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Vortex-induced force (VIF) identification and modelling of a long-span bridge are often conducted in terms of aeroelastic
sectional model tests in wind tunnels. However, there are uncertainties inherent in wind tunnel model tests so that vortex-induced
vibration (VIV) still occurs in real long-span bridges designed according to wind tunnel test results. This paper presents
a framework for VIF identification of a long-span bridge based on field-measured wind and acceleration data. The framework is
composed of the four steps: (1) decompose field-measured acceleration response time histories using variational mode de-
composition (VMD) method; (2) obtain velocity and displacement response time histories using frequency domain integration
(FDI) method; (3) establish and update the finite element model and identify the generalized VIF time histories of the bridge; and
(4) identify the parameters in the polynomial VIF models and decide the most suitable VIF model. The proposed framework is
finally applied to a real suspension bridge with a recent VIV event. The results show that the proposed framework can accurately
identify the generalized VIF acting on the bridge from the field-measured acceleration and wind data, and the derived most

suitable VIF model can produce almost the same vortex-induced response (VIR) as the measured ones.

1. Introduction

Vortex-induced vibration (VIV) of a long-span bridge is
a self-excited vibration caused by the interaction of bridge
motion with incoming wind. Although VIV does not di-
rectly cause a bridge to collapse, it can induce fatigue damage
to crucial structural components of the bridge and impair
the comfort and safety of vehicle users [1-3]. VIV has been
observed on several long-span bridges worldwide, which
include the Deer Isle Bridge in the USA [4], the Great Belt
Bridge in Denmark [5], the Second Severn Crossing in the
UK [6], the Yi Sun-Shin Bridge in Korea [7], the Xihoumen
Bridge, the Yingwuzhou Bridge, and the Humen Bridge in
China [2, 8, 9]. Therefore, the vortex-induced force (VIF)
identification and modelling of a long-span bridge become
an essential topic in order to investigate VIV and predict
vortex-induced response (VIR) of a long-span bridge.

At present, VIF identification and modelling of a long-
span bridge are often conducted in terms of wind tunnel

tests of aeroelastic models of bridge deck sections. The
semiempirical VIF models with a few to-be decided pa-
rameters are first assumed. The vortex-induced displace-
ment response time histories or the directly measured VIF
time histories of the aeroelastic models of the bridge deck
sections are then used to identify these to-be-decided pa-
rameters to yield a complete VIF model for investigating
VIV and predicting VIR of the bridge.

Ehsan and Scanlan [10] regarded VIV of a bridge deck
section used in the wind tunnel in the vertical direction as
a single degree-of-freedom (SDOF) system and revised
Scanlan’s linear VIF model [11] by adding a nonlinear
aeroelastic damping force to form a nonlinear VIF model.
They then used the vortex-induced displacement response
time histories measured from the aeroelastic model of the
bridge deck section in wind tunnel to identify the parameters
in the nonlinear VIF model. To improve the accuracy of
parameter identification by Ehsan and Scanlan [10], Wu and
Chang [12] used the identified parameter values as initial
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guesses to fit both the experimental and analytical responses
in the time domain. On the other hand, Barhoush et al. [13]
considered VIV of a bridge deck section used in the wind
tunnel in the vertical direction as a 2DOF system, in which
the structural motion is modelled by a second-order linear
mechanical oscillator excited by the VIF modelled by
a second-order nonlinear wake oscillator (Vol del Pol type
oscillator) coupled with the structural motion [14, 15].
Nevertheless, the wind tunnel test procedure used to identify
the parameters in such a VIF model is complicated with
considerable uncertainty [16].

The abovementioned semiempirical VIF models were
established without a direct knowledge of VIF. Zhu et al.
[17, 18] recently developed a new wind tunnel test tech-
nique to directly measure VIF acting on an elastically
mounted deck sectional model. They also deemed VIV of
the bridge deck section used in the wind tunnel in the
vertical direction as a SDOF system, but they proposed the
polynomial VIF models and identified the parameters in
the polynomial VIF models based on the measured VIF
time histories in a wind tunnel [19]. The results they ob-
tained shed light on the characteristics of both VIF and
VIV. Nevertheless, the synchronous force and vibration
measurement and the data processing regarding the
elimination of air-induced inertia force and damping are
complex and costly.

