 22]. Te defects
extended from concrete or steel cracks [21] to fve types of
damages: concrete crack, steel corrosion with two levels, bolt
corrosion, and steel delamination [22].Te results showed that
the proposed approach can be efcient and accurate.
Abdeljaber et al. [23] proposed an enhanced CNN-based
approach that was able to successfully identify structural
damage caused by loose bolts on steel frames by collecting only
the datasets of undamaged and fully damaged cases. Te
authors proposed SHMnet [24] to identify damage as small as
a single bolt loosening in a steel frame based on acceleration
time history. Using such methods, the features can be gen-
erated automatically and may achieve better structural con-
dition identifcation results than traditional methods, while
computational costs can be signifcantly reduced [25–27].

Nevertheless, the performance of data-driven methods
depends on the quality and quantity of training data. Te
real-timemonitoring data of a structure only refect a limited

number of structural conditions, while the number of
possible structural conditions, considering damage type,
location, and severity, is infnite. With insufcient training
data, unsupervised learning methods can be used, using only
measured acceleration response data obtained from intact or
baseline structures as training data [28]. Nevertheless, the
unsupervised learning methods may only be able to detect
damage but not quantify the structural condition. Tis may
restrict further development and application of DL methods
in civil engineering.

To cope with this problem, it is generally accepted that
only experiments or numerical simulations can be used to
supplement the training data [4]. Since experiments are
normally expensive and time-consuming, they are unable to
meet the amount required. Terefore, many researchers use
the numerical simulation results as the training data [29, 30].
However, the direct usage of the data derived from fnite
element simulations may be insufcient for multiclass
damage identifcation problems. For example, optimally
selected FE-generated data were used to train DL models for
assessing the conditions of simple structures based on
laboratory test data, while the identifcation accuracy for
a three-classifcation problem was only 83.3% [30]. Tis
demonstrates that the distributions in the numerical data and
real data are often diferent. Transfer learning (TL), which aims
to boost the performance of a target model with limited
training instances by leveraging the knowledge obtained from
diferent but related source domains, has become a research
hotspot recently [31]. Unlike traditional machine learning or
DL techniques that usually require abundant labelled training
resources, TL focuses on transferring existing knowledge
embedded in the pretrained DL models to new target domains
with insufcient training data or labels [32].

Most previous works acquire datasets from the same
structurally realistic experimental model and employ TL
mechanisms to train networks with fewer datasets. However,
TL from the numerical domain to the real domain is more
challenging and requires further research. According to [31],
TL approaches can be interpreted from data and model
perspectives. Data-based approaches focus on transferring
knowledge via the adjustment and transformation of data.
Two strategies are typically implemented to reduce the
distribution diference between the source domain and
target domain instances, namely, instance weighting and
feature transformation. As for the model-based TL methods,
which aim at making accurate predictions on the target
domain, it is intuitive to directly share and/or control the
parameters of the model trained in the source domain. Such
a parameter sharing strategy is widely employed in model-
based approaches [33]. Gardner et al. [34] used three domain
adaptation techniques for damage case classifcation of
structures with either similar or diferent topologies. Lin
et al. [35] proposed a cross-domain structural damage de-
tection method based on deep TL, which generated features
insensitive to diferences between the model and actual
structures by using data from both. Numerical and labo-
ratory results show that the accuracy of the proposed
method improved from 83.17% to 93.30% compared with
that of traditional CNN.
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Synthesizing the reviewed literature, it can be concluded
that the investigation of deep TL is critical for practical SHM
applications. Trough a challenging case on bolt connection
condition identifcation, this study aims to provide a general
structural condition identifcation paradigm to overcome
the contradiction between complex physics and insufcient
real data. It provides a detailed discussion of the training
data preparation, the network pretraining process, and the
TL strategies. Te proposed method is validated with the
experimental results to demonstrate its efectiveness and
applicability. To the best of our knowledge, the work to
investigate the deep TL strategy from the numerical domain
to the experimental domain is still rare in the SHM feld.Te
rest of the paper is organized as follows. Section 2 introduces
the proposed deep TL approach; Section 3 presents the deep
TL algorithm implementation; Section 4 provides the results
and discussion of the cases for validating the proposed
method; and fnally, Section 5 presents the conclusions and
possibilities for further development and other applications.

2. Methodology

2.1. Overview. In this study, a deep transfer learning net-
work, e.g., TL-SHMnet, has been proposed as a structural
condition identifcation scheme. In this study, the di-
mensions and architecture of TL-SHMnet follow SHMnet
[24], as shown in Figure 1. Nevertheless, the proposed
approach is expected to be scalable and general. When
applying this network to other cases, the overall architecture
will remain the same, while the parameters can be opti-
mised/adapted.

Tis section gives an overview of the proposed deep TL
approach for structural condition identifcation by using
a subset of test data or FE simulation data for training
(referred to as cases 1 and 2, respectively, in the next sub-
section). Te fowchart of the proposed method is shown in
Figure 2, which consists of three main steps:

(1) Based on the updated FE and state-space models, an
optimised FE model is obtained, and numerical sim-
ulations are performed to generate training data for
multiple types of damage. It should be noted that for
case 1, this step reduces to gathering subsets of data only.

