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Tis study proposes a novel nonlinear model updating approach based on an improved generative adversarial network (GAN). In
the improved GAN, a convolutional neural network (CNN) surrogate model is added to the discriminator network to enhance the
capability of the GAN to learn the complex mapping relationship between vibration responses and nonlinear model parameters.
To avoid the gradient disappearance present in the traditional GAN, a combined objective function is added to the improved GAN
model. In the network training process, the instantaneous amplitudes of the decomposed accelerations are extracted as input
samples and the nonlinear model parameters are defned as the GAN output. When the improved GAN is trained, the trained
network model is capable of estimating the nonlinear model parameters based on measured instantaneous acceleration am-
plitudes. To confrm the feasibility of the improved GAN for structural nonlinear model updating, a steel-concrete hybrid bridge
tower subjected to seismic excitation is numerically simulated and the efects of diferent numbers of data points and noise levels
are studied. Furthermore, the identifcation accuracy of the improved GAN is compared with the updated results. For ex-
perimental applications, the shake table test of a scaled steel-concrete hybrid bridge tower subjected to seismic excitations is
employed to confrm the efectiveness of the proposed nonlinear model updating method. Both numerical and experimental
results demonstrate that the improved GAN model is reliable and efective for the nonlinear model updating of structures
subjected to seismic excitation.

1. Introduction

Finite element model is popular for predicting structural
responses in civil, aerospace, and mechanical engineering.
Since a structural model is usually established based on an
idealized assumption of structural material properties and
boundary conditions from the original engineering design, it
may not accurately represent the actual behavior of an in-
service structure [1, 2]. Terefore, it is necessary to update
the fnite element model based on measured static and
dynamic responses [3, 4]. Te purpose of model updating is
to minimize the mismatch between the measured and

model-predicted responses [5–7]. In the past decades,
structural model updating has been a concern of engineers
and researchers, and multiple model updating techniques
such as response surface methods [8], sensitivity methods
[9], substructure approaches [10], and neural network al-
gorithms [11] have been proposed and developed.

Although the structural model updating approaches
have been successfully applied for civil engineering struc-
tures, the premise of using these techniques for structural
model updating is to assume that structures are linear, and
that the vibration responses of these structures are assumed
to be stationary [12, 13]. However, engineering structures
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may perform nonlinearly during vibration, particularly
under extreme loads such as earthquakes. In this case, it is
not appropriate to use linear model updating approaches.
Tus, to efectively evaluate the safety performance of
structures subjected to extreme operational conditions,
nonlinear model updating methods shall be explored.

Te problem of structural nonlinear model updating
was examined by Hemez and Doebling [14], and this study
aims to confrm strategies implemented for test analysis
correlation and inverse problem-solving of nonlinear
structures using experimental data. However, the de-
veloped test analysis correlation and inversed problem
solving for nonlinear structures requires to address the
following issues: (1) characterization of experiment var-
iability, (2) generation of additional or surrogate data sets
that can increase experimental knowledge, and (3) se-
lection of features that best characterize a nonlinear data
set. Subsequently, in structural health monitoring (SHM),
nonlinear model updating began to attract considerable
attention and a series of nonlinear model updating ap-
proaches were proposed [15]. With the rapid development
of SHM systems for engineering structures [16], a con-
siderable amount of structural dynamic response data
under operational conditions can be recorded by diferent
types of sensors such as accelerometers, GPS sensors,
linear displacement transducers, and strain gauges. Tese
measured vibration data can be employed for the inversed
problem-solving of nonlinear structures using vibration-
based model updating techniques.

For existing vibration-based nonlinear model updat-
ing approaches, researchers directly use vibration re-
sponses as input to develop error functions and apply
optimization algorithms for nonlinear parameter cali-
bration by minimizing the mismatches of structural re-
sponses between the nonlinear model and real structures
[17–19]. Although this type of approach can accurately
achieve structural nonlinear model updating, the com-
putational cost is relatively high due to the huge amounts
of data points in structural dynamic responses. Recently,
with an increase in the application of time-frequency
analysis methods, certain investigators have proposed
using the time-frequency characteristics of structural
vibration responses as input for structural nonlinear
model updating. For instance, Asgarieh et al. [19] used
instantaneous modal parameters, including instantaneous
frequencies and mode shapes, as input to develop an
objection function. Te proposed approach was then
successfully applied for a nonlinear model updating of an
infll frame structure subjected to seismic excitations. Tis
method depends on the identifed instantaneous fre-
quency and modes. Kurt et al. [20] proposed an analysis of
structural response time series in the frequency-energy
domain by developing both forced and damped
frequency-energy curves. Teir optimal model parameters
were identifed by matching the frequency-energy curves
of real structures and its reduced-order nonlinear model.
Wang et al. [21, 22] proposed a nonlinear model updating
approach based on the instantaneous characteristics of the
decomposed structural dynamic response. A limited

number of data points were then selected from the
identifed instantaneous frequencies and amplitudes of
the decomposed structural dynamic responses, which
were further used to develop error functions between real
structures and nonlinear models. Te nonlinear model
updating can then be achieved by minimizing the error
function of these instantaneous parameters between the
measured structural responses and model predictions.
Moreover, certain probabilistic model updating ap-
proaches for nonlinear structures using structural vi-
bration responses are reported in the literature [23, 24].

Recently, machine learning approaches and technologies
have been extensively developed and applied for solving
complex problems [25–27]. Certain classical machine
learning tools, such as artifcial neural networks [28], K-
nearest neighbors [29], computer vision techniques [30], and
the support vector machine [31], have been used for
structural damage detection and model updating in SHM.
Among machine learning techniques, deep learning-based
algorithms have become increasingly popular because of
their strong capability for data feature extraction and
nonlinear mapping relationship construction [32, 33].
According to the advantages of deep learning algorithms in
data feature learning, an improved generative adversarial
network (GAN) is proposed in this study for the nonlinear
model updating of bridge towers subjected to seismic
excitation. In the improved network, a convolutional
neural network (CNN) surrogate model is added to the
discriminator network. Te improved network aims to
enhance the capability of the GAN to learn mapping
relationships between structural vibration responses and
nonlinear model parameters. After performing network
training, the improved GAN model is capable of identi-
fying optimal values for nonlinear model parameters
based on input data features. To confrm the feasibility of
using the improved GAN for nonlinear model updating,
a steel-concrete hybrid bridge tower model subjected to
seismic excitation is numerically simulated, and then, the
efects of diferent numbers of data points and noise levels
are studied. Te accuracy of the improved GAN is further
compared with the updated results of CNN. In an ex-
perimental application, shake table testing of a scaled
steel-concrete hybrid bridge tower structure is employed
to confrm the efectiveness of the proposed nonlinear
model updating. Both numerical and experimental results
demonstrate that the improved GANmodel is reliable and
efective for nonlinear model updating.