More and more long-span bridges have now been
equipped with long-term structural health monitoring
systems which can measure wind and bridge responses on
site [20]. Consequently, Liu et al. [21] recently identified the
parameters in Scanlan’s linear VIF model using on-site
measurement data via the Bayesian inference-based fast
Fourier transform (FFT) method. Since only the parameters
in the linear VIF model were identified, the nonlinear
characteristics of VIF could not be captured. Moreover, the
power spectral density (PSD) of modal force due to ambient
excitation and the PSD of prediction errors should be as-
sumed in order to eliminate their effects on the VIF pa-
rameter identification. The accuracy of the Bayesian
inference-based FFT method also depends significantly on
the selection of frequency bandwidth. If the frequency
bandwidth is not chosen appropriately, it could lead to
inaccurate parameter identification.

In summary, the nonlinear VIF identification and
modelling based on wind tunnel aeroelastic model test
results involve many uncertainties, compared with the
nonlinear VIF of a real long-span bridge. These un-
certainties result from the scaling effect, blockage effect,
turbulence, structural damping ratio, and Reynolds
number of the wind tunnel tests. The VIF identification
based on on-site measurement data currently refers to the
linear VIF model only other than the nonlinear VIF of
a real long-span bridge. To address the limitations of the
currently used VIF identification methods, the present
study aims at developing a new framework for nonlinear
VIF identification and modelling of a long-span bridge
using field-measured wind and acceleration data. The
framework is composed of the four steps: (1) decompose
field-measured acceleration response time histories using
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variational mode decomposition (VMD) method; (2) ob-
tain velocity and displacement response time histories
using frequency domain integration (FDI) method; (3)
establish and update the finite element model and identify
the generalized VIF time histories of the bridge; and (4)
identify the polynomial parameters in VIF models and
decide the most suitable VIF model, as shown in Figure 1
and will be introduced in detail in the following sub-
sections. The proposed framework will be finally applied to
a real long suspension bridge with a recent VIV event to
assess its feasibility and accuracy.

2. Prototype Bridge and VIV Event

2.1. Xihoumen Bridge. The Xihoumen Bridge, opened to
road traffic in December 2009, is a suspension bridge
crossing a narrow water way in Zhoushan, Zhejiang
Province, China. The geographic location of the Xihoumen
Bridge is shown in Figure 2. The Xihoumen Bridge has
a main span of 1650 m and two side spans of 578 m and
485 m respectively, as shown in Figure 3(a). The north side
span is supported by suspenders but the south side span of
the bridge is supported by a series of piers. The bridge deck
adopts a twin-box steel deck, which has a cross section of
36 m in width and 3.51 m in height. The gap between the
two box girders is 6 m. The detailed geometry configura-
tion of cross section can be found in Figure 3(b). The
bridge deck carries two-way road traflic, each way having
four lanes. The north and south towers of the bridge are
made of reinforced concrete and have a height of 236.5 m.
The main cables of the bridge are composed of parallel
steel wires.

To monitor the performance and safety of the Xihoumen
Bridge, a structural health monitoring (SHM) system was
installed on the bridge. The SHM system has several types of
sensors, including three-dimensional ultrasonic ane-
mometers and force-balance uniaxial accelerometers [22].
Because the bridge is located in a strong wind region,
monitoring wind-induced vibrations of the bridge is
a major objective of the SHM system [23]. Six three-
dimensional ultrasonic anemometers (denoted as UA1l-
UAG6) were installed on the poles located at the 1/4, 1/2, and
3/4 sections of the main span at a height of 6 m above the
deck surface, as shown in Figures 3 and 4. The sampling
frequency of the anemometers is 20 Hz. As the anemom-
eters are very close to the main cable in the middle of main
span, only the winds recorded by the anemometers at the 1/
4 and 3/4 sections of the main span can be used in this
study. Three sets of force-balance uniaxial accelerometers
(denoted as Acc4-Accl2) were installed at the 1/4, 1/2, and
3/4 sections of the main span and one set (denoted as Accl-
Acc3) was installed at the 1/2 section of the north side span,
as shown in Figure 4. The sampling frequency of the ac-
celerometers is 50 Hz. Each set contains three accelerom-
eters, two installed on each side of the deck section
vertically to record the vertical and torsional acceleration
and one installed on the deck section horizontally to record
the lateral acceleration. More detailed information on the
SHM system can be found in the literature [22].
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FiGure 1: Flowchart of the proposed framework for VIF identification and modelling based on field measurement data.
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FIGURE 2: Location of Xihoumen Bridge.

