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Vortex-induced force (VIF) identifcation and modelling of a long-span bridge are often conducted in terms of aeroelastic
sectional model tests in wind tunnels. However, there are uncertainties inherent in wind tunnel model tests so that vortex-induced
vibration (VIV) still occurs in real long-span bridges designed according to wind tunnel test results. Tis paper presents
a framework for VIF identifcation of a long-span bridge based on feld-measured wind and acceleration data. Te framework is
composed of the four steps: (1) decompose feld-measured acceleration response time histories using variational mode de-
composition (VMD) method; (2) obtain velocity and displacement response time histories using frequency domain integration
(FDI) method; (3) establish and update the fnite element model and identify the generalized VIF time histories of the bridge; and
(4) identify the parameters in the polynomial VIF models and decide the most suitable VIF model. Te proposed framework is
fnally applied to a real suspension bridge with a recent VIV event. Te results show that the proposed framework can accurately
identify the generalized VIF acting on the bridge from the feld-measured acceleration and wind data, and the derived most
suitable VIF model can produce almost the same vortex-induced response (VIR) as the measured ones.

1. Introduction

Vortex-induced vibration (VIV) of a long-span bridge is
a self-excited vibration caused by the interaction of bridge
motion with incoming wind. Although VIV does not di-
rectly cause a bridge to collapse, it can induce fatigue damage
to crucial structural components of the bridge and impair
the comfort and safety of vehicle users [1–3]. VIV has been
observed on several long-span bridges worldwide, which
include the Deer Isle Bridge in the USA [4], the Great Belt
Bridge in Denmark [5], the Second Severn Crossing in the
UK [6], the Yi Sun-Shin Bridge in Korea [7], the Xihoumen
Bridge, the Yingwuzhou Bridge, and the Humen Bridge in
China [2, 8, 9]. Terefore, the vortex-induced force (VIF)
identifcation and modelling of a long-span bridge become
an essential topic in order to investigate VIV and predict
vortex-induced response (VIR) of a long-span bridge.

At present, VIF identifcation and modelling of a long-
span bridge are often conducted in terms of wind tunnel

tests of aeroelastic models of bridge deck sections. Te
semiempirical VIF models with a few to-be decided pa-
rameters are frst assumed. Te vortex-induced displace-
ment response time histories or the directly measured VIF
time histories of the aeroelastic models of the bridge deck
sections are then used to identify these to-be-decided pa-
rameters to yield a complete VIF model for investigating
VIV and predicting VIR of the bridge.

Ehsan and Scanlan [10] regarded VIV of a bridge deck
section used in the wind tunnel in the vertical direction as
a single degree-of-freedom (SDOF) system and revised
Scanlan’s linear VIF model [11] by adding a nonlinear
aeroelastic damping force to form a nonlinear VIF model.
Tey then used the vortex-induced displacement response
time histories measured from the aeroelastic model of the
bridge deck section in wind tunnel to identify the parameters
in the nonlinear VIF model. To improve the accuracy of
parameter identifcation by Ehsan and Scanlan [10], Wu and
Chang [12] used the identifed parameter values as initial
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guesses to ft both the experimental and analytical responses
in the time domain. On the other hand, Barhoush et al. [13]
considered VIV of a bridge deck section used in the wind
tunnel in the vertical direction as a 2DOF system, in which
the structural motion is modelled by a second-order linear
mechanical oscillator excited by the VIF modelled by
a second-order nonlinear wake oscillator (Vol del Pol type
oscillator) coupled with the structural motion [14, 15].
Nevertheless, the wind tunnel test procedure used to identify
the parameters in such a VIF model is complicated with
considerable uncertainty [16].

Te abovementioned semiempirical VIF models were
established without a direct knowledge of VIF. Zhu et al.
[17, 18] recently developed a new wind tunnel test tech-
nique to directly measure VIF acting on an elastically
mounted deck sectional model. Tey also deemed VIV of
the bridge deck section used in the wind tunnel in the
vertical direction as a SDOF system, but they proposed the
polynomial VIF models and identifed the parameters in
the polynomial VIF models based on the measured VIF
time histories in a wind tunnel [19]. Te results they ob-
tained shed light on the characteristics of both VIF and
VIV. Nevertheless, the synchronous force and vibration
measurement and the data processing regarding the
elimination of air-induced inertia force and damping are
complex and costly.

More and more long-span bridges have now been
equipped with long-term structural health monitoring
systems which can measure wind and bridge responses on
site [20]. Consequently, Liu et al. [21] recently identifed the
parameters in Scanlan’s linear VIF model using on-site
measurement data via the Bayesian inference-based fast
Fourier transform (FFT) method. Since only the parameters
in the linear VIF model were identifed, the nonlinear
characteristics of VIF could not be captured. Moreover, the
power spectral density (PSD) of modal force due to ambient
excitation and the PSD of prediction errors should be as-
sumed in order to eliminate their efects on the VIF pa-
rameter identifcation. Te accuracy of the Bayesian
inference-based FFT method also depends signifcantly on
the selection of frequency bandwidth. If the frequency
bandwidth is not chosen appropriately, it could lead to
inaccurate parameter identifcation.

In summary, the nonlinear VIF identifcation and
modelling based on wind tunnel aeroelastic model test
results involve many uncertainties, compared with the
nonlinear VIF of a real long-span bridge. Tese un-
certainties result from the scaling efect, blockage efect,
turbulence, structural damping ratio, and Reynolds
number of the wind tunnel tests. Te VIF identifcation
based on on-site measurement data currently refers to the
linear VIF model only other than the nonlinear VIF of
a real long-span bridge. To address the limitations of the
currently used VIF identifcation methods, the present
study aims at developing a new framework for nonlinear
VIF identifcation and modelling of a long-span bridge
using feld-measured wind and acceleration data. Te
framework is composed of the four steps: (1) decompose
feld-measured acceleration response time histories using

variational mode decomposition (VMD) method; (2) ob-
tain velocity and displacement response time histories
using frequency domain integration (FDI) method; (3)
establish and update the fnite element model and identify
the generalized VIF time histories of the bridge; and (4)
identify the polynomial parameters in VIF models and
decide the most suitable VIF model, as shown in Figure 1
and will be introduced in detail in the following sub-
sections. Te proposed framework will be fnally applied to
a real long suspension bridge with a recent VIV event to
assess its feasibility and accuracy.

