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Integrating structural health monitoring (SHM) data into reliability assessment has increasingly been practiced in the condition
evaluation of in-service bridges over the past decade. Te selection of probability distribution models for load- and resistance-
related random variables is a prerequisite for monitoring-based reliability assessment. However, the underlying probabilistic
assumptions of the used models could be restrictive and unverifable especially when dealing with real-world heterogeneous
monitoring data, weakening the confdence on the estimated reliability index. Tis study aims to develop a nonparametric
Bayesian model with the Dirichlet process prior for bridge reliability assessment, where the model order constraint can be released
such that the complexity of the model adapts to the observed data. Reliability analysis via the nonparametric Bayesian model
allows the aleatory uncertainty and the epistemic uncertainty arising frommonitoring data to be concurrently accounted for in the
formulated reliability index. A numerical example is presented to verify the efectiveness of the nonparametric Bayesian model for
dealing with multimodal data. Te feasibility of the proposed approach for reliability assessment is then demonstrated with one-
year strain monitoring data acquired from a large-scale bridge instrumented with the SHM system.

1. Introduction

Exposed to aggressive environmental conditions and con-
fronted with ever-growing trafc demands, large-scale
bridges sufer from unavoidable deterioration over their
life cycle. Health condition of in-service bridges is no doubt
a main concern to the stakeholders and the professionals,
and methods for bridge condition assessment have been
widely studied over the past three decades [1–7]. Conven-
tional practice involved in bridge condition assessment
includes but not limited to visual inspection, nondestructive
testing, controlled load testing, and instrumentation with the
structural health monitoring (SHM) system. Beneftting
from the rapid advances in sensing, data acquisition, data
processing, data management, and computing technologies,
the deployment of SHM systems on bridge structures is
becoming popular across countries around the world [8–13].

With the use of multiple types of sensors permanently
deployed on bridges, the on-structure long-term SHM
systems enable to collect measurement data automatically
and continuously about the structural responses, external
loadings, and environmental efects for in-service bridges. In
this connection, instrumentation with the on-line SHM
system plays a key role in bridge inspection that allows
neither access to the bridge nor interruption of trafc ser-
vice. SHM-enriched bridge condition assessment is deemed
to be an objective approach to raise judicious decisions for
inspection and repair, leading to condition-based preventive
maintenance of in-service bridges that facilitates the optimal
use of limited resources.

In recognition of the existence of substantial un-
certainties that afect structural condition assessment,
reliability-based methods have been developed for bridge
assessment in component and/or system levels in view of
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their ability to address randomness in load- and resistance-
related variables [1, 14]. Apparently, the inclusion of site-
specifc long-term monitoring data helps to alleviate the
extent of uncertainty in probability models associated with
load and resistance, leading to higher confdence in the
estimated reliability index [3, 4, 15–17]. Te selection of
probability distribution models for load- and resistance-
related random variables is a fundamental requirement in
the execution of monitoring-based reliability assessment. It
is common to employ standard distribution models such as
normal, log-normal, Weibull, and Gumbel to depict the
statistical characteristics of random variables involved in the
assessment. However, the standard distribution models can
barely capture complicated distributional features such as
skewness, asymmetry, heavy-tail, or multimodality en-
countered in real-world measurement data. In reality, in-
service bridges are concurrently subjected to multiple types
of loadings including highway trafc, railway trafc, mon-
soon, typhoon, ambient temperature, and their combina-
tions, resulting in heterogeneous structural responses with
multimodal distribution properties [5, 16–19]. Te use of
conventional unimodal distribution models to represent the
multimodal structural responses observed may cause con-
siderable bias in model estimation.

To address the above issue, the fnite mixture distribu-
tion models [20, 21], which comprise multiple weighted
component densities, have been put forward to interpret real
datasets with heterogeneity. Ni et al. [5, 22] proposed
a model of mixture of multivariate distributions to formulate
the SHM-derived stress spectrum for fatigue reliability as-
sessment of steel bridges. Xia et al. [18] conducted reliability
assessment for a large-scale bridge where the Weibull
mixture distribution in conjunction with the expectation
maximization algorithm was applied to characterize the
monitored stress responses. Obrien et al. [23] adopted bi-
modal and trimodal normal distribution models to, re-
spectively, describe the data of gross vehicle weight and axle
spacing recorded by weigh-in-motion stations. Li et al. [24]
employed the Gaussianmixture model for patternmodelling
of the cable tension ratio with intent to assess the condition
of stay cables. Ye et al. [25] developed a genetic algorithm-
based fnite mixture modelling approach to construct the
joint distribution of wind speed and wind direction mea-
sured from a bridge SHM system. In the aforementioned
studies, the mixture parameters (component parameters and
mixing weights) were estimated based on the classical fre-
quentist probability theory, with the use of inference
techniques such as the expectation maximization algorithm,
the hybrid estimation method, and the genetic algorithm. In
this regard, only optimal point estimates of the unknown
mixture parameters were available, whereas uncertainties
inherent in the mixture parameters arising from variability
and error in the observed data as well as due to model
imperfection were neglected in the frequentist approach.Te
Bayesian probability theory provides a promising framework
to statistical inference on observed data, in particular the
ability to interpret uncertainties in parameter and model
estimations [26]. An increasing amount of research has been
devoted to applying Bayesian inference techniques for

uncertainty quantifcation of engineering problems, in-
cluding model updating [27–29], system identifcation
[30–34], vibration-based damage detection [35–39], and
reliability analysis [40–44]. Recently, the Bayesian inference
on mixture models has been explored in order to further
account for the uncertainty in estimation of mixture pa-
rameters. Figueiredo et al. [45] presented a Bayesian
inference-based mixture distribution approach to clustering
structural responses for damage detection of bridges under
temperature variability. Ni and Chen [46] proposed
a monitoring-based bridge reliability assessment procedure
in terms of the Bayesian mixture model.

In the application of parametric mixture models, the
number of components, also known as model order, is often
required to be specifed in advance of the statistical in-
ference, which is equivalent to posing restrictive constraint
on the complexity of the model. Over- or under-ftting of the
parametric model may arise due to the discrepancy between
model complexity and unknown data to be interpreted.
Terefore, a challenging issue in parametric modelling is
how to determine the optimal model for the data. Although
model selection metrics such as Akaike’s information cri-
terion, the Bayesian information criterion, and the Bayes
factor were used in the previous studies to fnd the mixture
model with optimal number of components, the compu-
tational cost is prohibitively high, especially under a multi-
tude of candidate models. Te nonparametric Bayesian
inference [47–49] paves a novel way to sidestep the optimal
model selection problem. Rather than competing multiple
candidate models with varying complexities, the non-
parametric Bayesian approach is to ft a single model whose
complexity can freely adapt to the data. As opposed to
parametric models equipped with fxed number of param-
eters, the nonparametric Bayesian models are built upon an
infnite-dimensional parameter space, allowing the com-
plexity of the models to be expandable when more data are
observed. Te nonparametric Bayesian approach has been
applied to address statistical and machine learning tasks, for
example, regression, classifcation, clustering, density esti-
mation, and time series modelling [47, 49], showing fa-
vorable modelling capabilities. Recently, the attempts to use
the nonparametric Bayesian models for SHM applications
were also reported, including health diagnosis under
changing environmental conditions [50, 51] and operational
modal analysis [52].

A nonparametric Bayesian mixture model-based ap-
proach for reliability assessment of in-service bridges using
long-term SHM data is put forward in this study, which is an
extension of the authors’ work on reliability assessment of
in-service bridges using long-term SHM data and the
parametric Bayesian mixture model [46]. Te Dirichlet
process prior, a prior over distributions with wide support, is
employed for the nonparametric Bayesian inference such
that the number of components in the elicited mixture
model is itself a random variable depending on the volume
of observed data. Te inference of the nonparametric
Bayesian mixture model in line with monitoring data then
simultaneously recovers both the most plausible number of
components needed and the most plausible mixture PDF, as
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well as their associated uncertainties. In this regard, the
nonparametric Bayesian mixture model without model
order constraint stands to be an improvement over the
parametric counterpart [46]. Trough modelling random
variables via the nonparametric Bayesian mixture model in
reliability analysis, it allows both the intrinsic variability and
the statistical modelling uncertainty arising from moni-
toring data to be accounted for in the elicited
reliability index.