2.2. FE Model of Xihoumen Bridge. The three-dimensional
(3D) finite element (FE) model was established for the
Xihoumen Bridge according to the bridge design drawings
using the software ANSYS, as shown in Figure 5. This FE
model is called the design document-based FE model. The
twin-box deck was idealized as two parallel beams connected
by cross beams at 3.6m intervals. Both longitudinal and
cross beams were modelled with 3D elastic beam elements
with tension, compression, torsion, and bending capacities.
The towers were also modelled with 3D elastic beam ele-
ments, while the main cables and suspenders were modelled
with cable elements. The profile of the main cable was de-
termined by catenary function, and the spacing distance

between two suspenders was 18 m. The main cables and
towers were connected at the tower tops with coupled
translational degree of freedom (DOF). The bottom of the
towers and the anchorages of the main cables were modelled
as fixed ends.

The design document-based FE model of the Xihoumen
Bridge was used to find the modal properties of the bridge
through an eigenvalue analysis. The calculated first nine
vertical natural frequencies and mode shapes of the bridge
are given in Table 1.

2.3. VIV Event and Field Measurement Data. On June 18,
2020, a VIV event occurred on the bridge, and the bridge was
closed to traffic for the first time since it was open to the
public in 2009. This VIV event lasted for a period of 66 min
from 19:41 to 20:47. The anemometers and accelerometers of
the SHM system timely recorded wind speed, wind di-
rection, and the acceleration response of the bridge deck.
The measurement data collected by the anemometers show
that during the event, one-min mean wind speed at the deck
level was 7.2 to 9.9 m/s with a wind yaw angle of approxi-
mately 143° to 150°, as shown in Figure 6. Figure 6 is a wind-
rose diagram, in which the solid line represents the bridge
axis, the wind direction of incoming wind is shown in the
polar coordinate system, and the radius coordinate denotes
the occurrence frequency of wind speeds. Since wind yaw
angle is defined as the angle between the incoming wind
direction and the bridge longitudinal axis, the wind yaw
angle of approximately 277° to 284° indicates that the
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FIGURE 3: Xihoumen Bridge: (a) elevation view of the bridge (m); (b) cross section of main girder (cm).
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FIGURE 4: The Xihoumen Bridge and the locations of the anemometers and accelerometers.

FIGURE 5: Three-dimensional FE model of the Xihoumen Bridge.

incoming wind direction was from the SE direction and
almost perpendicular to the longitudinal axis of the bridge.
The 10-minute turbulence intensity of the incoming wind
was 5.36% to 6.2%.

The measurement data collected by the accelerometers
reveals that the VIV of the bridge was dominated in the
vertical direction and the dominated vibration frequency
was 0.275Hz. The 1/4 and 3/4 sections of the main span
vibrated more significantly than the 1/2 section of the main
span. To understand the vibration characteristics of the
Xihoumen Bridge during the VIV event, Figure 7 displays

the measured vertical acceleration response of the main span
at the 1/4 section and the corresponding normalized power
spectral density function (PSD). It can be seen that the
maximum acceleration was 0.355 m/s at the time of 20:03.
The vibration of the 1/4 section of the main span had
a dominate frequency of 0.275 Hz which is close to 0.269 Hz,
the 8th vertical natural frequency of the bridge calculated
from the design document-based FE model of the bridge. It
can be seen from Table 1 and Figure 3(a) that the 8th vertical
mode shape consists of six half waves and that the 1/4 and 3/
4 sections of the main span are close to the maximum modal
amplitude while the 1/2 section of the main span is close to
the minimum modal amplitude. This is why the 1/4 and 3/4
sections of the main span vibrated more significantly than
the 1/2 section of the main span during the VIV event.
Therefore, it can be concluded that the VIV event of the
bridge excited out the 8th vertical mode of vibration.