2. Prototype Bridge and VIV Event

2.1. Xihoumen Bridge. Te Xihoumen Bridge, opened to
road trafc in December 2009, is a suspension bridge
crossing a narrow water way in Zhoushan, Zhejiang
Province, China. Te geographic location of the Xihoumen
Bridge is shown in Figure 2. Te Xihoumen Bridge has
a main span of 1650m and two side spans of 578m and
485m respectively, as shown in Figure 3(a). Te north side
span is supported by suspenders but the south side span of
the bridge is supported by a series of piers. Te bridge deck
adopts a twin-box steel deck, which has a cross section of
36m in width and 3.51m in height. Te gap between the
two box girders is 6 m. Te detailed geometry confgura-
tion of cross section can be found in Figure 3(b). Te
bridge deck carries two-way road trafc, each way having
four lanes. Te north and south towers of the bridge are
made of reinforced concrete and have a height of 236.5m.
Te main cables of the bridge are composed of parallel
steel wires.

To monitor the performance and safety of the Xihoumen
Bridge, a structural health monitoring (SHM) system was
installed on the bridge. Te SHM system has several types of
sensors, including three-dimensional ultrasonic ane-
mometers and force-balance uniaxial accelerometers [22].
Because the bridge is located in a strong wind region,
monitoring wind-induced vibrations of the bridge is
a major objective of the SHM system [23]. Six three-
dimensional ultrasonic anemometers (denoted as UA1-
UA6) were installed on the poles located at the 1/4, 1/2, and
3/4 sections of the main span at a height of 6m above the
deck surface, as shown in Figures 3 and 4. Te sampling
frequency of the anemometers is 20Hz. As the anemom-
eters are very close to the main cable in the middle of main
span, only the winds recorded by the anemometers at the 1/
4 and 3/4 sections of the main span can be used in this
study. Tree sets of force-balance uniaxial accelerometers
(denoted as Acc4-Acc12) were installed at the 1/4, 1/2, and
3/4 sections of the main span and one set (denoted as Acc1-
Acc3) was installed at the 1/2 section of the north side span,
as shown in Figure 4. Te sampling frequency of the ac-
celerometers is 50Hz. Each set contains three accelerom-
eters, two installed on each side of the deck section
vertically to record the vertical and torsional acceleration
and one installed on the deck section horizontally to record
the lateral acceleration. More detailed information on the
SHM system can be found in the literature [22].
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2.2. FE Model of Xihoumen Bridge. Te three-dimensional
(3D) fnite element (FE) model was established for the
Xihoumen Bridge according to the bridge design drawings
using the software ANSYS, as shown in Figure 5. Tis FE
model is called the design document-based FE model. Te
twin-box deck was idealized as two parallel beams connected
by cross beams at 3.6m intervals. Both longitudinal and
cross beams were modelled with 3D elastic beam elements
with tension, compression, torsion, and bending capacities.
Te towers were also modelled with 3D elastic beam ele-
ments, while the main cables and suspenders were modelled
with cable elements. Te profle of the main cable was de-
termined by catenary function, and the spacing distance

between two suspenders was 18m. Te main cables and
towers were connected at the tower tops with coupled
translational degree of freedom (DOF). Te bottom of the
towers and the anchorages of the main cables were modelled
as fxed ends.

Te design document-based FE model of the Xihoumen
Bridge was used to fnd the modal properties of the bridge
through an eigenvalue analysis. Te calculated frst nine
vertical natural frequencies and mode shapes of the bridge
are given in Table 1.

2.3. VIV Event and Field Measurement Data. On June 18,
2020, a VIV event occurred on the bridge, and the bridge was
closed to trafc for the frst time since it was open to the
public in 2009. Tis VIV event lasted for a period of 66min
from 19:41 to 20:47.Te anemometers and accelerometers of
the SHM system timely recorded wind speed, wind di-
rection, and the acceleration response of the bridge deck.
Te measurement data collected by the anemometers show
that during the event, one-min mean wind speed at the deck
level was 7.2 to 9.9m/s with a wind yaw angle of approxi-
mately 143° to 150°, as shown in Figure 6. Figure 6 is a wind-
rose diagram, in which the solid line represents the bridge
axis, the wind direction of incoming wind is shown in the
polar coordinate system, and the radius coordinate denotes
the occurrence frequency of wind speeds. Since wind yaw
angle is defned as the angle between the incoming wind
direction and the bridge longitudinal axis, the wind yaw
angle of approximately 277° to 284° indicates that the

Field acceleration data

Construct the variational model

FFT

Accelerations (a) in
frequency domain 

Solve variational problem

Select IMFs at the fundamental-,
double- and triple-frequency 

Selected IMFs from Step 1

Integral

Velocities (v) and
displacements (x) in
frequency domain

IFFT v and x in time domain 

a, v, x and generalized VIF time
history 

VIF MODEL

NLSF method

VIF model parameters

Step 1 Step 2

Step 3Step 4

Design documents

Updating program

Updated bridge model

M, K, C

Wind field data

a, v and x time history 

FE bridge model

Bridge modal updating

Generalized VIF time
history 

Figure 1: Flowchart of the proposed framework for VIF identifcation and modelling based on feld measurement data.
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Figure 2: Location of Xihoumen Bridge.
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incoming wind direction was from the SE direction and
almost perpendicular to the longitudinal axis of the bridge.
Te 10-minute turbulence intensity of the incoming wind
was 5.36% to 6.2%.