Tis article is organized as follows: Fundamentals of the
Dirichlet process and formulation of the nonparametric
Bayesian mixture model with the Dirichlet process prior are
introduced in Section 2. By marginalizing out the unknown
component parameters from the conditional posterior
probability distribution, an efcient collapsed Gibbs sampler
is explored to iteratively perform the posterior inference on
the mixture model, whilst a scale reduction factor-based
diagnostic is used to quantitatively examine the convergence
of the Gibbs iteration process. Section 3 proposes a bridge
reliability assessment procedure in terms of the non-
parametric Bayesian mixture model, where the elicited
conditional reliability index is successively updatable with
accumulatively collected SHM data. A numerical example
involving estimation of the multimodal dataset is presented
in Section 4 to verify the efectiveness of the nonparametric
Bayesian mixture model. A case study by using one-year
strain monitoring data acquired from the suspension Tsing
Ma Bridge is provided in Section 5 to demonstrate the
proposed reliability assessment procedure in compliance
with the nonparametric Bayesian model, where monthly
evolution of the reliability estimates of the deck cross-section
members is derived. Results are also compared with those
obtained by the parametric Bayesian approach. Section 6
summarizes key fndings of the study and gives concluding
remarks.

2. Nonparametric Bayesian Mixture Model

2.1. From Parametric to Nonparametric Models. Before
proceeding to the nonparametric Bayesian mixture model, it
is instructive to review the parametric fnite mixture model
(FMM). Let p(∙) denote the probability density function
(PDF) of a random variable. Te parametric FMM is
composed of fnite number of weighted standard distribu-
tions, and the PDF can be parametrically expressed [20, 21]
as follows:

p(y | θ) � 
K

k�1
ωkf y θk

 , (1)

wheref(∙ | θk) is the k th component density parameterized by
θk; ωk denotes the mixing weight of the k th component,
satisfying 0≤ωk ≤ 1 and 

k
k�1ωk � 1; and K ∈ Z+ is the

prespecifed constant model order. In the Bayesian paradigm,
the unknownmixture parameters θ � ω1, · · · ,ωK, θ1, · · · , θK 

are treated as random variables, whosemost plausible estimates
and the associated uncertainties can be inferred from the
observed data. As can be seen, the model order K of the
parametric FMM is restricted, with the Bayesian inference on

the mixture parameters θ being pursued within a fxed and
fnite-dimensional parameter space. When there is mismatch
between the complexity of the model and the amount of data
available, the trained model may sufer from over- or under-
ftting of data.

Te nonparametric Bayesian mixture model is a fexible
alternative to the parametric counterpart. Now, suppose
a sequence of data y � y1, · · · , yN  is observed and consider
a special case that each data point is assigned to a unique
component, i.e., K is equal to the number of data points N.
When sufcient data points stream in, the nonparametric
solution can be viewed as an extension of the parametric FMM
by taking K to be a countably infnite integer as follows:

p(y | θ) � 
∞

k�1
ωkf y | θk( , (2)

where θ encapsulates the entire set of the infnite-
dimensional mixture parameters. Equation (2) is referred
to as the infnite mixture model (IMM) [53], where K de-
pends on N. Trough defning the model over an infnite-
dimensional parameter space, it enables the nonparametric
Bayesian model to invoke a fnite subset of the available
mixture parameters in inference, whilst the invoked pa-
rameter dimension relies on the observed data set. In other
words, it is not necessary to employ as many clusters as the
data points; instead, only a fnite number of efective
components are needed to represent the model. As such,
aside from the uncertain mixture parameters, the model
order K is admitted to be a random variable that adapts to
the size of observed data. Learning the nonparametric
Bayesian model from data automatically recovers both the
most plausible model order and the most plausible mixture
PDF, as well as the associated uncertain bounds.

By expunging the assumption of fxed model order, the
nonparametric Bayesian approach afords greater fexibility
in data interpretation and data-driven modelling than the
parametric counterpart.

2.2. Dirichlet Process Prior. In pursuit of the Bayesian in-
ference of nonparametric models such as the IMM, one
needs to frst select prior distributions for the infnite-
dimensional model parameters θ. Unlike imposing prior
distributions on the parameters of the FMM separately, the
infnite-dimensional parameter space typically constitutes
functions or measures, therefore requiring workable priors
over functions or measures other than individual parame-
ters. Te Dirichlet process (DP) is an appropriate choice
being the prior over distributions, and it is also one of the
building blocks in nonparametric Bayesian methods [49]. In
this section, fundamental properties of the DP will be
outlined, which are essential to formulate the nonparametric
Bayesian mixture model.

Te DP is a stochastic process whose generated trajec-
tories are probability measures with probability one. Sam-
ples from a DP can be interpreted as random probability
distributions, and one may loosely view the DP as a distri-
bution over distributions. Formally, a random probability
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functionG to be distributed according to a DP can be written
[54] as follows:

G ∼ DP α, G0( , (3)

where G0 is a base measure over the probability space and
α ∈ R+ is a positive concentration parameter. Roles of G0
and α playing in a DP are analogous to those of mean and
variance in a normal distribution: (1) the base measure G0 is
the expectation of G, i.e., realizations from the DP fall
around G0; and (2) the concentration parameter α refects
the difusion of G about G0, i.e., the larger the value of α, the
more concentrated the realizations around the mean.

As G is a distribution, a sequence of independent and
identically distributed samples θ1, · · · , θN  can be drawn
from G itself. Te posterior distribution of G conditioned on
the observed values of θ1, · · · , θN  is again a DP with an
updated concentration parameter and base measure as
follows:

G θ1, · · · , θN

 ∼ DP α + N,
α

α + N
G0 +

N

α + N


N
i�1δθi

N
⎛⎝ ⎞⎠,

(4)

where δθi
is the Dirac measure (a point mass) located at atom

θi. Te posterior base measure is the predictive distribution
of θN+1 as follows:

θN+1 θ1, · · · , θN

 ∼
α

α + N
G0 +

N

α + N


N
i�1δθi

N
, (5)

where the random G has been marginalized out. Notice that
the right-hand side of equation (5) consists of a weighted
average over the prior base measure G0 and the empirical
distribution 

N
i�1δθi

/N of θ. Specifcally, the predictive dis-
tribution (5) states that if one draws a distribution
G ∼ DP(α, G0) and then draws a sequence of samples
θ1, · · · , θN ∼ G, it endows a new sample θN+1 with a positive
probability to be relocated at previous draws θ1, · · · , θN.
Since the value of any draw from G can be repeated by
another draw, it further implies that G is a discrete distri-
bution regardless of the smoothness of G0. In addition, for
a long enough sequence of samples from G, multiple θi’s can
share with an identical value, casting in group structures of
the sequence of θ1, · · · , θN . Te discreteness and clustering
properties enable a DP to serve as a nonparametric prior for
mixture models.

Te clustering property of a DP renders a random
partition over the data index set 1, · · · , N{ }. Te distribution
over the random partitions is called the Chinese restaurant
process (CRP) [55] due to a metaphor. Imagine a restaurant
with infnitely many tables and a sequence of customers
waiting outdoor. Te frst customer enters and sits on the
frst table, followed by the second customer who sits in the
frst table with probability of 1/(1 + α), or chooses a new
table with probability of α/(1 + α). Te generalization of the
CRP is that the ith customer either chooses the kth occupied
table with probability proportional to the number of cus-
tomers already sitting there or sits on a new unoccupied
table with probability proportional to α. At any time point of

this process, the allocation of customers to tables defnes
a random partition. Let P(∙) denote the probability of
a random event. Formally, the conditional probability
governing the CRP can be expressed as follows: Let zi � k be
the allocation for the ith customer to the kth table. Samples
from the CRP can be drawn [48] as follows:

P zi � k z−i

  �

n−i,k

α + N − 1
, if k is an occupied table,

α
α + N − 1

, if k is a new table,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(6)

where z−i are the allocations of n − 1 customers excluding
the ith customer and n−i,k is the number of customers sitting
at the kth table excluding the ith customer. As such, clus-
tering using unbounded mixture models can be character-
ized by the CRP, where the customers represent the indices
associated with observations and tables represent the in-
fnitely many components.