Te remainder of this study is organized as follows:
Section 2 introduces the theoretical development of the
improved GAN and the proposed nonlinear model updating
method. In Section 3, numerical simulations of a steel-
concrete hybrid bridge tower subjected to seismic excita-
tion are performed to examine the feasibility and reliability
of the proposed approach. To validate the efectiveness of the
proposed nonlinear model updating strategy, the shake table
test of a scaled steel-concrete hybrid bridge tower subjected
to seismic excitation is employed, and the nonlinear model
of the tested bridge tower subjected to seismic excitation is
updated in Section 4. Based on the numerical simulation and
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experimental results, the corresponding conclusions are
provided in Section 5.

2. Theoretical Background

2.1. Basic Principle of GAN. GAN was frst developed and
designed by Goodfellow et al. [34] and belongs to the category
of unsupervised learning algorithms. Network training can
then be achieved using two neural networks, i.e., a generator
(G) and a discriminator (D). While training the networks, the
generator attempts to produce a sample from a latent space
similar to the training data. However, the purpose of a dis-
criminator is to diferentiate between the training data and the
generated samples. Figure 1 shows the basic architecture of
a GANmodel [35]. Samples selected from the real training data
are provided to the discriminator, and the network aims to
learn the characteristics of the real samples and to become
more robust to discriminate between real and fake samples.
During the training process, the generator attempts to learn
how to generate the distribution of training data from the latent
space, and these generated samples are then presented to the
discriminator, which aims to cheat the discriminator by using
samples similar to real data. To summarize, the GAN training
process can be classifed as a problem involving a min–max
game between the discriminator and generator, which can then
be described as a value function [34].

V(D, G) � Ex∼p(x)[log (D(X))]

+ Ez∼p(z)[log (1 − D(G(Z)))],

(1)

min
G

max
D

V(D, G) � min
G

max
D

Ex∼p(x)[log (D(X))]􏽮

+Ez∼p(z)[log (1 − D(G(Z)))]􏽯.

(2)

In equation (2),X is the real data with a distribution p(x)

and Z is a latent variable with the distribution p(z); the
terms Ex∼p(x)[] and Ez∼p(z)[] are the expected values of the
functions within the brackets; the symbol D() is the
probability that samples within the brackets are obtained
from real data rather than from the generator, and the
symbol D(G()) is the probability that samples within the
brackets are identifed as the real data rather than the fake
data produced by the generator.

According to equations (1) and (2), the training pro-
cessing of a traditional GAN can be concluded as follows:
(1) min GV(D, G): maximizing the probability of assigning
the correct label to both training data and generated
samples from the generator by training the discriminator,
that is to say, training the discriminator to maximize the
term log (D(X)); (2) max DV(D, G): representing the
generator is required to be trained to minimize the term
log(1 −D(G(Z))), which indicates that the generated sam-
ples are close enough to real data to cheat the discriminator.

2.2.Descriptionof the ImprovedGAN. In this study, the GAN
is used for updating structural nonlinear models because of

its advantages in unsupervised learning. However, certain
problems must be solved prior to using the GAN for
nonlinear model updating. Te limitations of a GAN model
can be described as follows. (1) In a GAN model, the
generator aims to develop a mapping relationship between
structural responses and nonlinear model parameters, while
the discriminator discriminates fake data from the generated
samples by learning the data features of nonlinear param-
eters. However, since the samples provided to the dis-
criminator network only comprise generated and real
nonlinear parameters, structural responses are neglected in
the training process of the discriminator. Te discriminator
network cannot provide accurate indications to calibrate the
generator in the GAN training process. (2) In a traditional
GAN, the parameter optimization of the generator and the
discriminator depends on the loss gradient provided by the
discriminator; this phenomenon may cause the vanishing
gradient problem, reducing the quality of the generated
samples and even leading to network training failure.

To solve the abovementioned challenges, this study
proposes a novel network structure for structural nonlinear
model updating based on the traditional GAN. Te basic
procedure for the improved GAN is as follows. (1) A
combined objective function is introduced to develop the
mapping relationships between the inputs and outputs of the
generator network, while skip and dense connections are
applied to enhance the information exchange between the
network layers, thus avoiding the vanishing gradient
problem in the network training process. (2) A CNN-based
surrogate model is used to enhance the discriminator net-
work to learn the mapping relationships between the
structural responses and nonlinear model parameters, which
is a vital step to apply to the GAN for structural nonlinear
model updating.

In the improved GAN model, when a fake nonlinear
parameter set, G (z), generated by the generator and a real
parameter set, X, are brought into the trained CNN sur-
rogate model, corresponding structural responses under
these parameter combinations can be calculated by the
surrogate model. Ten, these predicted structural responses
are then applied as the input of the discriminator network. In
practice, the dynamic responses of structures are usually
recorded by a number of sensors in an SHM system pre-
designed and arranged by engineers. Te correlations of
these measured multichannel vibration data can be
explained by the vibration characteristics of structures such
as mode shapes and natural frequencies. Tus, using the
multichannel structural vibration data as training samples
for GAN can improve the training results of network
structures.

Te applied generator in the improved GAN is a densely
connected convolutional network (DenseNet), and the de-
velopment of a generator is shown in Figure 2 [36]. As
shown in Figure 2, the DenseNet has three consecutive dense
blocks. During generator network training, the compression
layer and bottleneck layer gradually extract higher-level data
features, and the most representative data features extracted
from the bottleneck layer are reassembled using the stacked
reshape layer for output. To extract the high-dimensional
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data features of input responses, the DenseNet substitutes
typical GAN continuous convolutional layers having a dense
block of three deeply connected convolutional layers, as
shown in Figure 3. A dense block comprises multiple
convolutional layers that use skip connections to transfer
data features across layers. Because of the convolution kernel
with a step size of two in the last convolutional layer, for
input through dense blocks, the output feature map is re-
duced in size but has higher dimensional mapped features.
Using the skip connection in the DenseNet generator
framework, the gradient is allowed to be back-propagated
directly to the shallow layers, which alleviates the gradient
vanishing problem in deeper layers [37]. Moreover, the skip
connection operation can reduce the requirement for
training data and signifcantly improve the network training
efciency.