(2) Te network parameters of SHMnet are selected
according to the characteristics of the numerical
simulation data and used as the baseline model for
training and optimization. Ten, the training data
are augmented by introducing Gaussian noise to the
data, and the network is pretrained on the aug-
mented training dataset.

(3) Te pretrained model parameters are transferred to
the actual test scenarios by using fne-tuning. Tree
diferent strategies are considered by retraining
diferent network parts to fnd the optimal fne-
tuning strategy. Te proposed method will be
tested for damage identifcation, including real
damage scenarios, and the reliability of the proposed
method will be evaluated based on the damage
identifcation results.

2.2. Cases Considered inTis Study. Data-driven structural
condition identifcation methods normally face the
challenge that real damage scenarios may not exist in
training. As a result, the identifcation accuracy may be
unsatisfactory due to the diferent distributions between
the training and test datasets. Terefore, this study
considers two cases to investigate the performance of the
proposed method.

First, DL generally shows excellent identifcation per-
formance by using samples collected from known damage
scenarios. Unfortunately, it is difcult to guarantee that the
actual damage scenario is within the known range, especially
for the damage of bolt connections because its damage
evolution mechanism is still under investigation. In such
a case, the direct use of the DL method may compromise the
accuracy of the identifcation. To evaluate the performance
of the proposed method in this situation, subsets of the
damage scenarios in the laboratory test [24] are used as the
source domain data to pretrain SHMnet, referred to as case 1
thereafter. Subsequently, the network is fne-tuned by using
the remaining datasets, which include damage scenarios
diferent from the training scenarios, i.e., loosened bolts at
diferent locations. Te main goal is to evaluate the per-
formance of the proposed method in the situation when
insufcient test data are available and to provide some
suggestions for designing laboratory tests for training data
preparation. Based on the results, whether TL can learn
general features from limited data will be discussed and the
proposed method will be compared with the traditional DL
framework.

Second, the distribution of numerical simulation data
may be diferent from that of real monitoring data. In ex-
treme cases when the source and target domains are not
similar at all, negative transfer situations may even occur. To
evaluate the performance of the proposed method in such
a situation, this study will use numerical simulation data as
the source domain data and laboratory test data as the target
domain, referred to as case 2 thereafter. In this case, cali-
brated FE and state-space models are employed to generate
time-domain vibration responses of the prototype structure
that match the actual test data almost precisely [20]. Te
results demonstrate the similarity of the data between the
source domain and target domain, so the negative transfer
can be avoided. In this study, systematic numerical simu-
lations are performed, and the results are used as the source
domain training data to pretrain the SHMnet. Te network
is then fne-tuned by using a small amount of actual test data
as the target domain.Te factors afecting the efectiveness of
TL are discussed based on diferent fne-tuning strategies.
Te results are compared with the original model without TL
to demonstrate the advantages of the proposed method.

To further demonstrate the superior performance of the
proposed network, two typical models for each transfer task
were compared: VGG-16 [36] and ResNet-18 [37]. To ensure
a fair comparison, the feature extractors of the two models
were the same and were similarly designed based on the
structure of the SHMnet feature extractor. In addition, the
TL strategies employed were the same as those discussed
earlier.
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3. Algorithm Implementation

3.1. Training Data Generation

3.1.1. Case 1. A single-bay, single-storey steel frame was
constructed in the laboratory. Te details of the steel frame
structure and optimally selected sensor locations [38] are

shown in Figure 3. Experiments were carried out with ten
systematically designed damage scenarios and one intact
scenario, as shown in Table 1. Ten repeated impact hammer
tests were performed for each scenario. Te acceleration
responses at each sensor location, together with the impact
excitation, were recorded with a sampling frequency of
4096Hz and a length of 10,000 data points. For each
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Figure 2: Te fowchart of the proposed method.
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Figure 1: TL-SHMnet: a new deep TL approach.
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accelerometer, a total of 110 sets of structural responses were
recorded. Tese datasets were not only used to construct
SHMnet and to perform the two-stage model updating [20]
but also as the training data source for the present study.
More details on the experimental works can be found in [24].

As shown in Table 1, ten damage scenarios are con-
sidered in addition to the intact scenarios. By categorizing
similar damage scenarios into a single group, they can be
reduced to fve groups, i.e., intact, one bolt loosened, two
bolts loosened, two bolts loosened on both sides, three bolts
loosened, and four bolts loosened. In this study, four dif-
ferent selections of damage scenarios are considered, as
shown in Table 2. Specifcally, Task 1 includes fve damage
scenarios, i.e., 0, 1, 4, 9, and 10, each of which represents
a typical group. Te laboratory test data from the source
domain will be used as training data to pretrain SHMnet.
Te target domain, which consists of the laboratory test data
from the remaining damage scenarios, is used as the testing
data to evaluate the performance of the proposed method in

the identifcation of diferent conditions within the same
group. Tasks 2–4 are used to investigate the performance of
the proposed method when the training data from all groups
are not available. One dataset from each damage scenario is
used as training data to fne-tune the network, while the
remaining fve datasets are used as testing data.