Te measurement data collected by the accelerometers
reveals that the VIV of the bridge was dominated in the
vertical direction and the dominated vibration frequency
was 0.275Hz. Te 1/4 and 3/4 sections of the main span
vibrated more signifcantly than the 1/2 section of the main
span. To understand the vibration characteristics of the
Xihoumen Bridge during the VIV event, Figure 7 displays

the measured vertical acceleration response of the main span
at the 1/4 section and the corresponding normalized power
spectral density function (PSD). It can be seen that the
maximum acceleration was 0.355m/s2 at the time of 20:03.
Te vibration of the 1/4 section of the main span had
a dominate frequency of 0.275Hz which is close to 0.269Hz,
the 8th vertical natural frequency of the bridge calculated
from the design document-based FE model of the bridge. It
can be seen from Table 1 and Figure 3(a) that the 8th vertical
mode shape consists of six half waves and that the 1/4 and 3/
4 sections of the main span are close to the maximummodal
amplitude while the 1/2 section of the main span is close to
the minimum modal amplitude. Tis is why the 1/4 and 3/4
sections of the main span vibrated more signifcantly than
the 1/2 section of the main span during the VIV event.
Terefore, it can be concluded that the VIV event of the
bridge excited out the 8th vertical mode of vibration.

In consideration of the wind direction and the feature of
deck vibration during the VIV event, the feld wind data
collected by the anemometer UA1 and the feld acceleration
data collected by the accelerometer Acc4 (see Figure 4) are
used in subsequent analysis. Nevertheless, due to the in-
complete wind data collected by the anemometer UA1, only
the measurement data collected during 20:00–20:30, as
shown in Figure 8, can be used for subsequent VIF iden-
tifcation of the bridge.
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Figure 3: Xihoumen Bridge: (a) elevation view of the bridge (m); (b) cross section of main girder (cm).
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Figure 5: Tree-dimensional FE model of the Xihoumen Bridge.
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Table 1: Te calculated frst nine vertical natural frequencies and mode shapes of the bridge.

Vertical mode Mode shapes Natural frequencies (Hz)

1st 0.097

2nd 0.101

3th 0.133

4th 0.178
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Figure 6: Wind-rose diagram of the bridge site.
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3. Decomposition of Acceleration Data
Using VMD

Although the vertical vibration of the bridge during the VIV
event was mainly caused by VIF, there were still small vi-
bration caused by bufeting force and ambient excitation.
Te measurement noise is also unavoidable in measurement
signals. Terefore, the preprocessing of the measured ac-
celeration time histories to eliminate their infuences shall be
performed to identify the VIF more accurately. Further-
more, the wind tunnel tests of VIV of the deck sectional

model showed that the VIF acting on the deck section had
notable multiple-frequency components besides the com-
ponent of the dominant (fundamental) frequency [18]. Te
PSD of the acceleration response recorded during the VIV
event also shows the notable double-and triple-frequency
components besides the dominant component of the 8th
vertical natural frequency (see Figure 7). Terefore, an
appropriate mode decomposition method shall be selected
for signal processing. Te variational mode decomposition
(VMD) is fnally selected in this study to decompose the
acceleration response time histories for VIF identifcation.
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Figure 7: Measured vertical acceleration response time histories at the 1/4 section of the main span and the corresponding PSD during
VIV event.
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Figure 8: Wind speed and acceleration response time histories recorded during 20:00–20:30: (a) wind speed; (b) acceleration response.
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3.1. Brief Introduction toVMD. VMD is a recently developed
mode decomposition method and can be employed to de-
compose the original signal into a series of intrinsic mode
functions (IMF) [24]. Each IMF has specifc sparsity
properties in the frequency domain. Te central frequency
and bandwidth of each function are determined by itera-
tively searching for the optimal solution to the variational
mode. Compared with other mode decomposition methods,
VMD is much more robust to sampling and noise [25, 26].

Te vertical acceleration response time history, a (t),
collected during the VIV event is now decomposed into k
IMFs. An IMF, uk(t), is considered as an amplitude-

modulated-frequency-modulated signal, which can be
expressed as

uk(t) � Ak(t) cos φk(t)( , (1)

where Ak(t) and φk(t) represent the envelope and the phase
of the kth IMF, respectively.

Te above decomposition procedure can be described as
a constrained variational problem with the objective func-
tion of equation (2).

min
uk{ }, ωk{ }



K

k�1
zt δ(t) +

j

πt
 ∗ uk(t) e

− jωkt

�������

�������

2

2

⎧⎨

⎩

⎫⎬

⎭, s.t. 
K

k�1
uk(t) � a(t), (2)

where δ is the Dirac distribution, ∗ denotes the convolution,
uk  � u1, u2, . . . , uk  and ωk  � ω1,ω2, . . . ,ωk  are the
shorthand notations for all IMFs and their corresponding
center frequencies, respectively.

Using a quadratic penalty term and Lagrangian multi-
pliers λ, the above constrained variational problem can be
transferred into an unconstrained optimization problem as

L uk , ωk , λ(  � α
K

k�1
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�������

�������
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+ 
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uk(t) − a(t)

���������

���������

2

2

+〈λ(t),a(t) − 
K

k�1
uk(t)〉,

(3)

where the use of quadratic penalty term is a classical ap-
proach to improve the fdelity of reconstruction. λ is
commonly used to enforce constrains strictly. Te combi-
nation of these two terms is used to improve the convergence
properties at fnite weight and the strict enforcement of the
constrains [26].

In order to solve equation (3), the alternate direction
method of multipliers can be used. Apply a series of iterative
suboptimizations to obtain diferent center frequencies and
the corresponding IMFs. Te detailed solution process can
be referred to [24].

3.2. Decompose Acceleration Response Time History. Te
measured vertical acceleration response at the 1/4 main span
and its Fourier amplitude within 0-1Hz during 20:00∼20:30
are shown in Figures 9(a) and 9(b). Tree frequencies within
0-1Hz are clearly observed in Figure 9(b). It can be found that
the energy of the measured vertical acceleration response is
mainly concentrated at 0.275Hz, 0.550Hz, and 0.825Hz, in
which 0.550Hz and 0.825Hz seem to be the super harmonics
of the second and third order of the fundamental exciting
frequency 0.275Hz, as observed in the wind tunnel tests [17].
Te Fourier amplitude of 0.275Hz is signifcantly higher than
the double-frequency function (0.550Hz) and triple-
frequency function (0.825Hz) about ten times.