2.3. Nonlinear Model Updating Based on the Improved GAN
Approach. For a nonlinear structure, the mapping re-
lationship between the structural dynamic response, y, and
its nonlinear model parameters, θ � (θ1, θ2, θ3, . . . , θk), can
be expressed as follows:

y � f θ � θ1, θ2, θ3, . . . , θk( 􏼁( 􏼁. (3)

In equation (3), the symbol f() is a mapping function
between structural responses and designed parameters, and
k is the number of nonlinear model parameters.

In practice, structural dynamic responses can be di-
rectly obtained by sensors, i.e., accelerometers, linear
variable diferential transformers, and strain. However,
real structural parameters are usually unknown because of
changed operational environments and unexpected

structure degradation, which inevitably causes deviation
between θ and corresponding structural parameters. Te
deviation may result in the estimated structural responses
based on the original nonlinear model not accurately
matching the real structural responses. Terefore, the
initial nonlinear model parameters require to be cali-
brated using the measured structural dynamic responses.
In this study, the improved GAN model is applied to
approximate the nonlinear mapping function, f(), de-
fned in equation (3), and the optimal nonlinear model
parameters can be directly estimated based on the trained
network model. Table 1 lists the proposed structural
nonlinear model updating process based on the improved
GAN. In the proposed nonlinear model updating ap-
proach, the accuracy of the model updating results is
signifcantly dependent on the learning capability of the
improved GAN model.

Before the GAN network training, a CNN surrogate
model is frst trained to learn the mapping relationships
between the structural responses and nonlinear model pa-
rameters. In this study, to construct a CNN-based surrogate
model, 500 groups of nonlinear parameter combinations are
used as the input of training samples, while 500 groups of the
instantaneous amplitudes and instantaneous frequencies of
the decomposed structural acceleration responses are used
as the output. Te detailed training process of a CNN model
can be found in the literature [38–40]. Once training of the
CNN surrogate model is completed, the trained CNN can be
added to the improved GAN network, which is capable of
reconstructing structural dynamic responses based on
generated and real nonlinear model parameter samples.
Figure 4 shows the adversarial training procedure of the
improved GAN. As shown in Figure 4, the network training
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process comprises two modules and the detailed process can
be described as follows.

In the training process of the improved GAN model,
assuming the obtained real training samples from the
nonlinear structural model are denoted as (Xreal,Yreal), Yreal
is the simulated multichannel structural responses using the
nonlinear model with parameter samples Xreal. Ten, data
samples are divided into two parts denoted as (Xtrain,Ytrain)

and (Xvalid,Yvalid), respectively.
In the discriminator network training process, the pa-

rameters of the generator are assumed to be fxed during the
training process, and the discriminator parameters can only
be adjusted by generating adversarial feedback information.

By substituting training samples of Ytrain in the gener-
ator, it can obtain the generated nonlinear parameter
samples Xgen � G(Ytrian). Tese obtained samples, Xgen, are
then used as the input of the surrogate model, which aims to
predict structural responses related to Yvalid. Te predicted
structural responses can be expressed as follows:

Y∗valid � CNN Xgen􏼐 􏼑 � CNN G Ytrain( 􏼁( 􏼁. (4)

Ten, Ytrain and Y∗valid are integrated to become a full
sample combination, [Ytrain,Y∗valid], which is labeled as Ygen.
Ygen and Yreal are then substituted in the discriminator for
discrimination. To distinguish between the generated
samples and the real data samples, a sigmoid function in the
output layer of the discriminator is used to perform the
regression operation [41], which is expressed as follows:

Sigmoid(x) �
1

1 + e
− x. (5)

Finally, the discriminator can distinguish samples be-
tween Ygen and Yreal according to the calculated loss values of
the cross entropy. Moreover, the obtained loss gradient is
returned to each layer of the discriminator network and the
training of the discriminator is achieved.

Once the discriminator network is trained, the network
parameters of the discriminator are fxed and the generator
can then start to be trained.

While training the generator, Ytrain is frst considered as
the input of the generator, the generated nonlinear pa-
rameter samples are then denoted as 􏽢Xgen � 􏽢G(Ytrain), fur-
ther considering the generated samples into the CNN-based
surrogate model to obtain the estimated samples,
􏽢CNN(􏽢G(Ytrain)). Ten, Ytrain and 􏽢CNN(􏽢G(Ytrain)) are in-
tegrated to be a full sample combination,
[Ytrain, 􏽢CNN(􏽢G(Yreal))], which is denoted as 􏽢Ygen. Te
sample set 􏽢Ygen is then considered in the discriminator
network and the cross-entropy loss between 􏽢Ygen and Yreal
can be calculated as follows:

LGAN � argmin
G

max
D

EYtrain,Yvalid
logD Yreal( 􏼁􏼂 􏼃􏽮

+EYtrain
log 1 − D 􏽢Ygen􏼐 􏼑􏼐 􏼑􏽨 􏽩􏽯.

(6)

During the generator training process, a combined
objective function is developed for network parameter
training to improve the learning ability of the improved
GAN for low-frequency data features and can be expressed
as follows:

LIGAN � LGAN + λLX−distance + βLY−distance. (7)
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Figure 3: Network construction of a dense block.

Table 1: Nonlinear model updating process based on the improved GAN approach.

Step 1 Build the initial structural model
Step 2 Select parameters to be corrected
Step 3 Estimate the range of parameters to be corrected
Step 4 Model calculations to generate training data
Step 5 Train the GAN model
Step 6 Generalize an estimate from the real structural measured responses
Step 7 Obtain the target values of the parameters
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In equation (7), it can be observed that the objective
function comprises three terms. Te frst term is the defned
loss function in the traditional GAN, and LX−distance and
LY−distance are the loss functions used to explain the misft
between real and generated samples.Tese terms can then be
expressed using equations (8) and (9):

LX−distance � 􏽘
n

k�1

Xk − 􏽢Xk􏼐 􏼑
2

X
2
k

􏽘

n

k�1

Xk − 􏽢Xk􏼐 􏼑
2

X
2
k

, (8)

LY−distance � 􏽘

n

k�1

Yk − 􏽢Yk􏼐 􏼑
2

Y
2
k

, (9)

where n is the total number of training samples, and Yk and
􏽢Yk are measured and predicted structural responses, re-
spectively. Similarly, Xk and 􏽢Xk are real and predicted
nonlinear model parameters, respectively. Since the loss
value calculated from LGAN is considerably larger than that
from LX−distance and LY−distance, two weight coefcients, λ and
β, are used to balance the contributions of the three loss
functions for network training. Te values of these co-
efcients are set to 1000 in this study [42].