In this case, the number of classes in the target domain is
greater than that in the source domain. Considering the
complexity, a new fully connected (FC) layer will be added to
the existing FC layer of the pretrained network. In the TL
stage, weights in the convolution layers are frozen, while all
FC layers are replaced with new FC layers.

3.1.2. Case 2. To train SHMnet with more damage scenarios,
there is a clear need to numerically simulate structural
behaviour in the time domain. Te traditional FE model
updating techniques provide a similarity in the frequency
domain, and it is shown in [20] that these methods are not
sufcient for estimating the responses in the time domain.
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Figure 3: (a) Portal frame and instrumentation details and (b) bolt details.

Table 1: Designed damage scenarios in [21].

Detail description Damage scenario Category Bolts loosened∗

Intact 0 A All tight

One bolt loosened at one end at diferent locations
1 1
2 B 3
3 2

Two bolts loosened at one end at diferent locations
4 1 and 2
5 C 1 and 3
6 1 and 4

Two bolts loosened at both ends at diferent locations 7 D 1, 2, 5, and 6
8 1, 3, 5, and 7

Tree bolts loosened at one end 9 E 1, 2, and 3
Four bolts loosened at one end 10 F 1, 2, 3, and 4
∗Numbered according to Figure 3.
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On the other hand, the traditional time-domain FE model
updating techniques need an efcient selection of parame-
ters for predicting the response time histories accurately.

In [20], the authors proposed a new virtual viscous
damper, as shown in Figure 4 and a two-stage model
updating method to achieve the similarity in the time do-
main between simulation and test data. Based on the
identifed virtual damping forces, the acceleration time
history estimated by the state-space model almost perfectly
agrees with the actual measured acceleration response, and
the identifed frequency responses successfully pick up the
detailed information. Tis demonstrates that there are
similarities between the data from the two domains, and the
knowledge embedded in the numerical simulation data has
the potential to be learned and transferred to the condition
identifcation of real experimental/monitoring data. It
provides a promising approach to the generation of training
data with user-defned scenarios, which breakthroughs the
restriction of experimental/monitoring data to limited
scenarios. More detailed descriptions of the FE model
updating steps and results can be found in [20].

Te impact of connection stifness may be refected in
the natural frequencies and modes of the structure [39]. In
this study, the FE model of steel frames uses the element
“elasticBeamColumn” to model beams and columns with
three springs to represent the complex joint stifness. As
shown in Figure 4, K1 and K4 act horizontally; K2 and K5 act
vertically; and K3 and K6 act rotationally. After accounting
for the nonlinear damping efects generated from the
structural connections by using a virtual damper, the spring
stifness values have been updated, and the estimated ac-
celerations can match the measured acceleration responses
almost perfectly. In this part of the study, we generate
damage data directly using the updated FE model as the
base model.

Once the base model was obtained, numerical simula-
tions using the updated FE model were performed under
various conditions by reducing the stifness of one or more
of the springs. Specifcally, whole joint damage (K1, K2, and
K3), translational spring damage (K1 and K2), and rota-
tional spring damage (K3) were considered for both sides of
the frame. Six damage levels were defned by reducing the
stifness of specifc components by 2%, 10%, 20%, 50%, and
90%, where a parameter of 0.9 implies a 10% reduction in
stifness, and thus 90% of the original stifness. Te original
spring stifness was already given in [20], and the spring
stifness in damage scenarios is defned according to the
percentage changes. In addition to the intact scenario, a total
of 36 damage scenarios were simulated, as shown in Table 3.

Each combination of damage was computed ten times
with diferent input impact loadings (previously recorded in

the tests [24]), aiming to provide more training data. As
shown, if the impact point was well selected, the condition
identifcation results were not sensitive to the sensor location
and the time-domain structural responses at only one lo-
cation are needed. Terefore, the efect of sensor location is
not discussed in this paper, only the numerical simulation
responses of accelerometer 1, i.e., 262mm from the left end
of the beam, as shown in Figure 3(a), were used.

Te sampling frequency was set at 4096Hz. Each data
sample contains 10,000 data points, while they were
downsampled to 5000 points each before being fed into the
network for training. So, the size of the whole dataset is
37×10× 5000, which composes the data from the source
domain. In addition, the purpose of source domain pre-
training is to allow the network to learn about damage in the
FE domain thoroughly, which divides the training and test
sets in a ratio of 8 : 2 for pretraining and testing of SHMnet.

3.2. Network parameters Setting and Model Pretraining.
To identify the subtle damage shown in Table 1, Zhang et al.
[24] proposed a DL framework called SHMnet, which is
a one-dimensional CNN. SHMnet was trained on the time-
domain data obtained from experimental works, meaning
that time-frequency transformation is not necessary. It
achieved 100% identifcation accuracy for condition iden-
tifcation of the steel frame with bolted connection damage.
In comparison, most traditional model-basedmethods failed
this task because the diferences between modal parameters
under diferent scenarios are too small. Based on the authors’
knowledge, SHMnet is the frst open-sourced DL algorithm
in the SHM feld. It has been used as a benchmark method in
recent studies [40]. Te details of the network architecture
and parameters are shown in Table 4. More details about the
algorithm and its application to the condition identifcation
of bolted connections can be found at https://github.com/
capepoint/SHMnet and Ref [24].