Te explicit realization of a DP is attained by the stick-
breaking construction [56] as follows:

βk ∼ B(1, α), (7a)

ωk � βk 

k−1

l�1
1 − βl( , (7b)

θ∗k ∼ G0, (7c)

G � 
∞

k�1
ωkδθ∗k , (7d)

whereB denotes the beta distribution and θ∗k is the kth unique
value of θ1, · · · , θN . Suppose there is a stick of length one, the
total probability is represented to be assigned to the atoms.Te
stick is frst cut of with a length of β1 ∼ B(1, α), and
a probability mass of ω1 � β1 is assigned to the frst generated
atom θ∗1 ∼ G0.Ten, the remaining (1 − β1) length of the stick
is again cut of with a length of β2 ∼ B(1, α). Meanwhile,
a probability mass of ω2 � β2(1 − β1) is assigned to the next
generated atom θ∗2 ∼ G0. Te process continues so that the
stick is divided into infnite number of segments with each
segment representingweighted pointmass.Te infnite sumof
the weighted point masses constitutes the discrete random
distribution G, which is DP-distributed. Te stick-breaking
construction over ω � ωk 

∞
k�1 can be conveniently written as

ω ∼ GEM(α).

2.3.DirichletProcessGaussianMixtureModel. Since random
distributions drawn from a DP are of discreteness without
any PDFs, it is inappropriate to employ the DP directly as
a prior distribution on the mixture model if the aim is to
estimate the underlying PDF of the observed data. A non-
parametric solution to this issue is the kernel technique by
convolving G with a continuous density function [26] as
follows:
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p(y) � K(y | θ)dG(θ), (8)

where K(∙ | θ) is a continuous kernel density function
indexed by θ and G ∼ DP(α, G0). If the Gaussian density is
adopted as the kernel, the nonparametric density as defned
by equation (8) resembles the IMM of equation (2) due to
the clustering property of the DP, where yi’s sharing the
same value of θi are classifed as a cluster.Te resulted model
is referred to as the Dirichlet process Gaussian mixture
model (DPGMM). In this study, the base measure G0 is
chosen to be the normal-inverse-chi-square distribution,
which is a conjugate prior for the Gaussian kernel, and the
atom θi � μi, σ2i  is the mean and variance of the Gaussian
kernel. With the aid of DP’s stick-breaking construction, the
DPGMM can be explicitly expressed in a sampling form [54]
as follows:

ω ∼ GEM(α), (9a)

zi |ω ∼ Mult(ω), (9b)

θ∗k ∼ H ξ0, κ0, s
2
0, ]0 , (9c)

yi zi, θ∗k 
∞
k�1

 ∼ N θ∗zi
 , (9d)

where ω are the mixing weights generated by equations
(7a)–(7d); zi is the component indicator of yi, and it is
drawn from a multinomial distribution denoted as Mult; H
is the normal-inverse-chi-square distribution with
ξ0, κ0, s20, ]0  being its hyperparameters; and θ∗k � μk, σ2k  is
the kth Gaussian parameter drawn from H. A graphical
representation of the DPGMM is shown in Figure 1(a). As
can be seen, the DPGMM is a mixture model with countably
infnite number of components; however, because the
mixing weights ωk’s decrease exponentially quickly
according to the DP’s stick-breaking construction, only
a limited number of efective components will be invoked in
the DPGMM. Te model complexity of the DPGMM can
freely accommodate the amount of observed data, which is
diferent from the fnite Gaussian mixture model (FGMM)
shown in Figure 1(b) that fts data using a fxed number of
Gaussian components.

2.4. Posterior Inference Using the Collapsed Gibbs Sampler.
Exact inference on DP-based models is computationally
intractable since the analytical posterior distributions of the
models are often inexistent. In recent years, approximate
Bayesian inference algorithms based on the Markov chain
Monte Carlo (MCMC) strategy have been developed to
numerically pursue the posterior distributions of the models
[26].Te logic of the MCMC-based algorithms is to generate
a sequence of samples from the approximate distribution
and then correct the samples such that the limiting distri-
bution will be close to the target distribution. In this study,
the collapsed Gibbs sampler [57], an efcient MCMC-based

algorithm, is employed to estimate the posterior PDF of the
DPGMM. Te procedure of the collapsed Gibbs sampler is
summarized in Figure 2. In contrast to the Gibbs sampler
applied in the FGMM [46], the collapsed Gibbs sampler
enables a higher posterior sampling efciency to be attained
by working in a low-dimensional parameter space through
marginalizing out the unknownGaussian parameter θ∗k from
the conditional posterior probability. To be more specifc,
the collapsed Gibbs sampler is pursued in a back-to-front
way that, in each iteration step, one may temporarily waive
the sampling of θ∗k for each component and instead draw the
component indicator zi for each data item yi frst as shown
in the blue box in Figure 2. It is feasible because the con-
jugate prior used allows θ∗k to be integrated out and the
conditional posterior probability of zi is analytically avail-
able. According to the clustering property of the DP, in each
iteration step, the yi’s with the same assignment zi � k are
probabilistically grouped together as the kth cluster and θ∗k
can be directly estimated by the conditional posterior dis-
tributions as shown in the green box in Figure 2. Evidently, it
is more efcient to draw θ∗k for yi’s that belong to a same
component than to draw θi for each yi in an iteration step.

Te conditional posterior distributions of the DPGMM
are derived as follows. To elicit the conditional posterior
probability of zi, the CRP representation now serves as the
prior probability for zi since no data have been observed. By
applying Bayes’ theorem, the conditional posterior proba-
bility of zi after combining the data likelihood is derived as
follows:

P zi � k z−i, y
 ∝P zi � k z−i

 p y zi � k, z−i

 

� P zi � k z−i

 p yi y−i, zi � k, z−i

 

p y−i zi � k, z−i

 

∝P zi � k z−i

 p yi y−i,k

 ,

(10)

where y−i is the subset of y � y1, · · · , yN  without taking
account of yi and y−i,k is the set of observed data assigned to
the kth component without taking account of yi. Te frst
term on the right-hand side of equation (10) is the prior of zi

which can be readily obtained by equation (6). Te second
term is the predictive distribution of yi which has Student’s t
distribution [58] as follows:

p yi y−i,k

  �  p yi θ∗k
 p θ∗k y−i,k

 dθ

θ � T yi ξk,
κk + 1
κk]k

s
2
k, ]k


 ,

(11)

in which the hyperparameters are explicitly updated by

ξk �
κ0ξ0 + n−i,ky−i,k

κ0 + n−i,k

, (12a)

κk � κ0 + n−i,k, (12b)
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s
2
k �

1
]0 + n−i,k

]0s
2
0 + 

h∈k,h≠i
yh − y− i,k 

2⎛⎝

+
κ0n−i,k

κ0 + n−i,k

y− i,k − ξ0 
2
,

(12c)

]k � ]0 + n−i,k, (12d)

where n−i,k and y−i,k are the number of samples and the
sample mean of y−i,k, respectively. By substituting equations
(6) and (11) into equation (10), the conditional posterior
probability of zi is expressed as follows:

P zi � k z−i, y
  �

n−i,k

α + N − 1
T yi ξk,

κk + 1
κk]k

s
2
k, ]k


 , for k≤K,

α
α + N − 1

T yi ξ0,
κ0 + 1
κ0]0

s
2
0, ]0


 , if k � K + 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(13)