According to the training process described in Figure 4,
the training of the improved GAN network can be achieved
by performing multistep iterations, and the trained GAN
network is capable of predicting nonlinear model parame-
ters based on measured structural dynamic responses. In
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numerical simulations, a steel-concrete hybrid bridge tower
model subjected to seismic excitation is used to confrm the
feasibility and accuracy of the improved GAN for structural
nonlinear model updating. Ten, shake table testing of
a scaled steel–concrete hybrid bridge tower is conducted to
confrm the efectiveness and reliability of the proposed
method.

3. Numerical Verification

3.1. Simulated Steel-Concrete Hybrid Bridge Tower Model.
Te numerical simulation in this section refers to the steel-
concrete hybrid bridge tower model shown in Figure 5,
which was developed using the nonlinear fnite element
analysis software OpenSees [43]. Figure 5 shows that the
bridge tower comprises two parts, the upper tower column is
constructed with steel material that is connected to the lower
tower column by a steel-concrete joint. Te total length of
the bridge tower is 2.0m with the steel and concrete tower
columns having lengths of 0.3 and 1.7m, respectively. De-
tailed dimensions of the bridge tower are presented in
Figure 5. For the steel-concrete hybrid bride tower, all parts
are modeled using distributed plasticity beam-column ele-
ments and fve Gaussian integration points are applied to
these elements. Te boundary conditions of the bottom
tower column are assigned as fxed constraints. Figure 5
shows the sections used for the steel tower column and
concrete tower column, which are simulated as fber sections
with nonlinear hysteretic materials. As shown in Figure 5,
two types of fber cross sections are designed for this
structure and they are named the steel fber section and the
reinforcing concrete fber section, respectively. Te upper
steel tower column is discretized into fve elements with
a length of 100mm. Similarly, the low concrete tower col-
umn is discretized into 28 elements with a length of 100mm.

Te steel fbers are used to model the steel tower col-
umn by using the modifed uniaxial Giuf-
fre–Menegotto–Pinto steel model with smooth and curved-
shaped loading and unloading branches, as shown in
Figure 5. Te material is characterized by eight parameters
subdivided into three primary parameters and fve sec-
ondary parameters. Te three primary parameters are
described as follows: elastic modulus, Es � 2.0 × 105 MPa,
initial yield strength, fs � 420MPa, and strain hardening
ratio, bs � 0.02. Te fve secondary parameters control the
curvature of hysteresis loops and isotropic hardening. Te
Popovics ̶Saenz model, which is shown in Figure 5, is
employed to defne the concrete behavior of the tower
column, and four primary parameters are assigned: the
elastic modulus Ec � 3.5 × 104 MPa, peak compressive
strength, fc � 23MPa, the strain at peak compressive
strength, εc � 0.002, and the strain at the crushing strength,
εcu � 0.0033. Moreover, the bilinear material steel01, as
shown in Figure 5, in OpenSees is used to defne the stress-
strain relationship of the longitudinal rebars and stirrups,
and three primary material parameters are set as follows:
the modulus of elasticity Es

′ � 1.99 × 105 MPa, the yield
strength fs

′ � 235MPa, and the strain hardening ratio
bs
′ � 0.01.

Te Rayleigh damping is assigned for the nonlinear
model and two corresponding proportional coefcients are
assigned as α0 � 1.08 and α1 � 0.0015. Before performing
the dynamic analysis of the hybrid tower model subjected to
seismic excitation, the fundamental frequency of the
structure is computed using eigenvalue analysis; the 1st

natural frequency is 3.36Hz. As shown in Figure 6, the
applied base excitation of the bridge tower model is the 1994
El Centro (PGA� 0.8 g) ground acceleration record, using
a time duration of 30 s. Te nonlinear dynamic analysis of
the steel-concrete hybrid bridge tower model is performed
using the Newmark-β algorithm with a sampling rate of
50Hz.Te acceleration responses obtained from locations S1
and S2 of the bridge tower model are shown in Figures 7 and
8, respectively, and these acceleration responses are then
used for nonlinear model updating.

3.2. Application of the Improved GAN Approach to Nonlinear
Model Updating. In this study, ten parameters of the steel-
concrete hybrid bridge tower model are selected as unknown
parameters to be updated by the proposed nonlinear model
updating approach. Tese parameters include the primary
material parameters of the upper steel tower structure, Es, fs,
and bs; concrete material parameters Ec, fc, εc, and εcu; and
the hysteretic parameters of rebars Es

′, fs
′, and bs

′. The sim-
ulated structural acceleration response of the hybrid bridge
tower using the theoretical values of these parameters is
considered the structural response, and 5% Gaussian white
noise is added to simulate acceleration responses and consider
the efects of output measurement noise such as sensor and
data acquisition device noise. In this study, the instantaneous
amplitudes of the decomposed acceleration responses are the
training data for improved GAN learning and nonlinear
model updating. Because the slowly varying characteristics of
the instantaneous amplitudes are comparable to the oscilla-
tion of the time series, it is not necessary to select all data
points for nonlinear model updating. Tus, nonlinear model
updating based on diferent numbers of data points is then
studied in this section.

3.2.1. Efects of Data Points. In this study, the discrete an-
alytic mode decomposition approach developed in the lit-
erature [44] is used to decompose structural acceleration
responses in a fnite number of mono-components. Ten,
the Hilbert transform is conducted to identify the in-
stantaneous acceleration amplitudes of the decomposed
structural responses. Figures 7 and 8 show that the fuctu-
ation of the instantaneous amplitudes is obviously lower
than those of the acceleration responses. Tus, nonlinear
model updating with 5%, 10%, 20%, and 100% of the data
points is then performed to investigate the feasibility of the
proposed improved GAN approach.

According to the proposed procedure, 500 parameter
combinations are stochastically generated by performing
Latin hypercube sampling, and the varying range of the
candidate parameters are defned as follows:
0.2θtrue ≤ θ≤ 1.8θtrue, where θtrue is the theoretical value of
the nonlinear model parameters. Ten, these parameter
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combinations are substituted into the nonlinear bridge
tower model to simulate structural acceleration responses
under seismic excitations. Te instantaneous acceleration
amplitudes of the decomposed structural responses are then
identifed using DMAD with the Hilbert transform. Te
obtained testing samples are (θtest, y

amp
test ), where θtest is the

nonlinear parameter vector and yamp
test is the identifed ac-

celeration amplitude vector under parameter samples θtest.
Before training the improved GAN, a CNN-based surrogate
model is frst trained based on training data. In the training
process of the CNN model, the candidate nonlinear pa-
rameter vector is assigned as the CNN input; however, the
instantaneous acceleration amplitude vector of location S2 is
set as the output. When the training of the CNN network is
completed, it can be then integrated into the GAN for the
nonlinear model updating. To ensure the trained improved

GAN is capable of accurately constructing the mapping
relationship between the nonlinear parameters and in-
stantaneous acceleration amplitudes, the identifed in-
stantaneous acceleration amplitudes of the structural
responses obtained at location S1 are used as training data
and the corresponding instantaneous acceleration ampli-
tudes at location S2 are used as validation data.