Te proposed network was implemented on the Win-
dows 10 operating system with an Intel Core i9-12900
processor and an NVIDIA GeForce RTX 3090 Ti 24GB
GPU. Te proposed method is implemented with the DL
library PyTorch in the Python IDE Spyder.

Before data from the FE simulation are used as source
domain training data for SHMnet, a data augmentation
scheme needs to be defned, which is commonly used in DL
algorithms to consider various conditions but limited
training data. Te same scheme as the study [24] is followed
by the present study. During the training process, 10%
Gaussian noise is applied to the original training data
whenever a new batch arrives. After such processing, the
input data are converted to a new dataset. With the increase

Table 2: Task setting of TL.

Description Source domain Target domain
Task 1 Damage scenarios 0, 1, 4, 9, and 10 Damage scenarios 2, 3, 5, 6, 7, and 8
Task 2 Damage scenarios 0, 1, 9, and 10 Damage scenarios 2, 3, 4, 5, 6, 7, and 8
Task 3 Damage scenario 0, 1, 4, and 10 Damage scenarios 2, 3, 5, 6, 7, 8, and 9
Task 4 Damage scenarios 0, 1, 4, and 7 Damage scenarios 2, 3, 5, 6, 8, 9, and 10
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Figure 4: Te FE model shows spring and impulse hammer locations.

Table 3: Damage scenarios for FE simulation.

Description K1 K2 K3 K4 K5 K6
Damage scenario 0 Intact 1.0 1.0 1.0 1.0 1.0 1.0
Damage scenario 1

Left Whole

0.98 0.98 0.98 1.0 1.0 1.0
Damage scenario 2 0.95 0.95 0.95 1.0 1.0 1.0
Damage scenario 3 0.9 0.9 0.9 1.0 1.0 1.0
Damage scenario 4 0.8 0.8 0.8 1.0 1.0 1.0
Damage scenario 5 0.5 0.5 0.5 1.0 1.0 1.0
Damage scenario 6 0.1 0.1 0.1 1.0 1.0 1.0
Damage scenario 7

Right Whole

1.0 1.0 1.0 0.98 0.98 0.98
Damage scenario 8 1.0 1.0 1.0 0.95 0.95 0.95
Damage scenario 9 1.0 1.0 1.0 0.9 0.9 0.9
Damage scenario 10 1.0 1.0 1.0 0.8 0.8 0.8
Damage scenario 11 1.0 1.0 1.0 0.5 0.5 0.5
Damage scenario 12 1.0 1.0 1.0 0.1 0.1 0.1
Damage scenario 13

Left Translational

0.98 0.98 1.0 1.0 1.0 1.0
Damage scenario 14 0.95 0.95 1.0 1.0 1.0 1.0
Damage scenario 15 0.9 0.9 1.0 1.0 1.0 1.0
Damage scenario 16 0.8 0.8 1.0 1.0 1.0 1.0
Damage scenario 17 0.5 0.5 1.0 1.0 1.0 1.0
Damage scenario 18 0.1 0.1 1.0 1.0 1.0 1.0
Damage scenario 19

Right Translational

1.0 1.0 1.0 0.98 0.98 1.0
Damage scenario 20 1.0 1.0 1.0 0.95 0.95 1.0
Damage scenario 21 1.0 1.0 1.0 0.9 0.9 1.0
Damage scenario 22 1.0 1.0 1.0 0.8 0.8 1.0
Damage scenario 23 1.0 1.0 1.0 0.5 0.5 1.0
Damage scenario 24 1.0 1.0 1.0 0.1 0.1 1.0
Damage scenario 25

Left Rotational

1.0 1.0 0.98 1.0 1.0 1.0
Damage scenario 26 1.0 1.0 0.95 1.0 1.0 1.0
Damage scenario 27 1.0 1.0 0.9 1.0 1.0 1.0
Damage scenario 28 1.0 1.0 0.8 1.0 1.0 1.0
Damage scenario 29 1.0 1.0 0.5 1.0 1.0 1.0
Damage scenario 30 1.0 1.0 0.1 1.0 1.0 1.0
Damage scenario 31

Right Rotational

1.0 1.0 1.0 1.0 1.0 0.98
Damage scenario 32 1.0 1.0 1.0 1.0 1.0 0.95
Damage scenario 33 1.0 1.0 1.0 1.0 1.0 0.90
Damage scenario 34 1.0 1.0 1.0 1.0 1.0 0.8
Damage scenario 35 1.0 1.0 1.0 1.0 1.0 0.5
Damage scenario 36 1.0 1.0 1.0 1.0 1.0 0.1
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in training epochs, the online data augmentation tech-
nique can generate increasing volumes of new data, which
proves to be an efective way of dealing with the overftting
problem. In addition, this online data augmentation ap-
proach does not require much data storage space com-
pared to the ofine approach since the generated data are
only used during training. After each training epoch, they
will be replaced with another set of newly generated data.
It is worth noting that while new data can be created at
each epoch, the generated data are highly correlated with
the original data, meaning that the intrinsic physics is kept
during the process.