In consideration of the wind direction and the feature of
deck vibration during the VIV event, the field wind data
collected by the anemometer UA1 and the field acceleration
data collected by the accelerometer Acc4 (see Figure 4) are
used in subsequent analysis. Nevertheless, due to the in-
complete wind data collected by the anemometer UA1, only
the measurement data collected during 20:00-20:30, as
shown in Figure 8, can be used for subsequent VIF iden-
tification of the bridge.
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TaBLE 1: The calculated first nine vertical natural frequencies and mode shapes of the bridge.
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FIGURE 6: Wind-rose diagram of the bridge site.
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FIGURE 7: Measured vertical acceleration response time histories at the 1/4 section of the main span and the corresponding PSD during
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F1Gure 8: Wind speed and acceleration response time histories recorded during 20:00-20:30: (a) wind speed; (b) acceleration response.

3. Decomposition of Acceleration Data
Using VMD

Although the vertical vibration of the bridge during the VIV
event was mainly caused by VIF, there were still small vi-
bration caused by buffeting force and ambient excitation.
The measurement noise is also unavoidable in measurement
signals. Therefore, the preprocessing of the measured ac-
celeration time histories to eliminate their influences shall be
performed to identify the VIF more accurately. Further-
more, the wind tunnel tests of VIV of the deck sectional

model showed that the VIF acting on the deck section had
notable multiple-frequency components besides the com-
ponent of the dominant (fundamental) frequency [18]. The
PSD of the acceleration response recorded during the VIV
event also shows the notable double-and triple-frequency
components besides the dominant component of the 8th
vertical natural frequency (see Figure 7). Therefore, an
appropriate mode decomposition method shall be selected
for signal processing. The variational mode decomposition
(VMD) is finally selected in this study to decompose the
acceleration response time histories for VIF identification.
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3.1. BriefIntroduction to VMD. VMD is a recently developed
mode decomposition method and can be employed to de-
compose the original signal into a series of intrinsic mode
functions (IMF) [24]. Each IMF has specific sparsity
properties in the frequency domain. The central frequency
and bandwidth of each function are determined by itera-
tively searching for the optimal solution to the variational
mode. Compared with other mode decomposition methods,
VMD is much more robust to sampling and noise [25, 26].

The vertical acceleration response time history, a (),
collected during the VIV event is now decomposed into k
IMFs. An IMF, u,(t), is considered as an amplitude-

(8

{ud{or} k=1

where § is the Dirac distribution, * denotes the convolution,
{ue} = {up,uy, .. suy} and {o} = {w, 0,, ..., 0} are the
shorthand notations for all IMFs and their corresponding
center frequencies, respectively.

L({ue}s {wi},A) = “kz

+

k=1

where the use of quadratic penalty term is a classical ap-
proach to improve the fidelity of reconstruction. A is
commonly used to enforce constrains strictly. The combi-
nation of these two terms is used to improve the convergence
properties at finite weight and the strict enforcement of the
constrains [26].

In order to solve equation (3), the alternate direction
method of multipliers can be used. Apply a series of iterative
suboptimizations to obtain different center frequencies and
the corresponding IMFs. The detailed solution process can
be referred to [24].

3.2. Decompose Acceleration Response Time History. The
measured vertical acceleration response at the 1/4 main span
and its Fourier amplitude within 0-1 Hz during 20:00~20:30
are shown in Figures 9(a) and 9(b). Three frequencies within
0-1 Hz are clearly observed in Figure 9(b). It can be found that
the energy of the measured vertical acceleration response is
mainly concentrated at 0.275Hz, 0.550 Hz, and 0.825 Hz, in
which 0.550 Hz and 0.825 Hz seem to be the super harmonics
of the second and third order of the fundamental exciting
frequency 0.275 Hz, as observed in the wind tunnel tests [17].
The Fourier amplitude of 0.275 Hz is significantly higher than
the double-frequency function (0.550Hz) and triple-
frequency function (0.825 Hz) about ten times.