In this numerical simulation, the convergence process for
the training of the CNN-based surrogate model under four
cases is shown in Figure 9.Te training loss and validation loss
are obviously decreased during the frst 50 epochs, and the loss
values gradually tend to be stationary after running 50 epochs;
however, it should be pointed out that the convergence pro-
cesses are not smooth convergences. During training, network
parameters with the smallest validation loss are maintained for
testing, which contributes to the optimal performance of the
network, and the best points at the smallest validation loss are
labeled with green stars in Figures 9(a)–9(d). As shown in
Figure 9, the validation loss values are smaller than those of
training loss, which indicates that no overftting occurs during
the training process. Tus, the CNN with optimized network
parameters, presented in Figure 9, is used as the surrogate
model of the improved GAN. When the construction of the
improved GAN is achieved, 500 testing samples are used for
the training of the discriminator according to the proposed
network training process. During the training process, the
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instantaneous acceleration amplitudes obtained from struc-
tural responses at location S1 are considered as the input of the
generator, while the data from location S2 is set as the vali-
dation samples. Te number of training epochs and the
learning efciency parameter of the improved GAN are set to
300 and 4×10−4, respectively. Furthermore, the dropout
technique is applied in this study and 50% of the neurons are
dropped during the training process; this indicates that only
half of the network parameters are trained in each epoch to

enhance the generalization capability of the generator model.
Figure 10 shows the training process of the improved GAN in
four cases.Te training loss and validation loss of the four cases
are signifcantly reduced during the frst 50 epochs, and the loss
values of these loss curves converge to smaller values after 100
epochs. Note that the validation loss values of the four cases are
smaller than the training loss values, which suggests that no
overftting occurs during the training process. Te best points
at the smallest validation loss of the network training are
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Figure 7: Characteristics of the hybrid bridge tower model at location S1: (a) acceleration response; (b) instantaneous acceleration
amplitude; (c) instantaneous frequency.
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labeled with green stars in Figures 10(a)–10(d). As shown in
Figure 10(a), when 5% of the data points are selected as training
samples, the validation loss of the improved GAN reaches to
the smallest loss of 6% at the 295th training iteration. In Case 2,
as shown in Figure 10(b), the best networkmodel is obtained at
the 287th training with the smallest loss of 5.75%. Similarly, as
shown in Figure 10(c), the GAN in case 3 achieves the smallest
loss of 4.43% after running 260 steps. As shown in Figure 10(d),
the smallest value of 5.26% is achieved at the 296th iteration
when 100% of the data points are used for network training.
After the training of the improved GAN is achieved, the
improved GANmodel with the smallest validation loss value is
retained as the optimized network model for nonlinear model
updating.

In this study, the simulated acceleration responses with
5% Gaussian white noise are assumed as the measured
dynamic responses of the steel-concrete hybrid bridge tower
model, and the instantaneous amplitudes of the measured
structural responses can be identifed using the discrete
analytic mode decomposition with the Hilbert transform
method. Ten, using 5%, 10%, 20%, and 100% of the data
points of the identifed instantaneous acceleration ampli-
tudes as the input of the trained and improved GAN model,
the estimated nonlinear model parameters under the four
cases are presented in Table 2. Furthermore, by substituting
the identifed nonlinear model parameters into the initial
nonlinear model, the predicted structural response at lo-
cation S1 under Case 1 is displayed in Figure 11. As observed
from Table 2 and Figure 11, the nonlinear model parameters
can be accurately estimated based on the trained and im-
proved GANmodel and the predicted acceleration responses
match with the measured structural dynamic responses. To
reliably evaluate the accuracy of the model updating results,
three error indices, Racc, Ramp and Rω, are defned as follows:

Racc �
A
predict
acc (t) − Aacc(t)

�����

�����2

Aacc(t)
����

����2
× 100%, (10)

Ramp �
A
predict
amp (t) − Aamp(t)

�����

�����2

Aamp(t)
�����

�����2

× 100%, (11)

Rω �
ωpredict

(t) − ω(t)
�����

�����2
‖ω(t)‖2

× 100%, (12)

where A
predict
acc (t) and Aacc(t) are the acceleration responses

from the analytical and testing models, respectively;
A
predict
amp (t) and Aamp(t) are the instantaneous acceleration

amplitudes of the analytical and testing models, respectively;
ωpredict(t) and ω(t) are the slowly-varying parts of the in-
stantaneous frequencies obtained from the analytical and
testingmodels, respectively; and ‖ · · · ‖2 is the L2 norm. Based
on previous studies of the authors [22], the instantaneous
amplitude and frequency are two signifcant indices used to
describe the characteristics of a nonstationary signal; thus, in
this study, the accuracy of the model updating results is
evaluated by comparing the acceleration responses and the
instantaneous amplitudes and frequencies from the

calibrated nonlinear model and the testing structure. Based
on the acceleration responses and the instantaneous am-
plitudes and frequencies of the estimated and measured
structural dynamic responses, the calculated error indices
are shown in Table 3. As shown in Table 3, the three error
indices for the four cases are less than 3% when more than
5% of the data points are selected.

To validate that the proposed approach can signifcantly
save computational cost, the computational time for each
case, using a Tsinghua Tongfang desktop workstation with
an Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz 16.0GB
RAM is listed in Table 3. As can be seen from Table 3, the
required computational time signifcantly decreases when
fewer data points are used for nonlinear model updating.
Te primary reason for this could be that using a smaller
number of data points will signifcantly decrease the com-
plexity of nonlinear parameter estimation when using the
proposed method. Terefore, the abovementioned analysis
results indicate that the proposed improved GAN model
trained with 5% of the data points is reliable and accurate for
nonlinear model updating, and computation efciency is
obviously improved compared with Case 4.