Notice that the predictive distribution of yi now has two
diferent expressions: (i) posterior predictive distribution: if
zi � k(k≤K) is an existing component with y−i,k being the
assigned data points, the predictive distribution is Student’s t
distribution with updated hyperparameters ξk, κk, s2k, ]k 

and then evaluated at yi; (ii) prior predictive distribution: if
zi � K + 1 is a new component given no observations, i.e.,
y−i,k � ∅, the predictive distribution is Student’s t distri-
bution with hyperparameters ξ0, κ0, s20, ]0  and then eval-
uated at yi. Hence, sampling zi with equation (11) admits
a new component, apart from other existing components, to
be created and either to grow up or fade away in a proba-
bilistic manner during the Gibbs iterations. Unlike the
FGMM whose model order is a constant, the efective
number of components K adopted in the DPGMM is

a random variable varying across the posterior samples. In
this point, the DPGMM can be viewed as a fully Bayesian
approach for mixture modelling in which the unknown
mixture parameters and model order are both treated as
random variables to be identifed from data. Without the
need of assuming the model order a priori, the DPGMM
confers greater data adaptivity and higher error tolerance
than the FGMM for interpreting data.

As long as the allocation of data points z � z1, · · · , zN  is
inferred at the current iteration step, the estimation of the
Gaussian parameter and the mixing weight for each com-
ponent can be obtained straightforwardly in a similar way to
that of the FGMM [46]. Te conditional posterior distri-
bution of the mixing weights ω obeys to the Dirichlet
distribution:

(a) (b)

Figure 1: Graphical illustrations of the (a) DPGMM and (b) FGMM.
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START

Input data
y = {y1, … , yN}

Specifying hyperparameters
{α, ξ0, k0, s2

0, v0}

Parameter initialization
(e.g. k-means algorithm)

Gibbs iterations: For t = 1: T

Data re-allocation: For i = 1: N

Remove data yi from current component

If yi is the only data
item in current

component

Yes

No

Draw μk
(t) |σk

2(t) , yk
(t) , z(t) using Equation (15)

Component estimation: For k = 1: K(t)

Evaluate p (y |θ(t)) using Equation (18)

Convergence
diagnosis

Yes
Discard burn-in samples and

summarize the posterior estimation

No

END

Delete empty
component and re-
arrange component

 indices to k(t) – 1

Predictive mixture PDF of
Equation (19)

5-95 credible bounds of
Equation (20)

Draw σk
2(t) |yk

(t) , z(t) using Equation (16)

Add data item yi back to component according to zi
(t)

I. Sampling of zi
(t) 

II. Sampling of θk
(t)

, y using Equation (13)Draw new zi
(t) |z–i

(t–1) 

Draw ωk
(t) |y, z(t) using Equation (14)

Figure 2: Te fowchart of the collapsed Gibbs sampler for the DPGMM.
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ω | y, z ∼ Dir n1, · · · , nK( . (14)

Te conditional posterior distribution of μk given σ2k is
the Gaussian density:

μk σ2k, yk, z
 ∼ N ξk, σ2k/κk , (15)

and the marginal posterior distribution of σ2k is the scaled
inverse-chi-square density:

σ2k yk, z
 ∼ InvC ]k, s

2
k , (16)

in which the hyperparameters are explicitly updated by

ξk �
κ0ξ0 + nkyk

κ0 + nk

, (17a)

κk � κ0 + nk, (17b)

s
2
k �

1
]0 + nk

]0s
2
0 + 

i∈k
yi − yk( 

2⎛⎝

+
κ0nk

κ0 + nk

yk − ξ0( 
2
,

(17c)

]k � ]0 + nk, (17d)

where yk is the set of observed data assigned to the kth
component; and nk and yk are the number of samples and
the sample mean of yk, respectively. Notice that equations
(17a)–(17d) resemble equations (12a)–(12d) except that the
data point yi is not accounted for in the latter.

Posterior inference with the collapsed Gibbs sampler can
be performed once the conditional posterior distributions
are accessible. As illustrated in Figure 2, for the tth iteration
step (t � 1, · · · , T), the sampler frst draws allocation z

(t)
i for

each data item yi (i � 1: N) successively with conditional
parameters z(t−1)

−i from the previous iteration step (t − 1),
where a new component may be generated and an empty
component without data should be deleted. Ten, it draws
ω(t)

k , μ(t)
k , and σ2(t)

k (k � 1: K) conditioned on the updated
data assignment z(t). Te process iterates to produce se-
quences of posterior model parameters. Since parameter
dimension changes across the Gibbs iteration, summarizing
the posterior distributions of individual model parameters of
the DPGMM is unattainable. In this study, the mixture PDF
samples based on the estimated parameters at each Gibbs
iteration step are formulated to represent the posterior in-
ference results as follows:

p y θ(t)
  � 

K(t)

k�1
ω(t)

k N y μ(t)
k , σ2(t)

k

 , (18)

where θ(t) � ω(t), μ(t),Σ(t), K(t)  now encapsulates the es-
timated model parameters at the t th iteration.

At the beginning of the Gibbs run, the generated PDF
samples are far from the true posterior PDF. After discarding
a certain number of early draws, referred to as burn-in
samples B, the remaining G � T − B samples are deemed

as the posterior mixture PDF samples. Te Bayesian esti-
mation of the DPGMM is summarized in terms of the
generated posterior mixture PDF samples. Te predictive
mixture PDF is defned as the pointwise mean function of
the posterior mixture PDF samples:

p(y) � G
− 1



G

g�1
p y θ(g)

 . (19)

Tis is a nonparametric density estimation averaging
over the trans-dimensional parameter space, which repre-
sents the most plausible mixture PDF given the observed
data. Meanwhile, the variability of posterior mixture PDF
samples refects the efect of model order and parametric
uncertainties (modelling uncertainties) arising from inter-
preting the observed data with the DPGMM. By measuring
the upper and lower credible bounds of the pointwise
density, it enables themodelling uncertainties to be explicitly
quantifed. Let P � p(y∗ | θ(1)), · · · , p(y∗ | θ(G))  denote
a set of random density values evaluated at y∗ using equation
(18). Te 5–95 credible bounds of the posterior PDF at y∗

can be formulated as follows:

P0.05, P0.95 . (20)

2.5. Quantitative Convergence Diagnosis. Convergence
monitoring is important in performing MCMC-based in-
ference techniques because only the generated samples after
convergence can be used to represent the true posterior
distribution. Convergence diagnosis strategies based on
quantitative criteria are generally preferable in that they
provide the exact number of iterations needed to attain
convergence, thereby avoiding conservative estimates of the
burn-in period B and the total number of iterations T.

A scale reduction factor-based diagnosis method [59] is
adopted here to quantitatively assess the convergence of the
collapsed Gibbs sampler. In this method, the log likelihood
values ϕ of the generated mixture PDF samples, being
a coherent statistic metric throughout the iterations, are frst
formulated as follows:

ϕ(t)
� −2 ln p y θ(t)

  , (21)

where p(y | θ(t)) is evaluated by equation (18) given the
observed data y. Ten, multiple chains of ϕ can be produced
simultaneously via running the collapsed Gibbs sampler
from diferent starting points. By both splitting the se-
quences of ϕ between chains and betweenmodels (generated
PDF samples with diferent K), several types of estimates of
variance for ϕ can be constructed as given in Appendix,
including the total varianceV, the within-chain varianceWc,
the within-model variance Wm, the variance within both
chains and models WmWc, the between-model variance Bm,
and the within-chain variance split between and averaged
over models BmWc. After sufcient iterations, if the Gibbs
iterations are converged, then both V and Wc should well
approximate the true variance, both Wm and WmWc should
well approximate the within-model variance, and both Bm

and BmWc should well approximate the between-model
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variance. Here, the between-model variance refers to the
variance of ϕ with respect to the generated PDFs with
diferent K, while the within-model variance refers to the
variance of ϕ with respect to the generated PDFs with
identical K. Hence, the scale reduction factors of the true
variance, the within-model variance, and the between-model
variance are formulated as follows:

RT �

�����������
T − 1

T
+

V

TWc



,

RW �

��������������
T − 1

T
+

Wm

TWmWc



,

RB �

�������������
T − 1

T
+

Bm

TBmWc



.