3.3. Fine-Tuning. In this study, the focus will be on the fne-
tuning approach for TL. For case 1, subsets of the laboratory
test data are used as the source domain, while for case 2, the
FE simulation data are selected. Tese data are used for
model pretraining. Te target domain data are obtained
from laboratory experiments, including the intact scenario
and ten damage scenarios, and the test for each scenario is
repeated ten times, so the size of the target domain dataset is
110×10000. Some labelled data from the target domain are
used to assist in training the transfer model for the
target task.

For fne-tuning methods, it is important to explore
which layers need to be fne-tuned and which layers contain
features that can be transferred for structural condition
identifcation problems. In case 2 of this study, the per-
formance under diferent transfer parameters will be dis-
cussed and can be further divided into three standard
transfer strategies [33].Te frst is to freeze the convolutional
layer and fne-tune the FC layer by transferring the weights
of the pretrained classifer and adapting it to the target task
by fne-tuning it; the second is to fne-tune the convolutional
layer and the FC layer on top; and the last is to retain the
architecture and weights of the pretrained SHMnet, transfer
the model to the target domain, and fne-tune the whole
network model. A detailed image of the transfer strategy is
explained in Figure 5.

A series of comparative experiments are used to
validate the generalization of model damage identifcation
under diferent TL strategies. Finally, an optimal TL
strategy that balances the calculation speed and accuracy
will be obtained.

4. Results and Discussion

In this section, two case studies are carried out to verify the
efectiveness of the proposed method. Te training, fne-
tuning, and testing are run on a computational server with
confguration as follows: Intel(R) Xeon(R) Gold 6248 CPU
@ 2.50GHz, A100 GPU (40GB), and 50GB memory.

4.1. Case 1: TL from Laboratory to Laboratory

4.1.1. Pretraining Results. Te SHMnet network is trained
using several damage scenarios in the source domain, and
each damage scenario is pretrained using fve sets of data.
Te training settings for each task have been provided in
Subsection 3.1.1. Te testing accuracy is calculated using the
remaining fve sets of data for each damage scenario. Fig-
ure 6 shows the training/testing results, i.e., the accuracy and
loss history curves. Accuracy� blue line up to the left vertical
axis and loss� red line down the right vertical axis. It can be
seen from the curves of each task that convergence can be
achieved within 300 epochs. Te training time is 778 s,
1168 s, 958 s, and 1029 s for Tasks 1, 2, 3, and 4, respectively.
For all tasks, the training accuracies are 100% since the
training data are just subsets of the original data from Ref
[24], on which SHMnet was trained.

4.1.2. TL Results. To investigate the generalization ability of
the pretrained network, it is then fne-tuned to identify other
subsets of untrained damage scenarios. For example, in Task
1, fve sets of damage scenarios 0, 1, 4, 7, and 10 were used as
the source domain to train the network.Te trained network
was fne-tuned using just one set of the remaining damage
scenarios: 2, 3, 5, 6, 8, and 9. After the training was com-
pleted for each task, fve repeated test results were used as
testing data to obtain the damage condition identifcation
accuracy.Te TL processes for the other tasks are the same as
for task 1. Teir results are summarized in Table 5 and
visualized in Figure 7.

As can be seen, the accuracy of damage condition
identifcation for Tasks 1–4 using the TL method has been
improved by 0%, 8.57%, 2.86%, and 5.71%, respectively. For
Task 1, the lack of signifcant improvement in damage
condition identifcation accuracy is because the damage
subset used for fne-tuning contains all representative

Table 4: Te confguration of the SHMnet architecture.

Layer Type Kernel size Stride Activation Input shape Output shape
1 Convolution1d 7 1 ReLU 1∗ 5000 16∗ 4994
2 Maxpool1d 3 2 — 16∗ 4994 16∗ 2496
3 Convolution1d 5 1 ReLU 16∗ 2496 64∗ 2492
4 Maxpool1d 3 2 — 64∗ 2492 64∗1245
5 Convolution1d 3 1 ReLU 64∗1245 256∗1243
6 Maxpool1d 3 2 — 256∗1243 256∗ 621
7 Dropout (p � 0.5) — — — 158976 158976
8 Dense — — ReLU 158976 1024
9 Dropout (p � 0.5) — — — 1024 1024
10 Dense — — ReLU 1024 1024
11 Dense — — — 1024 11
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damage categories and thus can learn all important features.
Terefore, without the pretraining knowledge, the network
could identify damage conditions with high accuracy, and
this leads to insignifcant TL efects. For Tasks 2–4, the
selected damage subsets are not representative or not fully
representative. Te TL method allows generic damage fea-
tures to be extracted, which efectively improves the accu-
racy of damage condition identifcation.

Regarding the testing duration, since this method uses
a frozen convolutional layer approach, only 54,720 pa-
rameters were frozen after the transfer, leaving 163,853,323
parameters still available for fne-tuning. Terefore, little
diference in training time between the transfer and without
transfer methods has been found.