Te VMD is then used to decompose the measured
vertical acceleration response into fundamental-
frequency, double-frequency, and triple-frequency
IMFs. Figures 9(c)–9(h) show the decomposed IMFs
and their Fourier amplitudes. As shown in Figure 9, the
independent frequency IMFs of 0.275 Hz, 0.550 Hz, and
0.825 Hz are successfully decomposed and well separated
without any overlapping. Although the Fourier ampli-
tudes of the double-frequency IMF and triple-frequency
IMF are much smaller than that of the fundamental-
frequency IMF in the vertical acceleration response,
these two notable multiple-frequency IMFs account for
a part in force time history. Moreover, these two notable
multiple-frequency IMFs represent the nonlinear terms of
VIV and therefore cannot be ignored.

Figure 10 is the comparison of the vertical acceleration
response at 1/4 main span with and without considering
multiple-frequency IMFs. It can be found that if only the
fundamental-frequency IMF is considered, the vortex-
induced response (VIR) will be underestimated. Tere-
fore, considering the reasons mentioned above, these two
notable multiple-frequency IMFs shall be taken in the
subsequent analysis of this study. On the other hand,
compared with the original measured vertical acceleration
response time history shown in Figure 8, the measurement
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Figure 9: Measured data and decomposed intrinsic mode functions (IMFs) of vertical acceleration response at 1/4 main span and the
Fourier amplitude spectrum during 20:00–20:30: (a, b) measured response; (c, d) IMF at fundamental frequency; (e, f ) IMF at double-
frequency; (g, h) IMF at triple-frequency.
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noise of higher frequencies and the bufeting-induced re-
sponses at lower and higher frequencies are eliminated in the
combination of the three IMFs.

4. Frequency Domain Integration

4.1.Teory of FDI. Te frequency domain integration (FDI)
method [27] uses the Fourier transform and inverse Fourier
transform as well as the transfer function to reconstruct
displacement and velocity response time histories from the
measured acceleration response time histories. Te in-
tegration is substituted by the Fourier transform, and sine
and cosine transforms are directly implemented in the
frequency domain so that accumulation and amplifcation of
small errors of integration in the time domain method as
well as the phase errors in the digital flter method can be
avoided.

For a discrete acceleration series a (n) (or IMF) with
a length of N in the time domain, the Fourier transform of
the series can be described by [27]

a(k) �
2
N



N

n�1
a(n)e

[−2π(k−1)(n−1)i/N]

� ak + bki,

f(k) �
(n − 1)f0

2N
, 1≤ k≤N,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where f0 is the sample frequency, a (k) is the complex se-
quence of a (n) in the frequency domain after the Fourier
transform, and f (k) is the corresponding frequency.

Teoretically, a (k) can be expressed by a simple har-
monic expression as shown in equation (5), and the har-
monic velocity and displacement for each frequency
component can be described by equations (6) and (7).

a(t)k � Aak cos ωkt + φk( , (5)

v(t)k � −Avk sin ωkt + φk( , (6)

x(t)k � −Axk cos ωkt + φk( , (7)

where ωk� 2πfk is the circular frequency of the harmonic
motion; φk is the phase angle; Aak �

������

a2
k + b2k



, Avk � Aak/ωk,
and Axk � Aak/ω2

k are the amplitude of acceleration, velocity,
and displacement harmonic motion, respectively.

It can be found from equations (5)–(7) that the phase
diference is π/2 between displacement and velocity and
between velocity and acceleration. Te phase diference
between displacement and acceleration is π. Moreover, the
multiples are 2πfk and (2πfk)2, respectively, between ve-
locity and acceleration and between displacement and
acceleration.

According to the principle of signal superposition, the
velocity and displacement can be constructed by

v(t) � 

N

k�1
v(t)k � − 

N

k�1
Avk sin ωkt + φk( ,

x(t) � 
N

k�1
x(t)k � − 

N

k�1
Axk cos ωkt + φk( .

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(8)

As a result, the frequency integration method can be
explained through a Fourier transform and an inverse
Fourier transform as expressed by
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Figure 10: Comparison of the vertical acceleration response at 1/4 main span with and without considering multiple-frequency
components.
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F(v(t)) � Hv(ω)F(a(t)) �
1
iω

F(a(t)),

F(x(t)) � Hx(ω)F(a(t)) � −
1
ω2 F(a(t)),

v(t) � F
− 1 1

iω
φ(ω)F(a(t)) ,

x(t) � −F
− 1 1

ω2 φ(ω)F(a(t)) ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where Hv(ω) and Hx(ω) are the transfer function of v(t)

and x(t), respectively, with respect to a(t); a(t) is the
measured acceleration response time history; and φ(ω) is the
accuracy function used to reduce the trend term error or
drift error caused by low-frequency noise and it can be
described by

φ(ω) �
1, 2πfd ≤ω≤ 2πfu,

0, others,
 (10)

where fd and fu are the lower and upper of cut-of fre-
quencies, respectively.

4.2. Obtain Velocity and Displacement Response Time
Histories. Te FDI method is now applied to the
fundamental-frequency, double-frequency, and triple-
frequency IMFs shown in Figures 9(c), 9(e), and 9(g), re-
spectively.Te lower and upper of cut-of frequency used for
the fundamental-frequency, double-frequency, and triple-
frequency IMFs are 0.266Hz and 0.283Hz, 0.543Hz and
0.558Hz, and 0.819Hz and 0.831Hz, respectively. Figure 11
shows the resulting acceleration, velocity, and displacement
responses of fundamental-frequency, double-frequency, and
triple-frequency IMFs in one minute. It is noted that the
vertical coordinate on the left in Figure 11 is for acceleration,
and velocity and displacement are plotted proportionally. It
is then seen that when acceleration response is at a zero-
point, the displacement response is also at the zero-point but
the velocity response is at either wave peak or wave through.
Tis satisfes the phase diference expressed by equations
(5)–(7). In the fundamental-frequency IMF, the amplitudes
of acceleration, velocity, and displacement responses at
about 30 s are approximately 0.2166m/s2, 0.1251m/s, and
0.0724m, and the multiple is about 1.7279 (2× π × 0.275). In
the double-frequency IMF, the amplitudes of acceleration,
velocity, and displacement responses at about 30 s are ap-
proximately 0.0175m/s2, 0.0051m/s, and 0.0015m, and the
multiple is about 3.456 (2× π × 0.550). In the triple-
frequency IMF, the amplitudes of acceleration, velocity,
and displacement responses at about 30 s are approximately
0.0162m/s2, 0.0031m/s, and 0.0006m, and the multiple is
close to 5.4978 (2× π × 0.875). It is seen that the three sets of
IMFs all satisfy the phase diference of π/2 and the multiple

of 2πfk as described by equations (5)–(7). Moreover, the
vortex-induced displacement, velocity, and acceleration
responses of the bridge at 1/4 main span can be obtained
according to equation (8).