5[50+ 2) o]

0, [(S(t) +£> Uy (t)]e’jwkt 2

K
Y uw(t) - al(t)

modulated-frequency-modulated signal, which can be
expressed as

u (1) = A (t) cos (@ (1)), (1)

where A, (t) and ¢, (¢) represent the envelope and the phase
of the k™ IMF, respectively.

The above decomposition procedure can be described as
a constrained variational problem with the objective func-
tion of equation (2).

2 K
},s.t. Y u () =a(), (2)
2 k=1

Using a quadratic penalty term and Lagrangian multi-
pliers A, the above constrained variational problem can be
transferred into an unconstrained optimization problem as

2

(3)

2

K
+ A ()a(t) = Y u (1)),
2

k=1

The VMD is then used to decompose the measured
vertical acceleration response into fundamental-
frequency, double-frequency, and triple-frequency
IMFs. Figures 9(c)-9(h) show the decomposed IMFs
and their Fourier amplitudes. As shown in Figure 9, the
independent frequency IMFs of 0.275Hz, 0.550 Hz, and
0.825 Hz are successfully decomposed and well separated
without any overlapping. Although the Fourier ampli-
tudes of the double-frequency IMF and triple-frequency
IMF are much smaller than that of the fundamental-
frequency IMF in the vertical acceleration response,
these two notable multiple-frequency IMFs account for
a part in force time history. Moreover, these two notable
multiple-frequency IMFs represent the nonlinear terms of
VIV and therefore cannot be ignored.

Figure 10 is the comparison of the vertical acceleration
response at 1/4 main span with and without considering
multiple-frequency IMFs. It can be found that if only the
fundamental-frequency IMF is considered, the vortex-
induced response (VIR) will be underestimated. There-
fore, considering the reasons mentioned above, these two
notable multiple-frequency IMFs shall be taken in the
subsequent analysis of this study. On the other hand,
compared with the original measured vertical acceleration
response time history shown in Figure 8, the measurement
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noise of higher frequencies and the buffeting-induced re-
sponses at lower and higher frequencies are eliminated in the
combination of the three IMFs.

4. Frequency Domain Integration

4.1. Theory of FDI. The frequency domain integration (FDI)
method [27] uses the Fourier transform and inverse Fourier
transform as well as the transfer function to reconstruct
displacement and velocity response time histories from the
measured acceleration response time histories. The in-
tegration is substituted by the Fourier transform, and sine
and cosine transforms are directly implemented in the
frequency domain so that accumulation and amplification of
small errors of integration in the time domain method as
well as the phase errors in the digital filter method can be
avoided.

For a discrete acceleration series a(n) (or IMF) with
a length of N in the time domain, the Fourier transform of
the series can be described by [27]

) ) N ‘
[=2m (k-1) (n-1)i/N]
a(k) == ) a(n)e
(k) == Y atm

n=1

] (4)

= ak + bki,

_(n-1f,
.f(k)_izN ,1<k<N,

where f, is the sample frequency, a (k) is the complex se-
quence of a(n) in the frequency domain after the Fourier
transform, and f(k) is the corresponding frequency.

Theoretically, a (k) can be expressed by a simple har-
monic expression as shown in equation (5), and the har-
monic velocity and displacement for each frequency
component can be described by equations (6) and (7).

a(t), = Ay cos (wit + @), (5)
V(1) = —Ay sin (Wit + @), (6)
x () = —Ag cos (Wit + @), (7)

where w= 27 f is the circular frequency of the harmonic
motion; ¢, is the phase angle; A, = \la,% + bi, Ay = Ayl wp
and Ay = A, /w? are the amplitude of acceleration, velocity,
and displacement harmonic motion, respectively.

It can be found from equations (5)-(7) that the phase
difference is 7/2 between displacement and velocity and
between velocity and acceleration. The phase difference
between displacement and acceleration is 7. Moreover, the
multiples are 27 f, and (27 f)%, respectively, between ve-
locity and acceleration and between displacement and
acceleration.