To analyze the TL efects in more detail, a confusion
matrix for damage condition identifcation was obtained for
each task, as shown in Figure 8. As can be seen in Tasks 1–4,
the confusion matrix results show that damage scenarios 2
and 3 are indistinguishable with and without transfer. It
means that when the damage is small, the method can
correctly detect and quantify the damage, while cannot
identify the damage bolt location.

In Task 2, the confusion matrix shows that the network
identifes damage scenario 4 as 7 by prediction without TL.
Both scenarios 4 and 7 have loose bolts 1 and 2, and the only
diference is that the latter also has loose bolts 5 and 6 on the
other side. Since the training data for both scenarios were
not available for this task, it is reasonable that the pretrained
network could not discern these two scenarios. After TL, the
structural condition identifcation accuracy is signifcantly
improved. It demonstrated that fne-tuning could transfer

the damage knowledge in the form of parameters even when
the initial training data are limited and that only a small
amount of data are needed for fne-tuning.

In contrast, although Tasks 3 and 4 presented im-
provements after TL, it is not as signifcant as that of Task
2. Two reasons can be attempted to explain these. First, the
selection of extreme damage scenarios is important. Te
comparison between Tasks 2 and 4 shows that extreme
damage scenario 10, a damage scenario with four bolts
damaged simultaneously, is important for the accuracy of
damage identifcation. Te reason behind this is that the
extreme damage scenario may contain distinguishable
common damage features which can be learned through
the fne-tuning process, which leads to signifcantly im-
proved identifcation results. Second, the selection of
similar scenarios may contribute to the improvement of
the TL results. For example, Tasks 2 and 4 have very
similar damage scenarios: 3 and 9 and 4 and 7, re-
spectively. Due to their similarity, the learned features can
identify the diference between similar scenarios to im-
prove the identifcation accuracy after TL. Tese fndings
guide our further research on the TL from numerical data
to laboratory test data.

4.2. Case 2: TL from FEM to Laboratory

4.2.1. Pretrained Results. Based on previous research [24],
the number of training epochs was set to 1000 and the batch
size to 32. For the training process, a variant of Adam’s
algorithm for stochastic gradient descent was used as the
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Figure 5: TL strategies using the pretrained SHMnet model. (a) Schematic explanation of Freeze convolutional layers (Strategy 1). (b)
Schematic explanation of freeze part of FC layer (Strategy 2). (c) Schematic explanation of fne-tuning the entire pretrained model
(Strategy 3).
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optimization algorithm. In the stage of training, a learning
rate of 1× 10−4 was used to train the network. Tese
hyperparameters were selected and optimised based on
previous experience in DL practice. Based on extensive
parametric studies, the optimal pretrained network structure
is obtained and shown in Table 6.

Numerical simulation results are used to train SHMnet,
as described in Section 3.3.2. Te pretrained results are
shown in Figure 9. It can be seen that the testing accuracy is
around 80%.

4.2.2. TL Results. After pretraining on the numerical data,
the pretrained network parameters are preserved by freezing
diferent parts of the network structure, and the network is
fne-tuned by using laboratory test data. In addition,
a transfer-of method is introduced, where SHMnet will be
trained on a set of actual damage data directly without
a pretraining process. Te model feature profles for each
method are summarized in Table 7.

Te performance of TL is shown in the confusion matrix
in Figure 10 and summarized in Figure 11. Te accuracy

1.5

1.0

0.5

0.0

Lo
ss

100

80

60

40

20

A
cc

ur
ac

y 
(%

)

0 200 400 600 800 1000
Epoch

Training Accuracy
Testing Accuracy

Training Loss
Testing Loss

(a)

100

80

60

40

A
cc

ur
ac

y 
(%

)

0 200 400 600 800 1000
Epoch

Training Accuracy
Testing Accuracy

Training Loss
Testing Loss

Lo
ss

1.25

1.00

0.75

0.50

0.25

0.00

(b)

100

80

60

40

A
cc

ur
ac

y 
(%

)

0 200 400 600 800 1000
Epoch

Training Accuracy
Testing Accuracy

Training Loss
Testing Loss

Lo
ss

1.25

1.00

0.75

0.50

0.25

0.00

(c)

0 200 400 600 800 1000
Epoch

Training Accuracy
Testing Accuracy

Training Loss
Testing Loss

100

80

60

40

A
cc

ur
ac

y 
(%

)

Lo
ss

1.25

1.00

0.75

0.50

0.25

0.00

(d)

Figure 6: Training accuracy and loss history of the train datasets: Tasks 1–4, (a) Task 1, (b) Task 2, (c) Task 3, and (d) Task 4.

Table 5: Comparison of condition identifcation accuracy and training time of each task.

With transfer Without transfer
Accuracy improvement (%) Time reduction (s)

Accuracy (%) Time (s) Accuracy (%) Time (s)
Task 1 96.67 522 96.67 529 0 7
Task 2 97.14 594 88.57 614 8.57 20
Task 3 88.57 596 85.71 610 2.86 14
Task 4 91.42 608 85.71 617 5.71 9
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Figure 7: Comparison of condition identifcation accuracy of each task.
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Figure 8: Continued.
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Figure 8: Damage identifcation confusion matrix with and without TL: (a) Task 1, (b) Task 2, (c) Task 3, and (d) Task 4.