3.2.2. Efects of Measurement Noise. To examine the noise
efect, simulated accelerations with 10% and 20%white noise
are used for identifcation analysis. In this section, the same
ten nonlinear parameters, Es, fs, bs, Ec, fc, εc, εcu, Es

′, fs
′, and

bs
′ were selected. According to the analysis results in Section
3.2.1, 5% of the data points selected from the instantaneous
amplitudes of the decomposed structural acceleration re-
sponses are used as training data for the improved GAN
model. Based on the proposed nonlinear model updating
procedure, the improved GAN is frst trained using the
generated data samples based on the nonlinear model, and
then the trained improved GAN model is applied for
identifying nonlinear model parameters. Tables 4 and 5 are
the updated nonlinear parameters and the calculated error
indices. Table 4 shows that the proposed improved GAN
model can accurately identify nonlinear model parameters
using the measured instantaneous acceleration amplitudes
as the input. As shown in Table 5, the calculated error indices
are less than 12%, even under the efect of 20%measurement
noise, which indicates that the proposed improved GAN
approach can achieve structural nonlinear model updating
with better noise robustness.

3.2.3. Comparison of the Identifcation Results between the
CNN and Improved GAN. Compared with the conventional
methods and mechanical models for nonlinear model
updating, the improved GAN takes the instantaneous ac-
celeration amplitude and instantaneous frequency with
a slow varying portion of the principal component response
as nonlinear indices to quantify the nonlinear response with
time-varying characteristics. Meanwhile, on the basis of the
traditional GAN, the pooling layer in the CNN is replaced by
the convolution layer, and themapping relationship between
the nonlinear model parameters and the instantaneous
characteristic response is subsequently established by the
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Figure 10: Training process of the improved GAN with: (a) 5%; (b) 10%; (c) 20%; (d) 100% of the data points.
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Table 2: Parameter estimate results for four diferent data point cases.

Model parameters

Data
points

Steel 01 Concrete 02 Steel 02
Es/Ereal

s fs/freal
s bs/breals Ec/Ereal

c fc/freal
c εc/εrealc εcu/εrealcu Es

′/(Es
′)real fs

′/(fs
′)real bs

′/(bs
′)real

Case 1 (5%) 0.97 1.03 1.05 0.98 1.05 0.98 0.96 0.98 1.02 0.98
Case 2 (10%) 0.98 0.98 0.97 1.02 1.04 0.98 1.01 0.98 1.02 0.99
Case 3 (20%) 1.02 0.99 0.99 1.01 0.98 1.02 1.00 1.01 0.99 1.00
Case 4 (100%) 1.01 1.00 0.99 0.99 1.01 0.99 1.00 0.99 1.00 1.00
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Figure 11: Comparison of calibrated results with the true structural response under Case 1: (a) acceleration response; (b) instantaneous
acceleration amplitude; (c) instantaneous frequency.

Table 4: Parameter estimate results for two diferent noise levels.

Model parameters

Noise
levels

Steel 01 Concrete 02 Steel 02
Es/Ereal

s fs/freal
s bs/breals Ec/Ereal

c fc/freal
c εc/εrealc εcu/εrealcu Es

′/(Es
′)real fs

′/(fs
′)real bs

′/(bs
′)real

Case 1 (10%) 0.97 0.97 0.96 1.03 1.06 1.04 0.94 0.98 0.98 0.96
Case 2 (20%) 1.04 0.94 0.94 1.06 1.07 0.95 0.93 1.04 0.96 0.94

Table 3: Error indices and computational time for four diferent data point cases.

Data points Case 1 (5%) Case 2 (10%) Case 3 (20%) Case 4 (100%)
R acc (%) 7.39 2.07 0.89 0.88
R amp (%) 4.28 1.65 0.57 0.52
Rω (%) 1.38 0.07 0.05 0.02
Computational time (min) 3.6 12.3 31.4 175.1
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CNN surrogate model to enhance the ftting ability of the
network. In this section, to highlight the advantages of using
the improved GAN for structural nonlinear model updating,
the identifed results of the improved GAN are compared
with those obtained using CNN. In nonlinear model
updating, the same DenseNet, which aims to avoid the
negative efects of the network layer structures, is used for
the CNN and the improved GAN. During the CNN and
improved GAN training process, 5% of the data points
selected from the instantaneous amplitudes of structural
acceleration responses are defned as the network input, and
a total of 500 sets of training samples are used for network
training. Te same computational device described in Sec-
tion 3.2.1 is applied for network training, and the identif-
cation results of nonlinear parameters are presented in
Table 6. Te corresponding calculated error indices and
computational times of the two networks are illustrated in
Table 7. Table 7 shows that the two types of networks are
capable of accurately achieving structural nonlinear pa-
rameter identifcation. However, as shown in Tables 6 and 7,
although the required computational time of the CNN is
slightly less than that of the improved GAN, the estimated
accuracy of the trained improved GAN is higher than that of
the CNN. Te abovementioned results confrm that the
proposed improved GAN is accurate and reliable for
structural nonlinear model updating.

4. Experimental Application

4.1. Shake Table Test of a Scaled Steel-Concrete Hybrid Bridge
Tower Structure. To validate the efectiveness of the pro-
posed method for structural nonlinear model updating,
a scaled steel-concrete hybrid bridge tower, as shown in
Figures 12 and 13, was constructed in the Structural Dy-
namics Lab at Hefei University of Technology. Te tested
structure was developed by referring to a real steel-concrete
hybrid bridge tower with a scale of 1 :172. Te full length of
the scaled bridge tower structure is 2.0m, and the bridge
tower comprises two parts: the upper steel tower column and
a lower tower column. Figure 12 shows that these two parts
of the bridge tower are 0.6 and 1.45m, respectively. Based on
the design fles, the upper tower column is designed as a stel
structure with a yield strength of 420MPa. Te lower tower
was constructed as a reinforced concrete structure, and the
concrete material applied for these parts was set as C60 based
on the Chinese codes for the design of concrete structures.
Te measured ultimate strength of the longitudinal rebars
and stirrups used for the concrete tower was 616 and
430MPa, respectively. In this study, the steel-concrete joint
of the tested structure was simplifed to be a fxed connection
because of the signifcant complexity of construction of the

joint in the original steel–concrete bridge tower structure.
Figure 14 shows the detailed geometric dimensions and the
rebar arrangement of the concrete sections. To ensure the
stability of the bridge tower model during structural vi-
bration, the concrete bearing platform shown in Figure 12(a)
was designed at the bottom of the bridge tower structure.
Te geometric size of this concrete block was
1.20m× 1.20m× 0.1m. Furthermore, to ensure the scaled
bridge tower structure has the approximate physical char-
acteristics of the actual structure, it was necessary to add
additional mass to the tested structure. According to the
counterweight design, 61 mass blocks were applied to the
bridge tower structure and the detailed information on the
added mass can be found in Figure 12(b). Tree diferent
types of mass blocks were applied to the tested structure and
they are referred to as mass blocks A, B, and C. Te weights
of mass blocks A, B, and C were 4.0, 6.28, and 94.0 kg,
respectively. Te total mass of the scaled steel–concrete
hybrid bridge tower is 1068 kg, including the tower column
at 306 kg, the concrete platform of 313 kg, and the additional
mass of 450 kg.