(22)

Evidently, the values of all scale reduction factors will
reach one as the iteration goes. In the present study, con-
vergence monitoring is performed by simultaneously gen-
erating two chains for ϕ and the convergence is guaranteed
when all scale reduction factors satisfy |R − 1|< 10− 3.

3. Reliability Assessment Using the
Nonparametric Bayesian Mixture Model

3.1. Formulation of the Conditional Reliability Index. Te
proposed nonparametric Bayesian model can serve as the
statistical descriptive models for reliability assessment to
further account for the modelling uncertainties arising from
the structural resistance and load efect characterization
using monitoring data. Suppose R and S are the structural
resistance and the load efect with θR and θS being the as-
sociated uncertain model parameters, respectively. Te limit
state function can be defned as follows:

h(X,Θ) � R θR(  − S θS( , (23)

where X � R, S{ } is the set of the basic random variables and
Θ � θR, θS  is the set of uncertain model parameters. Here,
h � 0 denotes the limit state, while h< 0 denotes the failure
state. Without loss of generality, the failure probability es-
timate Pf involving the uncertain model parameters Θ can
be defned [14, 42] as follows:

Pf � P(h(X,Θ)< 0)

� 
h<0

 pX(x |Θ)p(Θ|D)dΘ dx,
(24)

where pX(x |Θ) is the joint PDF of X and p(Θ |D) is the
joint posterior PDF ofΘ given the monitoring/test dataD. If
the posterior PDF p(Θ |D) is sought by an MCMC algo-
rithm, Pf can be efciently estimated by the Monte Carlo
method as follows:

Pf � G
− 1



G

g�1
Pf Θ(g)

 

� G
− 1



G

g�1


h<0
pX x Θ(g)

 dx,

(25)

where Pf(Θ) � 
h<0pX(x |Θ)dx is termed the conditional

failure probability. With the inferred posterior samples ofΘ,
the samples of Pf(Θ) can be readily obtained through well-
established reliability computational tools, such as the frst-
order reliability method (FORM), the second-order re-
liability method (SORM), and the importance sampling
method (ISM) [42]. Equation (25) ofers a general solution to
the evaluation of failure probability involving uncertain
model parameters.

In general, the resistance R and the load efect S can be
regarded as mutually independent random variables, i.e.,
pX(x |Θ) � pR(r | θR)pS(s | θS), whilst R can be adequately
expressed by a unimodal distribution model. When the load
efect S is described with the nonparametric Bayesian
mixture model elicited frommonitoring data, the samples of
Pf(Θ) can be obtained as follows:

Pf Θ(g)
  � 

K(g)

k�1
ω(g)

Sk


hk<0
pR r θ(g)

R

 pSk
s θ(g)

Sk

 dr ds,

(26)

where Sk denotes the kth component of the multiload efect;
pSk

(s | θSk
) and ωSk

are the component density and the
mixing weight associated with the kth component, re-
spectively; and ∪ K(g)

k�1 hk � h is the failure domain condi-
tioned on Θ(g). Equation (26) can be approximated by
FORM provided that R and Sk conform to the Gaussian
distribution:

Pf Θ(g)
  ≈ 

K(g)

k�1
ω(g)

Sk
Φ −βk θ(g)

R , θ(g)

Sk
  , (27)

where βk(θR, θSk
) � (μR − μSk

)/(σ2R + σ2Sk
)1/2 is the reliability

estimate associated with the kth component of load efect
conditioned on θR and θSk

. It follows that the samples of
β(Θ), termed as the conditional reliability index, can be
obtained by

β Θ(g)
  � −Φ− 1

Pf Θ(g)
  , (28)

where Φ−1 is the inverse cumulative probability density of
the standard normal distribution. Equation (28) unveils that
the sample value of the conditional reliability index β(Θ) is
a function with respect to the uncertainmodel parametersΘ,
leading β(Θ) itself to be a random variable due to the nature
of uncertainty of Θ. In this regard, aside from the intrinsic
variability of resistance and load efect, the uncertainties
stemming from statistical modelling and measurement error
of monitoring data can also have infuence on reliability
assessment. Hence, a reliability index estimate β considering
both aleatory uncertainty and epistemic uncertainty can be
attained as the sample mean of β(Θ) as follows:
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β � μβ � G
− 1



G

g�1
β Θ(g)

 . (29)

Te sample standard deviation of β(Θ) quantifes the
variation about the reliability index estimate as follows:

σβ �

�����������������


G
g�1 β Θ(g)

  − μβ 
2

G − 1




.
(30)

By virtue of the nonparametric Bayesian method,
multiple types of uncertainties in reliability analysis can be
efectively treated, making their efects on the reliability
estimate be explicitly quantifed.

3.2. Bayesian Updating of Reliability Estimate. With suc-
cessively acquired SHM data, the conditional reliability
estimate, which is a random variable, can be regularly
updated based on Bayes’ theorem to enable an evolutionary
structural condition assessment over the concerned moni-
toring period. Te notation β is used instead of β(Θ)

hereafter for brevity.
In the Bayesian probability theory, assume that the

conditional reliability index β conforms to the Gaussian
distribution with uncertain parameters θβ � μβ, σ2β . Sup-
pose the reliability estimate for the mth monitoring interval
is βm ∼ N(β | θm

β ) with the dataset Dm. As the monitoring
data accumulate, when the dataset Dm+1 in relation to the
(m + 1) th monitoring interval is available, the samples of
βm+1 can be obtained using equation (28). However, the
conditional reliability index βm+1 solely inferred from the
dataset Dm+1 is potentially biased to portray the current
structural condition in that the statistical information of the
earlier reliability index βm has been ignored. To overcome
this weakness, the posterior distribution of θm+1

β is frst
sought by applying Bayes’ theorem:

p θm+1
β βm+1 ∝p βm+1 θm

β

 p θm
β , (31)

where p(θm
β ) is the prior distribution of θβ for the (m + 1) th

monitoring interval and it is also the posterior distribution
of θβ for the m th monitoring interval. Updating of the
reliability estimate β is achieved by evaluating the posterior
predictive distribution as follows:

p β
m+1

βm+1  �  p β
m+1

θm+1
β , βm+1

 p θm+1
β βm+1 dθm+1

β ,

(32)
where β

m+1
is termed the predictive reliability index in re-

lation to the (m + 1) th monitoring interval. It is found that
β

m+1
provides more comprehensive information than βm+1

in which the former incorporates the historical structural
condition knowledge. When the monitoring data are cu-
mulatively available, the Bayesian updating scheme can be
successively executed to assess the evolutionary structural
condition. Note that equation (32) can be solved analytically
if the conjugate prior of θβ is employed [26].

4. Numerical Example

Te nonparametric Bayesian modelling approach, including
the DPGMM, the collapsed Gibbs sampler, and the scale
reduction factor-based convergence diagnosis method as
presented in Section 2, is applied to a trimodal dataset to
verify the efectiveness for modelling heterogeneous data.
Te trimodal dataset with a sample size of 2000 is generated
according to the following mixture distribution:

0.6N(1, 0.2) + 0.2N(5, 2) + 0.2N(10, 1). (33)

Figure 3(a) shows the histogram of the trimodal dataset
and the predictive mixture PDF as well as the associated
uncertain bounds estimated by the nonparametric Bayesian
approach, respectively. For comparison, the results obtained
by the parametric Bayesian approach are also provided in
Figure 3(a). Noticeable discrepancies are observed between
the estimated PDFs of the two approaches, where the
nonparametric PDF denoted with a red solid line has higher
peaks than the parametric PDF denoted with a grey solid line
at around y � 1 and y � 10. As for cumulative distribution
function (CDF), as depicted in Figure 3(b), it is observed that
the nonparametric model fts the trimodal dataset better
than the parametric model, especially the details at around
y � 1 and y � 10.