Table 6: Te confguration of the pretrained model architecture.

Layer Type Kernel size Stride Padding Activation Input shape Output shape
Feature extraction
1 Convolution1d 7 1 0 ReLU 1∗ 5000 16∗ 4994
2 MaxPool1d 3 2 0 — 16∗ 4994 16∗ 2496
3 Convolution1d 5 1 0 ReLU 16∗ 2496 64∗ 2492
4 MaxPool1d 3 2 0 — 64∗ 2492 64∗1245
5 Convolution1d 5 1 0 ReLU 64∗1245 256∗1245
6 MaxPool1d 3 2 0 — 256∗1243 256∗ 621
Classifcation
7 Dropout (p � 0.5) — — — — 158976 158976
8 Dense — — — ReLU 158976 1024
9 Dropout (p � 0.5) — — — — 1024 1024
10 Dense — — — ReLU 1024 1024
11 Dense — — — ReLU 1024 37
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Figure 9: Training and testing accuracy values within the numerical domain.

Table 7: Results of diferent transfer strategies.

Method
Data structure Model parameter

Input size Training/Testing sample Trainable Frozen
Transfer of 5000∗1 11/55 163,908,043 —
Transfer on; Strategy 1 5000∗1 11/55 163,853,323 54,720
Transfer on; Strategy 2 5000∗1 11/55 65,995 163,842,048
Transfer on; Strategy 3 5000∗1 11/55 163,908,043 —
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Figure 10: Continued.
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results of each method are 81.8%, 89.1%, 67.3%, and
87.3%, respectively. Strategy 1 delivers the best perfor-
mance. Te confusion matrix corresponds to a 7.3%
improvement in damage identifcation accuracy before
and after transfer. Te reason for the better performance
of Strategy 1 is that the target experimental domain
dataset and the source numerical domain dataset are
similar in shallow features but slightly diferent in deep
features. Te shallow layer common to the source task is
already extracted from the convolutional layer and
damage features from the source task. By keeping the
weights of the convolutional kernel constant and fne-
tuning the FC layer with the real data, the feature rep-
resentation can be adapted to the target task and can be
a feature representation to the target task, allowing the
knowledge of the pretrained model to be reused to reduce
the complexity of the model and to reduce the risk of
overftting, thus aiding the real-world damage identif-
cation and improving the performance of the model.

For Strategy 2 which only fne-tunes the convolution
layers, the model fails to learn the features from real-world
data. Te basic reason for this phenomenon is that most of

the parameters of the network are present in the frst two FC
layers, which are usually trained on large-scale datasets
containing a large amount of knowledge. Terefore, freezing
the frst two FC layers may inhibit the knowledge transfer of
the pretrained model, limiting the expressiveness of the
model and thus making it less efective.

While using Strategy 3 which fne-tunes the whole
model, the models are overftted to the limited target domain
data. Terefore, Strategy 1 that freezes the parameters of the
convolution layer retrains the FC layer and is both efcient
and efective. In such a case, more knowledge learned from
the training data can be embedded into the new tasks. It can
be concluded that TL can learn standard features from
diferent domains. With limited actual test data for training,
the knowledge learned from numerical simulation data can
be used to signifcantly improve the damage condition
identifcation accuracy.

It should be noted that the defnitions of damage sce-
narios in the numerical simulation domain and the labo-
ratory test domain are diferent.Tis is quite often the case in
practice because in simulation, the structure will be sim-
plifed to represent the most important static and dynamic
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Figure 10: Te corresponding confusion matrices for diferent transfer strategies.
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Figure 11: Accuracy of diferent transfer strategies under real damage scenarios.
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mechanism, while in tests, it is more complex.Terefore, the
design of numerical simulation scenarios is not necessarily
the same as what will happen in real cases. Nevertheless, the
results in this study show that even if the numerical sim-
ulation scenarios are diferent from the test scenarios, TL can
signifcantly improve the identifcation accuracy. Tis
demonstrates the practical efectiveness of TL-SHMnet as
proposed for structural condition identifcation.

4.2.3. Comparison of Diferent Convolutional Networks.
To verify the superior performance of the network used, the
classical models VGG-16 and ResNet-18 are also compared,
respectively, using the same pretrained and transfer
strategies. In traditional CNN architecture, the last set of
features is fattened into a high-dimensional feature
vector, and each feature is connected to each neuron in the
FC layer for classifcation, which directly leads to a large
number of network parameters. Taking the three archi-
tectures discussed above, that is, SHMnet, ResNet-18, and
VGG-16, as examples, the distributions of parameters
between the front frozen convolutional block and the later
trainable FC layers are shown in Table 8. Te majority of
parameters are distributed in the FC layer. Te con-
volutional block only occupies a small proportion of
parameters, which are responsible for feature learning and
extraction. Tis part is essential for the condition iden-
tifcation tasks. Te accuracy of SHMnet, VGG-16, and
ResNet-18 are 89.1%, 67.3%, and 63.6%, respectively, and
the results are shown in Figure 12.