During the shake table testing, six single-direction
accelerometers, shown in Figure 13, were installed on
the tested structure to obtain horizontal acceleration re-
sponses under seismic excitation. Tese accelerometers are
referred to as Acc-1, Acc-2, . . ., Acc-6. An additional
sensor, B1, was installed on the shake table to record the
base excitation of the tested structure. A National In-
struments data acquisition system was used to record
structural dynamic responses with a sampling rate of
200Hz. Because the primary purpose of this shake table
testing was to examine the damage process of the bridge
tower structure subjected to seismic excitation, diferent
types of seismic excitations were selected as the input of the
bridge tower structure with a maximum peak ground ac-
celeration varying from 0.1 g (g denotes gravity accelera-
tion) up to the collapse of the structure having an interval of
0.1 g; the tested structure was then destroyed when the
amplitude of the applied external excitations reached 0.8 g.
In this study, for nonlinear model updating, the measured
dynamic responses of the bridge tower structure subjected
to a high-amplitude seismic wave were applied and the
applied external excitation was regenerated ground motion
recorded at the Oxnard Boulevard station during the 1994
Northridge earthquake (PGA � 0.7 g), as shown in Fig-
ure 15. Before testing, a low-amplitude Gaussian white
noise time series was selected as the input of the bridge
tower structure, and then the obtained dynamic responses
were used to identify structural modal information such as
natural frequencies and mode shapes.

4.2. Nonlinear Model Updating Based on the Proposed GAN
Approach. Based on the detailed geometric and material
parameters of the scaled steel–concrete hybrid bridge tower,
the nonlinear bridge tower model was modeled using
OpenSees. Te nonlinear bridge tower model is discretized
into 18 lump masses connected to each other with beam-
column fber section elements, and the cross-sectional

Table 5: Error indices of parameter estimate results for two dif-
ferent noise levels.

Noise levels Case 1 (10%) Case 2 (20%)
R acc (%) 9.21 11.77
R amp (%) 5.50 6.74
Rω (%) 1.36 2.56
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dimensions are simulated according to the tested structure.
In this nonlinear model, all tower columns, including the
upper steel tower columns and the lower tower columns, are
assigned as nonlinear force-basedbeam-column elements.
Moreover, the linear elastic beam-column elements are
applied to defne the links between the upper steel tower and
the lower tower column. Tree diferent types of nonlinear
material models are used to defne the nonlinear charac-
teristics of the bridge tower model under seismic excitation.
Temodifed uniaxial Giufre–Menegotto–Pinto steel model
is used to defne the stress-strain relations of the steel
material in the upper tower column, and Concrete 02, and
Steel 02 available in OpensSees and are shown in Figure 5 in
Section 3.1 are employed to represent the uniaxial consti-
tutive laws of the concrete and reinforcing steel, respectively.

Based on the parameter sensitivity analysis results described
by the numerical simulation, ten material parameters are
selected as the candidate parameters for nonlinear model
updating. Once the nonlinear model is developed, the
proposed GAN approach can then be applied to calibrate the
nonlinear parameters by minimizing the response errors
between the nonlinear model and the tested structure.
According to the proposed nonlinear model updating
procedure, 500 parameter combinations are stochastically
generated by performing the Latin hypercube sampling and
the varying range of the candidate parameters are defned as
follows: 0.2θinitial ≤ θ≤ 1.8θinitial. Ten, these parameter
combinations are substituted in the initial nonlinear model
to simulate structural acceleration responses under seismic
excitations.

Table 6: Parameter estimate results were obtained using two diferent approaches.

Model parameters

Diferent models
Steel 01 Concrete 02 Steel 02

Es/Ereal
s fs/freal

s bs/breals Ec/Ereal
c fc/freal

c εc/εrealc εcu/εrealcu Es
′/(Es
′)real fs

′/(fs
′)real bs

′/(bs
′)real

Case 1 (GAN) 0.97 1.03 1.05 0.98 1.05 0.98 0.96 0.98 1.02 0.98
Case 2 (CNN) 1.04 0.95 0.90 1.03 1.05 0.95 0.92 0.96 0.97 0.95

Table 7: Error indices and computational time for two diferent approaches.

Diferent models Case 1 (GAN) Case 2 (CNN)
R acc (%) 7.39 12.17
R amp (%) 4.28 7.00
Rω (%) 1.38 1.41
Computational time (min) 3.6 3.3
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Figure 12: Te test specimen: (a) scaled bridge tower structure; (b) counterweight design of the bridge tower structure.
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After performing dynamic analysis, the primary mono-
components of the simulated structural dynamic responses
can be identifed using the improved GAN approach. Ten,
5% of the data points selected from the identifed mono-
components can then be employed as the training data for
the surrogate model and improved GAN network; the
training process is shown in Figure 16. Note from Figure 16
that the training and validation losses of the improved GAN
model were signifcantly reduced in the frst several itera-
tions. Similarly, Figure 16 shows that the CNN reaches the

smallest validation loss of 7.14% at the 82nd iteration and the
GAN reaches the smallest validation loss of 10.79% at the
48th iteration. Te training results indicate that the trained
and improved GAN network has strong generalization
ability, which would be efectively applied for a nonlinear
model updating based on structural dynamic responses. Te
trained and improved GAN can then be employed to cal-
ibrate the nonlinear model of the tower structure using the
measured structural dynamic responses. In this study, the
frst two mono-components of the measured acceleration
responses from sensors Acc-1 to Acc-5 are frst identifed,
and 5% of the data points selected from these components
are considered as input to the generator of the trained
improved GAN. Te best optimized nonlinear parameters
can be identifed based on the trained and improved GAN
and the updated nonlinear material parameters are listed in
Table 8. Table 8 shows that the changes in the candidate
nonlinear parameters are obvious when compared with the
initial values, which indicates that these selected nonlinear
parameters are sensitive to structural dynamic responses.
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Figure 13: Geometric dimensions of the scaled bridge tower model (in cm): (a) front; (b) side.
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When the nonlinear parameters are identifed based on
the improved GAN approach, they can substitute the
updated hysteretic material parameters in the nonlinear
model to predict structural dynamic responses. By per-
forming nonlinear dynamic responses, the simulated
structural acceleration responses and instantaneous
characteristics based on the calibrated nonlinear model
are shown in Figures 17–19. A comparison of the accel-
eration responses and identifed instantaneous charac-
teristics between the updated nonlinear model and tested
structure is illustrated in Figures 20–22. Figures 20–22
show that the calibrated nonlinear model is capable of
predicting the nonlinear dynamic characteristics of the
steel–concrete hybrid bridge tower structure under strong
seismic excitations with better accuracy. Moreover, to
quantify the prediction accuracy of the updated nonlinear
model, the defned error index in equations (10) to (12) is
employed to calculate the predicted error of acceleration
responses; the identifed instantaneous amplitudes are
presented in Table 9. Te calculated error indices of these