To quantitatively compare the efcacy of the non-
parametric Bayesian modelling approach and the parametric
counterpart, the goodness-of-ft of the estimated PDFs and
the computational time required by the two approaches are,
respectively, evaluated as shown in Table 1. Te goodness-
of-ft is measured using two metrics, including the P value of
the Kolmogorov–Smirnov test (K-S test) and the log like-
lihood value, which favor better ftting with a higher value.
Te results of K-S tests at a signifcant level of 0.05 fail to
reject the null hypotheses for both the nonparametric PDF
and the parametric PDF. It should be noted that the P value
of the K-S test of the nonparametric PDF is greater than that
of the parametric PDF, indicating a higher ftting quality is
achieved by the proposed nonparametric Bayesian ap-
proach. Similarly, the log likelihood value of the non-
parametric PDF is larger than that of the parametric PDF,
verifying better goodness-of-ft of the estimated non-
parametric model as well. Regarding the computational
efciency, it takes about 4.63 hours to infer the parametric
PDF, in which the majority of time is spent on optimal
model order selection under multiple candidate models.
Since the model order selection is avoided in the process of
nonparametric Bayesian inference, the computation time
required is 1.66 hours, which is much shorter than that of the
parametric counterpart. Te computation was performed by
the MATLAB platform on a PC with Intel Xeon CPU E5-
1620 and 16GB RAM. From Table 1, it is found that the
proposed nonparametric Bayesian modelling approach
outperforms the parametric approach in dealing with het-
erogeneous data in terms of better goodness-of-ft and
higher computational efciency.
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5. Application to Tsing Ma Bridge

5.1. Tsing Ma Bridge and Its Strain Monitoring Data. Te
Tsing Ma Bridge (TMB) as depicted in Figure 4 is a sus-
pension bridge in Hong Kong with a main span of 1377m
and an overall length of 2.16 km, linking the airport and the

city center. Te bridge has a double-level truss-stifening
box-shape steel deck, where the upper level has a dual three-
lane highway and the lower level has two airport railway
lines and two emergency lanes, maintaining the diurnal
access of the highway and railway vehicles. Being one of the
most essential components in the transportation network of
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Figure 3: Estimation of the trimodal dataset. (a) PDF. (b) CDF.

Table 1: Comparison of nonparametric and parametric approaches for modelling the trimodal data set.

Nonparametric approach Parametric approach

Goodness-of-ft P value of the K-S test 9.053e+ 01 2.141e+ 01
Log likelihood value −3.867e+ 03 −3.884e+ 03

Computation time (hour) 1.66 4.63
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Hong Kong, the TMB was instrumented with a sophisticated
long-term SHM system by the Highways Department of the
Hong Kong Special Administration Region (SAR) Gov-
ernment since the completion of the bridge construction.
Apart from other categories of sensors, a total of 110 strain
sensors were deployed at three bridge deck sections, i.e., the
middle of the MaWan side span, theMaWan tower, and the
3/4 of the main span, as highlighted in Figure 4(a). Te
longitudinal trusses of the bridge deck ofer majority of
vertical bending stifness for accommodating the bridge
loads; thus, it is a priority to pay attention to the long-term
serviceability of the truss elements during routine operation.
In a typical monitored cross-section, for example, section
CH24662.50, two suites of strain gauges, tagged as SP-TLN-
01, SS-TLN-01, SP-TLN-02, SP-TLN-05, and SS-TLN-03 at
the north side and tagged as SP-TLS-01, SS-TLS-01, SP-TLS-
02, SP-TLS-12, and SS-TLS-09 at the south side were in-
stalled on the surfaces of the top chords, diagonal struts, and
bottom chords of the longitudinal trusses as illustrated in
Figure 5, measuring dynamic strain responses experienced
by the bridge. Te sampling frequency of the strain data
acquisition was set to 51.2Hz.

One-year monitoring data of strain under routine oper-
ation of the TMB are used for this study. Figure 6(a) exem-
plifes the 12-month raw strain data collected continuously by
the sensor SP-TLN-05 deployed at the bottom chord of the
north longitudinal truss at section CH24662.50, where the
positive value denotes compressive strain and the negative
value denotes tension strain. Te static strain due to initial
dead loads is not measurable since the sensors were installed
after the completion of bridge construction. It can be observed
from Figure 6(a) that the dynamic strain responses, under the
combined action of highway trafc, railway trafc, monsoon,
typhoon, and temperature, vary within a range of −300 με to
200 με over the year. To investigate the details, a 7-day time
history of the strain responses is plotted in Figure 6(b). It is
observed that the strain time history exhibits seven cycles
notably, each of which represents one-day strain variation as
exemplifed in Figure 6(c).

Te measured strain is relatively small between 2:00 am
and 5:00 am as shown in Figure 6(c), since the airport
express railway was closed during that period. A low-
frequency strain component is observed in the 24-hour
raw data, which has been demonstrated to be the efect of
daily temperature variation [60]. Te thermal strain, al-
though quite large, contributes little to the stress because the
majority of it is released by the free movement of bridge deck
at the expansion joints. On that account, the thermal strain
as absorbed at the expansion joints is excluded from the total
strain in subsequent reliability analysis. A wavelet-based
multicomponent decomposition procedure [60] is utilized
to separate the thermal strain, and the strain response after
eliminating the temperature efect for the bottom chord is
exemplifed in Figure 7.

By multiplying the elastic modulus E of steel, the strain
response after eliminating the temperature efect is con-
verted to stress response based on the fact that the bridge is
in elastic deformation under routine operation. Figure 8
shows the monitoring-derived stress for the bottom chord

under the live loads in a typical 30-minute duration. It is
observed that the stress fuctuates rapidly with peaks
(negative) that have diferent amplitudes. Te peak values
with higher amplitudes are recognized as railway-induced
stress response, while the peak values with lower amplitudes
are mainly caused by highway trafc. An adaptive peak
counting method [61] is then applied to identify the peak
stress values from the stress time history to construct the
peak stress population in onemonth as shown in Figure 9(a).
It can be seen that the peak stress values are randomly
dispersed but mostly clustered to two stress levels. Te in-
between values among the two stress levels are mainly the
efect of normal wind loads. Te peak stress values above the
higher amplitude level are primarily the results from two
scenarios: (i) two trains passing each other in opposite di-
rections on the bridge (approximately two such events occur
in one hour) and (ii) strong winds (e.g., typhoons) hitting
the bridge in combination with highway/railway trafc.
Figure 9(b) shows the histogram of peak stresses in one
month, where the stress distribution has notably two peaks,
exhibiting a multimodal response feature.

Following the above procedure, the month-by-month
peak stress sequences of the top chord, diagonal strut, and
bottom chord of the north longitudinal truss at section
CH24662.50 are obtained as the live load efects for sub-
sequent reliability assessment.

5.2.NonparametricBayesianEstimationofMultimodal Stress.
Te nonparametric Bayesian modelling approach described
in Section 2 is applied to the month-by-month peak stresses
to infer their unknown PDFs and to estimate the associated
uncertainties. Modelling of stress response of the bottom
chord in January is taken as an example to demonstrate the
proposed nonparametric Bayesian approach. Te collapsed
Gibbs sampler is set to run for T � 10000 iterations. Te
mixture PDF samples generated from the collapsed Gibbs
sampler in the initial, middle, and fnal stages are plotted in
Figure 10, respectively. It can be seen that, apart from some
early draws with fat distributional shapes, the generated
mixture PDF samples quickly converge to the target dis-
tribution as the iteration continues. To quantitatively ex-
amine the convergence of the collapsed Gibbs sampler, the
scale reduction factors of the true variance RT, the within-
model variance RW, and the between-model variance RB are
computed along with the iterations. Figure 11 shows that all
the scale reduction factors quickly approach one, certifying
the convergence of the collapsed Gibbs sampler performed.
Te convergence statistics are listed in Table 2, where the
scale reduction factor of the true variance RT needs more
iterations than the other two factors to decline to one. Based
on the convergence statistics, the burn-in period for the
Gibbs iterations is determined as B � 5000, and the
remaining G � T − B � 5000 samples from the Gibbs iter-
ations are regarded as posterior mixture PDF samples, which
are then used to construct the PDF of the peak stresses.