Based on the results presented in Table 8 and Figure 12, it
can be inferred that SHMnet outperforms the other two
networks by a signifcant margin in terms of damage rec-
ognition accuracy, with a 21.8% and 25.5% improvement
over the other two networks when adopting transfer Strategy
1, respectively. Further analysis reveals that despite SHMnet
having the highest number of parameters among the three
networks, it has fewer convolutional layers due to its

architecture. With a small training dataset, an increase in the
number of convolutional layers can lead to overftting of the
network, resulting in a lower identifcation accuracy in the
test set. Meanwhile, the shallow convolutional layers are
capable of extracting common damage features in the FE
domain, while the deeper convolutional layers extract high-
level features that are specifc to the corresponding task. As
the distribution of damage features in the FE domain may
difer from the actual damage distribution, VGG-16 and
ResNet-18 fail to perform well with transfer Strategy 1, even
after freezing the deep convolutional layers, which results in
a decrease in their damage recognition accuracy.

Further, the computational durations of SHMnet, VGG-
16, and ResNet-18 are compared. For the pretraining stage,
the durations are 3.5 hours, 3 hours, and 3 hours, re-
spectively. For the fne-tuning stages, the durations are
33mins, 34mins, and 35mins, respectively.Te results show
that the computational efciency for training diferent
networks is similar. With the training data, the network can
be efciently trained and transferred. Regarding the iden-
tifcation duration, all three networks can deliver the
identifcation results within 1s. Terefore, the proposed
approach is promising to fulfl the requirement of real-time
structural condition identifcation in practice.

Overall, the results confrm that TL-SHMnet is
a promising approach to accurate and efcient structural
condition identifcation.

4.3. Discussion. As a general structural condition identif-
cation scheme, the proposed deep TL approach can be
extended to practical engineering applications, e.g., struc-
tural condition identifcation of urban bridges. In such a real
case, the measurement of structural responses and inputs,
e.g., structural displacement/accelerations under random
vehicle loads are needed. Te accuracy of real-time data
acquisition and processing will be positively related to the
accuracy and reliability of the algorithm. More importantly,
an accurate and efcient numerical model which can achieve

Table 8: Te main parameter settings of the three models.

Model
Data structure Model parameter

Input size Training/testing sample Trainable Frozen
SHMnet 5000∗1 11/55 163,853,323 54,720
VGG-16 5000∗1 11/55 41,029,131 9,831,552
ResNet-18 5000∗1 11/55 878,603 3,843,648
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Figure 12: Comparison of accuracy of diferent networks.
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time-domain alignment with the real structure such as [20],
serving as a structural dynamic digital twin, is needed to
generate more training data.

It should be noted that an emerging approach, gen-
erative adversarial networks (GANs), can also be used to
enrich the training data. GANs have been successfully
employed in various domains to address the scarcity of
real-world data. Te authors proposed to use this ap-
proach to complement the limited monitoring data [41].
Ali and Cha successfully applied GANs to the internal
damage segmentation using thermography [42]. Te use
of GANs may largely enhance the efciency and perfor-
mance of structural condition identifcation and thus is
worth further investigation.

5. Conclusion

In this paper, a structural condition identifcation approach
based on the TL technique, TL-SHMnet, is proposed, which
can efectively solve the challenging problems of limited
training data and low accuracy in condition identifcation
tasks. Te approach is based on previous research outcomes,
a DL network, SHMnet, and a calibrated FE model for a steel
frame with bolted connection damage. Te contribution of
this study is to demonstrate its efectiveness when a large
amount of numerical data, while only a small amount of test
data can be used for training, and their defnitions of damage
are not necessarily the same. Trough the case study, the
optimal network parameters and transfer strategies are se-
lected and the approach is validated on the laboratory test
data of a steel framework. Te following conclusions can be
drawn:

(1) When there are only limited training data, the
identifcation accuracy without TL inevitably de-
grades. By using the proposed TL approach, the
accuracy can be signifcantly improved. Tis is
correct no matter whether the pretraining data and
testing data are from the same domain or not. In this
study, for data from diferent domains, the results
increased up to 7.30%.

(2) For the case with data from diferent domains,
diferent transfer strategies may lead to diferent
accuracy results. By freezing the convolutional layers
and then fne-tuning the FC layers, the damage
condition identifcation accuracy increased from
81.8 to 89.1%. Tis may be diferent from the results
in other studies but suitable for SHM tasks with
limited real-world data and dissimilar to the nu-
merical domain. Future investigations on large and
complex datasets will be conducted to further in-
vestigate the reasons to fnd the optimal design using
the TL strategies.

(3) Diferent networks are compared using the same
transfer strategy, and the results suggest that
SHMnet is a promising model for damage recog-
nition tasks in FE simulation, with a 21.8% and 25.5%
improvement over the other two networks VGG-16
and ResNet-18.

Overall, the study presents a promising TL approach
which can improve structural condition identifcation ac-
curacy through pretraining and fne-tuning. Future studies
can be placed on the application of the proposed approach to
real problems, such as urban bridge condition identifcation.
Te methods of constructing digital twin models or
employing GANs to generate more training data are
worthwhile for further in-depth investigation. It is expected
to provide a new paradigm for structural condition iden-
tifcation and be of great engineering signifcance.
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