According to the principle of signal superposition, the
velocity and displacement can be constructed by

N N
v(D) = Y v = = ) Aucsin(wt + 9),

k=1 k=1

N N ®)
x(t) = Z x(t), = - Z Ay cos(wit + @p).

k=1 k=1

As a result, the frequency integration method can be
explained through a Fourier transform and an inverse
Fourier transform as expressed by
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[ F () = H, (@)F (a(t) = F(a(0),

F(x(t)) = H, (w)F(a(t)) = —%F(a(t)),

< (9)
V)= F [ p(@F @),

x(t) = ~F! [éww)F(a(t»],

where H, (w) and H, (w) are the transfer function of v(t)
and x (), respectively, with respect to a(t); a(t) is the
measured acceleration response time history; and ¢(w) is the
accuracy function used to reduce the trend term error or
drift error caused by low-frequency noise and it can be
described by

1, 2nfy<w<2nf,

¢ lw) z{ 0, others, (10)

where f; and f, are the lower and upper of cut-off fre-
quencies, respectively.

4.2. Obtain Velocity and Displacement Response Time
Histories. The FDI method is now applied to the
fundamental-frequency, double-frequency, and triple-
frequency IMFs shown in Figures 9(c), 9(e), and 9(g), re-
spectively. The lower and upper of cut-oft frequency used for
the fundamental-frequency, double-frequency, and triple-
frequency IMFs are 0.266 Hz and 0.283 Hz, 0.543 Hz and
0.558 Hz, and 0.819 Hz and 0.831 Hz, respectively. Figure 11
shows the resulting acceleration, velocity, and displacement
responses of fundamental-frequency, double-frequency, and
triple-frequency IMFs in one minute. It is noted that the
vertical coordinate on the left in Figure 11 is for acceleration,
and velocity and displacement are plotted proportionally. It
is then seen that when acceleration response is at a zero-
point, the displacement response is also at the zero-point but
the velocity response is at either wave peak or wave through.
This satisfies the phase difference expressed by equations
(5)-(7). In the fundamental-frequency IMF, the amplitudes
of acceleration, velocity, and displacement responses at
about 30s are approximately 0.2166 m/s?, 0.1251 m/s, and
0.0724 m, and the multiple is about 1.7279 (2 x 1 x 0.275). In
the double-frequency IMF, the amplitudes of acceleration,
velocity, and displacement responses at about 30s are ap-
proximately 0.0175 m/s, 0.0051 m/s, and 0.0015 m, and the
multiple is about 3.456 (2xmx0.550). In the triple-
frequency IMF, the amplitudes of acceleration, velocity,
and displacement responses at about 30 s are approximately
0.0162 m/s?, 0.0031 m/s, and 0.0006 m, and the multiple is
close to 5.4978 (2 x  x 0.875). It is seen that the three sets of
IMFs all satisfy the phase difference of 77/2 and the multiple
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of 2nf, as described by equations (5)-(7). Moreover, the
vortex-induced displacement, velocity, and acceleration
responses of the bridge at 1/4 main span can be obtained
according to equation (8).

5. Model Updating and VIF Identification

To identify VIF acting on the bridge appropriately, the
design document-based FE model of the bridge shall be
updated by using the measurement data. This is because the
8th vertical natural frequency calculated from the design
document-based FE model of the bridge is 0.269 Hz rather
than 0.275 Hz. There are some uncertainties between the FE
model and the prototype bridge.

5.1. Bridge Model Updating. 'The first step of model updating
in this study is to identify the natural frequencies and modal
damping ratios from the measured acceleration response
time histories of the bridge at 1/4 main span. The measured
acceleration response time histories of the bridge at 1/4 main
span shall be ambient or buffeting-induced response time
histories other than vortex-induced ones. Figure 12 shows
the buffeting-induced vertical acceleration response time
history of the bridge at 1/4 main span and the corresponding
normalized PSD during 16:00-18:30 on June 18, 2020.