5. Model Updating and VIF Identification

To identify VIF acting on the bridge appropriately, the
design document-based FE model of the bridge shall be
updated by using the measurement data. Tis is because the
8th vertical natural frequency calculated from the design
document-based FE model of the bridge is 0.269Hz rather
than 0.275Hz. Tere are some uncertainties between the FE
model and the prototype bridge.

5.1. BridgeModel Updating. Te frst step of model updating
in this study is to identify the natural frequencies and modal
damping ratios from the measured acceleration response
time histories of the bridge at 1/4 main span. Te measured
acceleration response time histories of the bridge at 1/4 main
span shall be ambient or bufeting-induced response time
histories other than vortex-induced ones. Figure 12 shows
the bufeting-induced vertical acceleration response time
history of the bridge at 1/4 main span and the corresponding
normalized PSD during 16:00–18:30 on June 18, 2020.

Many methods can be used to identify the modal pa-
rameters from vibration signals, such as the stochastic
subspace identifcation [28], the power spectral method [29],
the eigensystem realization algorithm [30], the fast Bayesian
FFT method [31, 32], and so on. In this study, the fast
Bayesian FFT method is used to identify the natural fre-
quencies and damping ratios. Tis method reduces the
solution of the most probable value into a four-dimensional
numerical optimization problem by analyzing the mathe-
matical structure of the posterior probability density func-
tion and solves the problem that the optimization cannot
converge when the measurement freedom is large. Te
identifed natural frequencies and damping ratios of the frst
six vertical modes of vibration of the bridge are listed in
Table 2.

Based on the diference between the measured six ver-
tical natural frequencies of the bridge and the corresponding
ones calculated from the design document-based FE model,
the objective function can be established. Te parallel
computing-aided FE model updating program with particle
swarm optimization (PSO) algorithm is adopted for
updating the mass and stifness of the FEmodel of the bridge
to make the diference in the selected six natural frequencies
as small as possible. Te selected six vertical natural fre-
quencies from the updated FE model using the parallel
computing-aided FE modal updating program mentioned
above are also listed in Table 2. It is seen that the errors
between the measured and calculated natural frequencies are
all lower than 1%. Te updated FE model of the bridge can
now be used in the next section for VIF identifcation.
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5.2. VIF Identifcation. For the sake of brevity, let us con-
sider the bridge deck as a continuous beam. In terms of the
dynamics of structures, the governing equation of motion of

the bridge deck can be described by the following partial
diferential equation:

m(x)
z
2
Z(x, t)

zt
2 + c(x)

zZ(x, t)

zt
+

z
2

zx
2 EI(x)

z
2
Z(x, t)

zx
2  � FVIV Z(x, t),

zZ(x, t)

zt
, x, t , (11)
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Figure 11: Tree sets of IMFs with acceleration, velocity, and displacement in one minute at (a) 0.275Hz, (b) 0.550Hz, and (c) 0.825Hz.
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where m(x), c(x), and EI(x) are the mass, damping co-
efcient, and bending stifness, respectively, of the bridge
deck at the longitudinal coordinate x; Z(x, t) is the vertical
displacement of the bridge deck at the longitudinal co-
ordinate x at time t; and FVIV(Z(x, t), (zZ(x, t)/zt), x, t) is
the VIF acting on the bridge deck at the longitudinal co-
ordinate x at time t and it is the function of the deck motion.

Since the vortex-induced acceleration response of the
bridge deck involves the three dominant frequencies as
shown in Figures 9 and 11, the three vertical modes of vi-
bration of the bridge deck, whose natural frequencies are

most close to the corresponding dominant frequencies,
should be considered. Furthermore, the vortex-induced
acceleration response is obviously dominated by the 8th
vertical mode of vibration at a natural frequency of 0.275Hz,
and the vortex-induced displacement response shows clearly
that the concerned VIV is a weakly nonlinear vibration.
Terefore, the vertical displacement response Z(x, t) can be
taken as the sum of the three modal responses Z(x, t) �


3
i�1yi(x, t) in terms of the mode superposition method,

where yi(x, t) can be expressed as yi(x, t) � ϕi(x)ηi(t). As
a result, equation (11) can be converted to equation (12).


L

0
ϕi(x)

2
m(x)dx€ηi(t) + 

L

0
ϕi(x)

2
c(x)dx _ηi(t)

+ 
L

0
ϕi(x)EI(x)

z
4ϕi(x)

zx
4 dxηi(t) � 

L

0
ϕi(x)F

i
VIV ηi(t), _ηi(t), x, t( dx,

(12)

where ϕi(x) is the concerned ith mode shape of the bridge
deck; ηi(t) is the ith generalized coordinate; and L is the
length of the bridge deck.

It is worth to note that when the bridge deck undergoes
VIV, VIF will induce the resonant vibration of the bridge deck
at the corresponding modes of vibration, whose natural fre-
quencies are close to the dominant frequencies of VIF.

Terefore, it is noted that the fundamental IMF at 0.275Hz (see
Figure 9) corresponds to the mode of vibration at 0.275Hz, the
double-frequency IMF at 0.550Hz corresponds to the mode of
vibration at 0.549Hz, and the triple-frequency IMF at 0.825Hz
corresponds to the mode of vibration of 0.824Hz.