Te model order of the DPGMM is a random variable
such that it keeps varying along with the iterations of the
collapsed Gibbs sampler. Figure 12 shows the variation of
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model order K of the generated mixture PDF samples
through the entire Gibbs run and the distribution of K after
burn-in period for modelling the peak stresses at the bottom
chord in January. It can be seen that the values of the model
order are relatively small in the early stage, thus producing
fat distribution samples as indicated in Figure 10(a). It then
becomes larger and reaches to stationarity after the burn-in
period. Te most frequently occurring model order for the
bottom chord is K � 9 as observed from the histogram in
Figure 12. As can be seen from Figures 10 and 12, after the
burn-in period, the posterior mixture PDF samples with
higher model order can better depict the target distribution
of peak stresses.

After obtaining the posterior mixture PDF samples, the
predictive mixture PDF and the associated uncertain bounds
can be evaluated by using equations (19) and (20),

respectively. Figure 13 plots the estimated predictive mixture
PDFs and their associated 5–95 uncertain bounds of the
multimodal stress responses for the top chord, diagonal
strut, and bottom chord in January, respectively. Results
obtained by the parametric approach are also provided in
Figure 13 for comparison. It is observed that the estimated
nonparametric PDFs represented by red solid lines ft the
stress histograms better than the parametric PDFs denoted
by grey solid lines for all the three truss members. It is worth
mentioning that the nonparametric approach performs
better in the tail part modelling of stress distributions, which
has a marked infuence on the evaluation of failure prob-
ability. Table 3 compares the model orders used in and the
goodness-of-ft of the two approaches. It is found that the
nonparametric approach tends to adopt more components
in mixture modelling for the three truss members. Te
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Figure 4: Layout of TMB and strain monitoring sections. (a) Deck sections instrumented with strain sensors. (b) Deck cross-section.
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Figure 5: Deployment of strain sensors on longitudinal trusses. (a) Elevation view. (b) Cross-sectional view.
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Figure 6: Raw strain data measured at bottom chord of north longitudinal truss. (a) Annual strain. (b) Weekly strain. (c) Daily strain.
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Figure 9: Extracted peak stresses in one-month duration. (a) Peak stress sequence. (b) Histogram of peak stresses.
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Figure 10: Posterior mixture PDF samples generated from Gibbs iterations. (a) Initial stage (t� 1 :1000). (b) Middle stage (t� 5001 : 6000).
(c) Final stage (t� 9001 :10000).
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goodness-of-ft is evaluated with the P value of the K-S test
and the log likelihood value, respectively. Both the P value
and the log likelihood value of the nonparametric models are
noticeably higher than those of the parametric models,
verifying that a better ftting quality is achieved by the
proposed approach. In Figure 13, the 5–95 uncertain bounds
depicted by red dotted lines unveil the variability in PDF
estimation due to the model order and parameter un-
certainties as considered in the nonparametric approach.

5.3. Evolutionary Reliability Assessment under Modelling
Uncertainties. As stipulated in the design documents of the
TMB, the maximum allowable stress of the truss members
under live loads in serviceability limit state is 60MPa [62].
Te coefcient of variation for the designed maximum al-
lowable stress is taken as 0.075 in this study [4, 63]. Con-
sequently, the mean value and the standard deviation of the
structural resistance R are determined as μR � 60MPa and
σR � 4.5MPa for assessment, respectively. It should be noted
that if durability-relevant sensors are deployed on the bridge
of concern, the probability model for structural resistance
can be formulated with the nonparametric Bayesian ap-
proach from the monitoring data accordingly.

With the nonparametric estimation of the monitored
live load efect (peak stress), the samples of the conditional
reliability index can be obtained by using equation (28).
Ten, the sample mean and the sample standard deviation
(SD) can be evaluated by using equations (29) and (30),
respectively. Table 4 lists the mean values and the SDs of
reliability estimates for the top chord, diagonal strut, and
bottom chord in January using the estimated nonparametric
mixture models as shown in Figure 13. It can be seen that the
diagonal strut owns the highest reliability index (mean-
� 11.079 and SD� 0.270), the top chord comes to the second
(mean� 9.954 and SD� 0.236), and the bottom chord has
the lowest reliability index (mean� 8.621, SD� 0.304), which
are consistent with the observed stress level experienced by
each truss member as shown in Figure 13. Te reliability
estimates obtained by the parametric approach are also
provided in Table 4 for comparison. Te mean values of
reliability indices for the top and bottom chords from the
nonparametric approach are higher than those obtained by
the parametric counterpart, while as for the diagonal strut,
the result is opposite. Notice that the variabilities (in terms of
SDs) of reliability indices estimated by the nonparametric
approach are larger than those of the parametric counterpart
for all truss members. Tis is attributed to the fact that both
the parameter uncertainty and the model order uncertainty
of the mixture model have been taken into account in the
nonparametric approach.

In fact, the extent of variability in the reliability estimate
induced by modelling uncertainties is in close relation to the
size of the monitoring dataset used. It is assumed that the
sampling frequency of strain sensors is adjustable, and peak
stress datasets with diferent sample sizes are acquired in the
same month. Figure 14 gives the relationships between the
sample size of peak stresses and the estimated conditional
reliability index for top chord using the nonparametric and

parametric approaches, respectively. It can be observed that,
the larger the sample size of peak stresses, the narrower the
uncertainty of reliability estimates under both approaches.
As shown in Figure 14(b), when the sample size of peak
stresses is smaller than 3000, the reliability estimate obtained
from the parametric approach fuctuates with large un-
certain bounds. It indicates that if monitoring data are in-
sufcient, misleading assessment result can be delivered.Te
nonparametric approach, as shown in Figure 14(a), out-
performs the parametric counterpart in estimating the re-
liability index under the situation of insufcient peak stress
samples. It is attributed to the fact that the nonparametric
Bayesian mixture model without model order constraint
avoids biased ftting when there is lack of monitoring data.
From the bridge owner’s point of view, if the estimated
uncertainty of reliability is too large for decision-making,
proper actions should be taken to collect additional in-
formation (e.g., increasing the sampling frequency) to assist
the bridge assessment. However, a compromise should be
made between the acceptability of uncertainty level for as-
sessment and the cost to collect additional data.

With successively collected monitoring data, the re-
liability estimate is routinely updated by using the Bayesian
updating formulas (31) and (32). Figure 15 illustrates the
updating of reliability estimates from January to February
for the top chord, diagonal strut, and bottom chord based on
the nonparametric approach. Taking the reliability updating
of the top chord in Figure 15(a) as an example, the blue solid
line is the reliability assessment result in January with the
mean and the SD same as those given in Table 4. As
monitoring data in February accumulate, the samples of the
conditional reliability index in February are frst obtained by
using equation (28) with the elicited distribution denoted by
the grey dotted line. Te predictive reliability index in
February is then evaluated by updating the distribution of
the conditional reliability index in February (serving as
likelihood) with the preceding reliability distribution in
January (serving as prior), and the resulting distribution is
depicted by the red solid line. It can be seen from Figure 15
that the updated reliability estimates fall in between the
newly obtained conditional reliability indices and the pre-
ceding reliability estimates for the top chord, diagonal strut,
and bottom chord. Following the same procedure, since one-
year monitoring data are available in this case study, the
reliability estimates are updated month-by-month as shown
in Figure 16, with the use of nonparametric Bayesian
mixture models constructed with the use of monthly
monitoring data. Te predictive reliability indices in De-
cember denoted by the red solid line incorporate historical
reliability indices from January to November denoted by
grey solid lines, which can be viewed as the one-year re-
liability assessment results of the truss members.