Many methods can be used to identify the modal pa-
rameters from vibration signals, such as the stochastic
subspace identification [28], the power spectral method [29],
the eigensystem realization algorithm [30], the fast Bayesian
FFT method [31, 32], and so on. In this study, the fast
Bayesian FFT method is used to identify the natural fre-
quencies and damping ratios. This method reduces the
solution of the most probable value into a four-dimensional
numerical optimization problem by analyzing the mathe-
matical structure of the posterior probability density func-
tion and solves the problem that the optimization cannot
converge when the measurement freedom is large. The
identified natural frequencies and damping ratios of the first
six vertical modes of vibration of the bridge are listed in
Table 2.

Based on the difference between the measured six ver-
tical natural frequencies of the bridge and the corresponding
ones calculated from the design document-based FE model,
the objective function can be established. The parallel
computing-aided FE model updating program with particle
swarm optimization (PSO) algorithm is adopted for
updating the mass and stiffness of the FE model of the bridge
to make the difference in the selected six natural frequencies
as small as possible. The selected six vertical natural fre-
quencies from the updated FE model using the parallel
computing-aided FE modal updating program mentioned
above are also listed in Table 2. It is seen that the errors
between the measured and calculated natural frequencies are
all lower than 1%. The updated FE model of the bridge can
now be used in the next section for VIF identification.
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FI1GURE 11: Three sets of IMFs with acceleration, velocity, and displacement in one minute at (a) 0.275 Hz, (b) 0.550 Hz, and (c) 0.825 Hz.

5.2. VIF Identification. For the sake of brevity, let us con-  the bridge deck can be described by the following partial
sider the bridge deck as a continuous beam. In terms of the  differential equation:
dynamics of structures, the governing equation of motion of

2 2 2
9 Zf;’ 2 +c(x) 0Z(x.1) + 6_2 [El(x)@] = FVIV(Z(x, t),azéf’ t),x,t), (11)
X

ot ox

m(x)
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FiGure 12: Buffeting-induced vertical acceleration response of the bridge at 1/4 main span and the corresponding PSD during 16:00-18:30.

TaBLE 2: Identified modal parameters of the first six vertical modes of vibration.

. . Identified
Vertical mode Identified frequency Updated frequency Error (%) damping ratio (%)
1 0.0946 0.0938 0.85 0.66

3th 0.1321 0.1322 0.76 1.06

5t 0.1835 0.1828 0.38 0.18

6 0.2290 0.2285 0.22 0.12

g™ 0.2756 0.2745 0.40 0.16

oth 0.3252 0.3233 0.58 0.11

where m(x), c(x), and EI(x) are the mass, damping co-
efficient, and bending stiffness, respectively, of the bridge
deck at the longitudinal coordinate x; Z (x, t) is the vertical
displacement of the bridge deck at the longitudinal co-
ordinate x at time t; and Fyy (Z (x,1), (0Z (x,t)/0t), x,t) is
the VIF acting on the bridge deck at the longitudinal co-
ordinate x at time ¢ and it is the function of the deck motion.

Since the vortex-induced acceleration response of the
bridge deck involves the three dominant frequencies as
shown in Figures 9 and 11, the three vertical modes of vi-
bration of the bridge deck, whose natural frequencies are

most close to the corresponding dominant frequencies,
should be considered. Furthermore, the vortex-induced
acceleration response is obviously dominated by the 8th
vertical mode of vibration at a natural frequency of 0.275 Hz,
and the vortex-induced displacement response shows clearly
that the concerned VIV is a weakly nonlinear vibration.
Therefore, the vertical displacement response Z (x,t) can be
taken as the sum of the three modal responses Z(x,t) =
Zle y;(x,t) in terms of the mode superposition method,
where y; (x,t) can be expressed as y; (x,t) = ¢; (x)y; (). As
a result, equation (11) can be converted to equation (12).

L L
JO ¢, (x)°m (x)dxi, (t) + JO ¢; (x)7c (x)dx; (t)

9'¢; (x)

ox*

L
+[ s
0

where ¢; (x) is the concerned i mode shape of the bridge
deck; 7, (t) is the i generalized coordinate; and L is the
length of the bridge deck.