Introduce the generalized mass Mi, damping Ci, stifness
Ki, and VIF f

i

VIV as follows:

Table 2: Identifed modal parameters of the frst six vertical modes of vibration.

Vertical mode Identifed frequency Updated frequency Error (%) Identifed
damping ratio (%)

1st 0.0946 0.0938 0.85 0.66
3th 0.1321 0.1322 0.76 1.06
5th 0.1835 0.1828 0.38 0.18
6th 0.2290 0.2285 0.22 0.12
8th 0.2756 0.2745 0.40 0.16
9th 0.3252 0.3233 0.58 0.11
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Figure 12: Bufeting-induced vertical acceleration response of the bridge at 1/4 main span and the corresponding PSD during 16:00–18:30.
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ϕi(x)EI(x)
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4
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i

VIV � 
L
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ϕi(x)F

i
VIV ηi(t), _ηi(t), x, t( dx.
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(13)

By considering the section of the bridge deck at 1/4 main
span with the mode shape value of ϕi (1/4 main span), ηi(t)

can be obtained by yi (1/4 main span, t)/ϕi (1/4 main span).
Ten, calculate _ηi(t) and €ηi(t) in the same way. Te gov-
erning equation of motion of the bridge deck under vertical
VIF, equation (12), can be rewritten as equation (14).

Mi€yi

1
4
main span, t  + Ci _yi

1
4
main span, t  + Kiyi

1
4
main span, t 

� ϕi

1
4
main span f

i

VIV yi(t), _yi(t), t( ,

(14)

where Mi is the ith generalized mass; Ci � 2ζ iωiMi is the ith

generalized damping; ζ i is the ith damping ratio; ωi is the ith

circular frequency of the bridge deck, which can be obtained
from the updated bridge model; Ki � ω2

i Mi is the ith gen-
eralized stifness; and f

i

VIV is the ith generalized VIF.
Te generalized VIF time histories for the three modes of

vibration of the bridge deck during the VIV event can be
identifed using equation (14). It is worth noting that the
VIF, when the bridge deck undergoes VIV, is small com-
pared with the inertia force or the restoring force of the
bridge deck. To ensure the accuracy of the identifed VIF, the
generalized VIF is calculated by the sum of the generalized
inertia force, restoring force, and damping force. Tis is
because the VIV can be approximately seen as a simple
harmonic motion in the given mode of vibration and the
sum of the generalized inertial and restoring force is small
compared with the generalized damping force. Furthermore,
to escalate the identifcation accuracy of the generalized VIF,
the generalized modal properties calculated from the
updated fnite element model of the bridge obtained in
Section 5.1, the model damping ratios identifed from the
feld-measured acceleration time histories and given in
Section 5.1, the acceleration time histories obtained by
decomposing the feld-measured acceleration time histories
through VMD in Section 3, the velocity and displacement
time histories obtained by FDI in Section 4 are used in the
identifcation of the generalized VIF in equation (14).

To have a good understanding of VIV and VIF of the
concerned bridge deck, the half-hour measurement data are
divided into 30 sets of one-minute data in the subsequent
VIF identifcation. Figures 13(a)–13(c) show the identifed
generalized VIF time histories in one minute for the three
modes of vibration, respectively. It is seen that the identifed
generalized VIF at the fundamental frequency is in the range
of −12.24 to 12.24N, the identifed generalized VIF at the

double-frequency is in the range of −1.88 to 1.88N, and the
identifed generalized VIF at the triple-frequency is in the
range of −4.81 to 4.81N. It is noted that the mode shapes are
normalized with respect to the mass matrix and the gen-
eralized VIFs are calculated with respect to the normalized
mode shapes in this study. Furthermore, the generalized
VIFs are used only for the subsequent VIF parametric
identifcation and there is no attempt to identify the VIF of
the bridge deck directly. Te identifed generalized VIFs are
also called the measured generalized VIFs in the next section
for the sake of brevity.

6. VIF Parametric Identification

6.1. VIF Model for Twin-Box Decks under Turbulent Wind.
During the last decades, several semiempirical VIF models
have been proposed, based on the wind tunnel test results of
elastically mounted section models, to predict the VIR of the
prototype bridge [10, 17, 33]. Te Scanlan-nonlinear VIF
model [10] is most widely used in predicting the VIR of the
bridge because it only requires a single wind tunnel test to
identify the main parameters in the VIF model. Neverthe-
less, Zhu et al. [17] found that the Scanlan-nonlinear model
could predict the maximum amplitude of VIR with satis-
faction but it could not give the time history of the measured
VIF satisfactorily. Zhu et al. [17] then proposed a new
semiempirical VIF model for a single-box deck section, as
shown in (15), in which the cubic term (η/D)2 _η/U in the
Scanlan-nonlinear model was replaced by ( _η/U)3. Com-
pared with the Scanlan-nonlinear model, this model could
predict both the VIR and VIF well.

fVIV �
1
2
ρU

2
D Y1 1 − ε1

_η
U

 

2
⎛⎝ ⎞⎠

_η
U

+ Y2
η
D

⎡⎢⎢⎣ ⎤⎥⎥⎦, (15)
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where ρ is the air density, U is the mean wind speed, D is the
characteristic length of the bridge, and Y1, Y2, and ε1 are the
coefcients of self-excited force (VIF).