instantaneous parameters are obviously larger than those
in the numerical simulation. Tis is because signifcant
modeling errors will occur when using a simplifed
nonlinear model to characterize the complex dynamic
behaviors of the testing structure. However, because the
error indices are calculated based on comparing the in-
stantaneous amplitudes of the whole time history, which
refect the global error of structural responses, the cal-
culated error index results are usually large. Even a small
diference in time domain responses would lead to a rel-
atively high error indices value. Terefore, the above-
mentioned experimental results suggest that the proposed
improved GAN approach is capable of structural non-
linear model updating.

4.3. Nonlinear Model Evaluation. An appropriately updated
nonlinear model shall be able to accurately predict the
dynamic responses of structures subjected to known or
unknown external excitations. Verifying themismatch of the
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Figure 16: Training process of the improved GAN for the (a) CNN-based surrogate model; (b) the improved GAN.

Table 8: Updated results of the steel–concrete hybrid bridge tower model.

Parameters
Steel 01 Concrete 02 Steel 02

E s
(GPa)

f s
(MPa) b s

E c
(GPa)

f c
(MPa)

εc

(×10−3)
εcu

(×10−3)
E s′
(GPa)

fs
′

(MPa) bs
′

Initial values 210 235 0.01 36 38.5 2 3.3 210 420 0.02
Updated values 232 242 0.016 36.2 37.2 1.7 2.9 225 408 0.017
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Figure 17: Acceleration response of the bridge tower structure at the top.
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Figure 18: Instantaneous characteristics of the frst mono-component response of the bridge tower structure at the top: (a) instantaneous
acceleration amplitude; (b) instantaneous frequency.
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Figure 19: Instantaneous characteristics of the secondmono-component response of the bridge tower structure at the top: (a) instantaneous
acceleration amplitude; (b) instantaneous frequency.
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Figure 20: Comparison between the acceleration response of the bridge tower structure at the top obtained by the updated nonlinear model
and the tested structure.
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Figure 21: Comparison between the frst mono-component obtained by the updated nonlinear model and the tested structure:
(a) instantaneous acceleration amplitude; (b) instantaneous frequency.
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Figure 22: Comparison between the second mono-component obtained by the updated nonlinear model and the tested structure:
(a) instantaneous acceleration amplitude; (b) instantaneous frequency.

Table 9: Error indices based on updated and measured results.

Racc (%) R1st
amp (%) R1st

ω (%) R2nd
amp (%) R2nd

ω (%)

14.6 5.6 1.2 7.3 6.8
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Figure 23: Applied external excitation for nonlinear model evaluation.
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Figure 24: Instantaneous characteristics of the frst mono-component response: (a) acceleration response; (b) instantaneous acceleration
amplitude; (c) instantaneous frequency.
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dynamic response between the updated nonlinear model
and the tested structures under a new seismic excitation is an
important approach to evaluate the reliability of the cali-
brated nonlinear model. Hence, to validate the efectiveness
of the updated steel–concrete hybrid bridge tower model,
a new strong seismic excitation, shown in Figure 23, is
applied as a base excitation of the nonlinear model. By
performing nonlinear dynamic analysis, the estimated
structural instantaneous characteristics at the top of the
bridge tower model are presented in Figure 24. A com-
parison of the identifed instantaneous parameters of the
decomposed acceleration responses between the non-
linear model and the tested structure is illustrated in
Figure 25. Te calculated error indices of the acceleration
responses and the instantaneous amplitudes and fre-
quencies of the decomposed frst mono-component are
listed in Table 10. Figures 24 and 25 show that the
updated nonlinear model can efectively predict struc-
tural nonlinear dynamic responses subjected to the new
external excitations. Moreover, by comparing the cal-
culated error indices with Section 4.2, note that the values
of the calculated error indices do not considerably

increase, even under the new seismic excitations. Based
on the analysis results, the proposed improved
GAN approach is reliable and accurate for nonlinear
model updating and the predicted responses are in
acceptable error.

5. Conclusions

In this study, an improved GAN based on the instantaneous
characteristics of decomposed structural dynamic responses
is proposed for the nonlinear model updating of a bridge
tower subjected to seismic excitation. According to the
proposed approach, a CNN surrogate model is used to
enhance the learning capability of the discriminator net-
work, and the instantaneous characteristics of the decom-
posed structural acceleration responses are employed as
training samples of the improved network model. Ten, the
trained GAN model can be applied to identify optimal
nonlinear model parameters based on the measured in-
stantaneous acceleration amplitude of structures. Te pro-
posed method is then verifed by simulating a nonlinear
tower model and shake table testing on a scaled steel-
–concrete hybrid bridge tower structure. Based on the
numerical and experimental results, the following conclu-
sions can be obtained:

(1) Te application of the CNN-based surrogate model
can enhance the capability of the discriminator
network to learn the complex mapping relationship
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Figure 25: Comparison of calibrated results with the true structural responses: (a) acceleration response; (b) instantaneous acceleration
amplitude; (c) instantaneous frequency.

Table 10: Calculated error indices under a new external excitation.

Racc (%) R1st
amp (%) R1st

ω (%)

13.7 2.5 1.7
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between structural vibration responses and non-
linear model parameters.

(2) Te trained GAN model can efectively identify
optimal nonlinear model parameters using the
measured instantaneous acceleration amplitudes of
the structural responses. Te identifed results in-
dicate that the proposed method has better noise
robustness.

(3) By comparing the nonlinear model updating results
between the improved GAN and a CNN, the pro-
posed network model is suggested as more suitable
for structural nonlinear model updating in
this study.

(4) Te feasibility and reliability of the proposed non-
linear model updating approach have been suc-
cessfully validated by numerical simulations and
shake table tests on a steel-concrete hybrid bridge
tower subjected to seismic excitation.
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