Based on the month-by-month updating results, the
one-year evolution of the predictive reliability indices and
the associated uncertain bounds for the top chord, diagonal
strut, and bottom chord is shown in Figure 17. It is observed
that the means and SDs of the predictive reliability indices
under routine operation of the bridge attain almost to
stationarity after updating with the monitoring data
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acquired in July. Before that, the predictive reliability indices
obtained in March are notably diferent from those in other
months with deviatedmeans and enlarged SDs.Te reason is
the insufcient SHM data collected in March because the
data acquisition system was malfunctioning for days in that
month [64].Tis fnding verifes again that the sample size of
monitoring data has considerable efect on the estimated
reliability index. As evidenced by Figure 17, although the

short-term assessment result may be afected by adverse
factors such as lack of monitoring data, the sample size-
induced deviation of the reliability estimate can be gradually
diminished with the successively acquired data by using the
Bayesian updating procedure.

After being stationary of the predictive reliability indices,
the SDs for the truss members are almost identical, ranging
from 0.3 to 0.5. Te means for them are diferent, among
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Table 2: Convergence statistics of the collapsed Gibbs sampler.

RT RW RB

Gibbs iterations needed to reach convergence |R − 1|< 10− 3

2819 148 595
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Table 3: Comparison of nonparametric and parametric approaches for modelling of multimodal stress responses.

Truss member Nonparametric approach Parametric approach
Model order

Top chord 8 4
Diagonal strut 8 3
Bottom chord 9 4

P value of the K-S test
Top chord 7.730e− 02 1.050e− 06
Diagonal strut 1.488e− 01 1.500e− 03
Bottom chord 6.933e− 01 5.974e− 04

Log likelihood value
Top chord −9.777e+ 03 −9.963e+ 03
Diagonal strut −1.135e+ 04 −1.152e+ 04
Bottom chord −1.176e+ 04 −1.195e+ 04
Note.Temost frequently occurring model orders are listed in the nonparametric approach, while the Bayes factor-based optimal model orders are listed in
the parametric approach.

Table 4: Comparison of nonparametric and parametric approaches on the conditional reliability index.

Truss member
Conditional reliability index

Nonparametric approach Parametric approach
Mean SD Mean SD

Top chord 9.954 0.236 9.089 0.218
Diagonal strut 11.079 0.270 11.482 0.032
Bottom chord 8.621 0.304 7.882 0.207
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Figure 14: Continued.
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Figure 14: Te relationship between the sample size of peak stresses and the conditional reliability index. (a) Nonparametric approach. (b)
Parametric approach.
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Figure 15: One-month reliability updating. (a) Top chord. (b) Diagonal strut. (c) Bottom chord.

20 Structural Control and Health Monitoring



β
  ~1 - β

  ~11 
β
  ~12 (mean=9.931, SD=0.315)

2

1.5

1

0.5

0

PD
F

Reliability estimate
8 8.5 9 9.5 10 10.5 11 11.5 12

(a)

β
  ~1 - β

  ~11 
β
  ~12 (mean=11.058, SD=0.389)

PD
F

Reliability estimate
12 12.59 9.5 10 10.5 11 11.5

1.6

1.2

0.8

0.4

0
13

(b)

β
  ~1 - β

  ~11 
β
  ~12 (mean=8.548, SD=0.512)

8 8.57 7.5
Reliability estimate

9 9.5 10 10.5 11

PD
F

1.6

1.2

0.8

0.4

0
6 6.5

(c)
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which the diagonal strut has the highest mean, the top chord
comes to the second, and the bottom chord owns the lowest
mean. Table 5 gives the relationship between the reliability
index and the maintenance action [65]. By judging on the
mean curves of predictive reliability indices shown in Fig-
ure 17, it is recognized that the diagonal strut (mean> 11)
and the top chord (mean> 9.5) are in excellent condition
with no need of inspection; the bottom chord (mean> 8) is
in very good condition that only the preventive inspection is
needed. Te upper and lower uncertain bounds of the
predictive reliability indices provide additional valuable
information on the safety assessment, helping bridge owners
to schedule and prioritize inspection and maintenance ac-
tions in consideration of various uncertainties and
potential risks.

6. Conclusions

Tis study presented a nonparametric Bayesian mixture
model-based approach for reliability assessment of in-service
bridges using long-term monitoring data. Te advantage
brought by the nonparametric Bayesian inference is that the
model complexity can freely adapt to the size of observed data
so that there is no need to make assumption of the model
order in advance of inference, thereby avoiding tedious model
selection. Statistical modelling using the nonparametric
Bayesian mixture model for multimodal stress responses re-
trieves concurrently the most plausible model order and the
most plausible PDF, as well as their associated uncertainties.
Te conditional reliability index elicited with the non-
parametric Bayesian model enables both the aleatory and
epistemic uncertainties arising from resistance and load efect
characterization to be accounted for, whilst it can be suc-
cessively updated with accumulated monitoring data to realize
an evolutionary reliability assessment.

After verifying the efectiveness of the nonparametric
Bayesian approach in modelling heterogeneous data with
a numerical example, a case study using one-year strain
monitoring data collected from the instrumented Tsing Ma
Bridge was demonstrated to examine the feasibility of the
proposed reliability assessment procedure. Te results come
to the following conclusions/observations: (i) the non-
parametric Bayesian mixture model without model order
constraint outperforms the parametric counterpart in
characterization of heterogeneous monitoring data, and the
reliability estimate by the nonparametric Bayesian model is
more robust in the situation of insufcient data; (ii) the

uncertainty in reliability estimate is in close relation with the
volume of monitoring data, i.e., increasing the sample size
helps to mitigate the uncertainty of the reliability estimate,
and a compromise should be made by the authority between
the acceptability of uncertainty level for assessment and the
cost of collecting additional monitoring data; (iii) the short-
term lack of monitoring data due to systemmalfunctionmay
induce bias in the reliability estimate as well as high un-
certainty, but the adverse efects can be trimmed down by
subsequently collected data with execution of the Bayesian
updating strategy; (iv) in compliance with an accepted risk
criterion, the estimated reliability indices (including the
means and SDs) for various structural components ofer an
efective instruction for scheduling and prioritizing bridge
inspection and maintenance activities.

Appendix

A. Formulation of Variances for Quantitative
Convergence Diagnosis of the Collapsed
Gibbs Sampler

In this appendix, fve types of variances of ϕ are derived for
use in quantitative convergence diagnosis of the collapsed
Gibbs sampler [59]. Suppose a total of L chains of ϕ are
produced and let ϕ(t)

l denote the value in the lth chain at the
tth iteration. Te total variance of ϕ can be estimated as
follows:

V �
1

LT − 1


L

l�1


T

t�1
ϕ(t)

l − ϕ 
2
, (A1)

where

ϕ �
1

LT


L

l�1


T

t�1
ϕ(t)

l . (A2)

Suppose a total of M models are visited across the chains
during the iterations and let Tlm denote the number of times
that the mth model is visited in the l th chain. Accordingly,
let ϕ(t)

lm denote the t th value of the m th model in the l th
chain, and t � 1, · · · , Tlm. Ten, the within-chain variance
Wc, the within-model variance Wm, the variance within both
chains and models WmWc, the between-model variance Bm,
and the within-chain variance split between and averaged
over models BmWc of ϕ can be, respectively, constructed as
follows:

Table 5: Relationship between the reliability index and maintenance action [65].

Safety state 5 4 3 2 1
Reliability index β≥ 9.0 9.0> β≥ 8.0 8.0> β≥ 6.0 6.0> β≥ 4.6 4.6> β
Attribute for safety Excellent Very good Good Fair Unacceptable
Maintenance action No action Preventive inspection Detailed inspection Possible strengthening Rehabilitation
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