Te VIF model expressed by equation (15) was estab-
lished based on the wind tunnel test, in which VIV of
a bridge deck section is regarded as a SDOF system. From
the amplitude spectrum of the measured VIF by Zhu et al.
[17], one can fnd that besides the signifcant amplitude of
VIF at the fundamental frequency, the amplitudes of VIF at
the multiple frequencies also occupy considerable pro-
portion. However, owing to the bridge deck section in the
wind tunnel test being a SDOF system, the VIF at the

multiple frequencies could not induce the resonant vibration
of the corresponding modes of vibration, except for the VIF
at the fundamental frequency. Nevertheless, when VIV
occurs in a real bridge, the bridge is a multi-degree-of-
freedom system and the multiple-frequency VIF can induce
the resonant vibration of the corresponding modes of vi-
bration. Terefore, the VIF model proposed by Zhu et al.
[17] for the SDOF system is not applicable in this study. To
describe the VIF more accurately, a general polynomial VIF
model for a twin-box deck with all the linear terms, qua-
dratic nonlinear terms, and cubic nonlinear terms is adopted
in this study.
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Figure 13: Identifed VIF time histories for the three modes of vibration in one minute at (a) 0.275Hz, (b) 0.550Hz, and (c) 0.825Hz.
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where Y1, Y2, Y3, Y4, Y5, ε1, ε2, ε3, ε4 are the nine to-be-
determined parameters in the VIF model and f

i

VIV is the ith

generalized VIF to be computed.

6.2. Parametric Identifcation via NLSF. Te parameters in
the VIF model expressed by equation (16) can be identifed
based on the measured generalized VIF time histories in
Section 5 through the nonlinear least squares ftting (NLSF).
Te target residue function in NLSF is defned as follows:

R Y1, Y2, Y3, Y4, Y5, ε1, ε2, ε3, ε4(  � 
3

i�1


n

j�1

f
i

VIV tj  − f
i

VIV tj  
2

⎛⎝ ⎞⎠, (17)

where f
i

VIV(tj) and f
i

VIV(tj) are the values of the gener-
alized VIFs at time tj, determined according to equations
(14) and (16), respectively, and n is the total number of the
data point in one minute.

Te parameters Y1, Y2, Y3, Y4, Y5, ε1, ε2, ε3, and ε4 can be
identifed by seeking the minimal value of the target residue
function expressed by equation (17). Te Lev-
enberg–Marquardt method is used for optimization [33].
Since one-minute time history is used for identifcation, 30
groups of VIF parameters can be obtained. Afterwards,
equation (16) can be used to calculate the VIF. Figures 14(a)–
14(d) shows the scatters between the computed and mea-
sured amplitudes of acceleration responses and three gen-
eralized VIFs at each time step of 0.02 s during 20:00–20:30.
Te solid line is the straight line with the slope of 1. If the
scatters are closer to the solid line, the identifed VIF pa-
rameters are of high accuracy for the concerned quantity. It
can be found from Figure 14(a) that the scatters of accel-
eration response amplitude are so close to the solid line that
the identifed VIF parameters are of high accuracy for the
acceleration responses. It is clear to see from Figures 14(b)–
14(d) that the discreteness of the frst and third generalized
VIFs is relatively larger and the discreteness of the second
generalized VIF is the largest, compared with the acceler-
ation response. One of the reasons could be because the
value of the double-frequency VIF is smaller than that of the
fundamental-frequency and triple-frequency VIF. Never-
theless, the identifed VIF parameters still process enough
accuracy for the three generalized VIFs.

6.3. Validation of Obtained VIF Model. To validate the
identifed VIF parameters in the VIF model, Figures 15(a)–
15(h) present the comparative results of time histories and
Fourier amplitude spectra between the computed and
measured acceleration responses and the three generalized

VIFs in one minute. Figures 15(a) and 15(b) show the
comparison between the computed and measured acceler-
ation response time histories and Fourier amplitude spectra
for a wind speed of U� 8.8m/s in one minute. It can be seen
that the computed acceleration time history agrees well with
the measured one in general. One can also fnd that the
computed Fourier amplitude spectrum also agrees well with
the measured one at the three dominant frequencies.
Figures 15(c)–15(h) display the comparisons between the
computed and measured frst, second, and third generalized
VIF time histories and Fourier amplitude spectra for a wind
speed of U� 8.8m/s in one minute. Te computed frst and
third generalized VIF time histories and Fourier amplitude
spectra agree well with the measured ones, except for only
small errors in the ftting of high peaks. Nevertheless,
Figures 15(e) and 15(f) show that there are some diferences
between the computed and measured second generalized
VIF time histories and Fourier amplitude spectra.

6.4. Further Analysis of Parameters in VIF Model. Tere are
a total of nine parameters, associated with the nine terms, in
the VIF model expressed by equation (16). It is of practical
interest to know whether some parameters and some terms
in the VIF model can be dropped without signifcant in-
fuence on the accuracy of the VIF model. A self-adaptive
simplifcation method (SASM) is thus proposed to de-
termine the importance of each parameter/term in the VIF
model for the Xihoumen Bridge and fnd the most suitable
VIF model. R-squared (R) is a common measure that
provides information about the goodness of ft of a model by
taking a value within the range from 0 to 1.When R equals 1,
the model fts the data perfectly and when R equals 0, the
model fails to explain the data. In this study, Ri between the
measured ith generalized VIF f

i

VIV and the computed ith

generalized VIF f
i

VIV is defned as
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Figure 15: Continued.
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Figure 14: Scatters between computed and measured amplitudes: (a) acceleration response; (b) the frst generalized VIF; (c) the second
generalized VIF; (d) the third generalized VIF.
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where n is the number of data points in one-minute; k is the
number of one-minute samples; SSE is the sum squared
error between the measured ith generalized VIF fi

i

VIV and
the computed ith generalized VIF f

i

VIV, obtained by equa-
tions (14), (16), and (19) in order; and SST is the sum squared
error between the measured ith generalized VIF f

i

VIV and the
average measured ith generalized VIF f

i

VIV, calculated by
equations (14) and (20) in order.

Table 3 lists the R1, R2, R3 values and the corresponding
parameters involved in the VIF model. It is seen that when
all the linear terms, quadratic nonlinear terms, and cubic
nonlinear terms in the VIFmodel expressed by equation (16)
are taken (1st line in Table 3), the frst generalized VIF time
history has a high degree of ft and the value of R1 is 0.99.Te
second and third generalized VIF time histories also have an
acceptable degree of ft and the values of R2 andR3 are 0.86
and 0.89, respectively. Te importance of each parameter in
the VIF model expressed by equation (16) is tested by
eliminating the associated term one by one. Te results
shown in Table 3 fnally confrm that if the parameters
Y3,Y4 andY5 are eliminated, the values of R1,R2, andR3 are
still 0.99, 0.84, and 0.89, respectively (12th line in Table 3).
Since these R values are almost the same as those with all the
terms included in the VIF model, one may conclude that all
the quadratic nonlinear terms in equation (16) can be taken
away without infuence on the accuracy of the VIF model.
Tis VIF model is called the simplifed VIF model.

Figures 16(a)–16(d) shows the scatters between the
computed amplitudes by the simplifed VIF model and the
measured amplitudes of acceleration responses and three
generalized VIFs at each time step of 0.02 s during 20:00–20:
30. It is seen that the simplifed VIF model has a high ac-
curacy to describe acceleration responses and VIF time
histories. Te relationships between the identifed param-
eters in the simplifed VIF model and the mean wind speed
are also explored based on feld-measured acceleration data
and wind data via the procedure shown in Figure 1. Te
variations of identifed parameters in the simplifed VIF
model with mean wind speed are shown in Figure 17. Te
black circular points represent the correlation between the
mean wind speed and VIF parameters. It is seen from
Figure 17 that there is a linear correlation between each VIF
parameter and mean wind speed.
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Figure 15: Comparisons of time histories and amplitude spectra between the computed and measured acceleration responses and three
generalized VIFs: (a, b) acceleration response; (c, d) the frst generalized VIF; (e, f ) the second generalized VIF; (g, h) the third generalized
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Table 3: Analysis of the parameters in the VIF model.

Parameters
in the model R1 R2 R3 Accepted

Y1, Y2, Y3, Y4, Y5, ε1, ε2, ε3, ε4 0.99 0.86 0.89 Yes
Y2, Y3, Y4, Y5, ε1, ε2, ε3, ε4 0.22 0.04 0.07 No
Y1, Y3, Y4, Y5, ε1, ε2, ε3, ε4 0.99 0.36 0.27 No
Y1, Y2, Y4, Y5, ε1, ε2, ε3, ε4 0.99 0.82 0.89 Yes
Y1, Y2, Y3, Y5, ε1, ε2, ε3, ε4 0.99 0.83 0.89 Yes
Y1, Y2, Y3, Y4, ε1, ε2, ε3, ε4 0.99 0.82 0.89 Yes
Y1, Y2, Y3, Y4, Y5, ε2, ε3, ε4 0.86 0.59 0.58 No
Y1, Y2, Y3, Y4, Y5, ε1, ε3, ε4 0.99 0.22 0.48 No
Y1, Y2, Y3, Y4, Y5, ε1, ε2, ε4 0.93 0.68 0.67 No
Y1, Y2, Y3, Y4, Y5, ε1, ε2, ε3 0.99 0.11 0.44 No
Y1, Y2, Y5, ε1, ε2, ε3, ε4 0.99 0.85 0.89 Yes
Y1, Y2, ε1, ε2, ε3, ε4 0.99 0.84 0.89 Yes
Y1, Y2, ε1, ε2, ε4 0.93 0.68 0.67 No
Y1, Y2, ε2, ε3, ε4 0.86 0.59 0.58 No
Y1, ε1, ε2, ε3, ε4 0.99 0.36 0.27 No
Y1, Y2, ε1, ε3, ε4 0.99 0.21 0.48 No
Y1, Y2, ε1, ε2, ε3 0.99 0.10 0.44 No
Y2, ε1, ε2, ε3, ε4 0.22 0.04 0.07 No
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7. Concluding Remarks

Te framework for VIF identifcation of a long-span bridge
based on feld-measured wind and acceleration data has
been proposed in this study. Te proposed framework has
been applied to a real suspension bridge with a recent VIV
event. Te major fndings and conclusions from this study
can be summarized as follows:

(1) By analyzing the measured acceleration data of the
real suspension bridge during the VIV event, it is
found that the vortex-induced acceleration responses
are dominated by three frequencies: fundamental
frequency of 0.275Hz, double-frequency of
0.550Hz, and triple-frequency of 0.825Hz. Tese
three dominant frequencies correspond to the 8th,
14th, and 23th modes of vibration of the bridge.
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Figure 16: Scatters between the computed amplitudes by the simplifed VIF model and the measured amplitudes: (a) acceleration response;
(b) the frst generalized VIF; (c) the second generalized VIF; (d) the third generalized VIF.
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(2) By using the variational mode decomposition
(VMD), the three intrinsic mode functions (IMFs)
are successfully extracted from the measured ac-
celeration response time history. Te three IMFs are,
in fact, the modal responses corresponding to the
three dominant modes of vibration of the bridge.

(3) Te three acceleration IMFs are integrated in the
frequency domain to obtain their respective velocity
and displacement time histories. Te results show
that these three IMFs all satisfy the π/2 phase dif-
ference and 2πf multiples among the acceleration,
velocity, and displacement responses after the fre-
quency domain integration.

(4) Te Fast Bayesian FFTmethod is used to identify the
natural frequencies and damping ratios of the bridge
from the measured acceleration data. Te identifed
natural frequencies are used to update the design
document-based fnite element model of the bridge
together with the particle swarm optimization
algorithm.

(5) Based on the updated model and the measured
modal responses, the time histories of the three
generalized VIFs are successfully identifed accord-
ing to the theory of structural dynamics.

(6) A polynomial VIF model with all the linear terms,
quadratic nonlinear terms, and cubic nonlinear
terms is used in this study for the twin-box deck.Te
nine parameters in the polynomial VIF model are
successfully identifed using the nonlinear least
squares ft (NLSF).

(7) Te self-adaptive simplifcation method (SASM) is
used to assess the importance of each term in the
polynomial VIF model. It is found that the quadratic
nonlinear terms in the polynomial VIF model could
be taken away without afecting the accuracy of the
VIF model for the concerned bridge. Te simplifed
polynomial VIF model performs well in describing
the relationship between the VIF parameters and
mean wind speed.

Nevertheless, the VIF model with the parameters
identifed from the VIV event used in this study should be
further examined if it is applicable for a new VIV event
whose modes are diferent from the VIV event used in
this study.
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