It is worth to note that when the bridge deck undergoes
VIV, VIF will induce the resonant vibration of the bridge deck
at the corresponding modes of vibration, whose natural fre-
quencies are close to the dominant frequencies of VIF.

(12)

L .
dony(0) = [ 6:COPYay (10,7, (0), 3. 1)d,

Therefore, it is noted that the fundamental IMF at 0.275 Hz (see
Figure 9) corresponds to the mode of vibration at 0.275 Hz, the
double-frequency IMF at 0.550 Hz corresponds to the mode of
vibration at 0.549 Hz, and the triple-frequency IMF at 0.825 Hz
corresponds to the mode of vibration of 0.824 Hz.

Introduce the generalized mass M;, damping C, stiffness
K;, and VIF f IVIV as follows:
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( L
M, =J 6, (x)Pm (x)dx,

0

L

¢; (x)*c(x)dx,

0

C =

(13)

J
Kfr ; (OEI(x) ‘bl(’“) dx,

0

fyiv = J-O ¢; (x)Fypy (1; (), 7 (2), x, t)dx.

13

By considering the section of the bridge deck at 1/4 main
span with the mode shape value of ¢; (1/4 main span), #; (t)
can be obtained by y; (1/4 main span, t)/¢; (1/4 main span).
Then, calculate 7#; () and #;(t) in the same way. The gov-
erning equation of motion of the bridge deck under vertical
VIF, equation (12), can be rewritten as equation (14).

1 1 1
M;y; (4 main span, t) +C; y,( main span, t) + Kyl< main span, t)

(14)

) "S’G main SPan>?iVIV (y: (1), y; (), 1),

where M, is the i generalized mass; C; = 2{;w;M,; is the ih
generalized damping; {; is the i damping ratio; w; is the it
circular frequency of the bridge deck, which can be obtained
from the updated bridge model; K = w?M, is the i gen-
eralized stiffness; and fVIV is the i* generallzed VIE.

The generalized VIF time histories for the three modes of
vibration of the bridge deck during the VIV event can be
identified using equation (14). It is worth noting that the
VIF, when the bridge deck undergoes VIV, is small com-
pared with the inertia force or the restoring force of the
bridge deck. To ensure the accuracy of the identified VIF, the
generalized VIF is calculated by the sum of the generalized
inertia force, restoring force, and damping force. This is
because the VIV can be approximately seen as a simple
harmonic motion in the given mode of vibration and the
sum of the generalized inertial and restoring force is small
compared with the generalized damping force. Furthermore,
to escalate the identification accuracy of the generalized VIF,
the generalized modal properties calculated from the
updated finite element model of the bridge obtained in
Section 5.1, the model damping ratios identified from the
field-measured acceleration time histories and given in
Section 5.1, the acceleration time histories obtained by
decomposing the field-measured acceleration time histories
through VMD in Section 3, the velocity and displacement
time histories obtained by FDI in Section 4 are used in the
identification of the generalized VIF in equation (14).

To have a good understanding of VIV and VIF of the
concerned bridge deck, the half-hour measurement data are
divided into 30 sets of one-minute data in the subsequent
VIF identification. Figures 13(a)-13(c) show the identified
generalized VIF time histories in one minute for the three
modes of vibration, respectively. It is seen that the identified
generalized VIF at the fundamental frequency is in the range
of —12.24 to 12.24 N, the identified generalized VIF at the

double-frequency is in the range of —1.88 to 1.88 N, and the
identified generalized VIF at the triple-frequency is in the
range of —4.81 to 4.81 N. It is noted that the mode shapes are
normalized with respect to the mass matrix and the gen-
eralized VIFs are calculated with respect to the normalized
mode shapes in this study. Furthermore, the generalized
VIFs are used only for the subsequent VIF parametric
identification and there is no attempt to identify the VIF of
the bridge deck directly. The identified generalized VIFs are
also called the measured generalized VIFs in the next section
for the sake of brevity.

6. VIF Parametric Identification

6.1. VIF Model for Twin-Box Decks under Turbulent Wind.
During the last decades, several semiempirical VIF models
have been proposed, based on the wind tunnel test results of
elastically mounted section models, to predict the VIR of the
prototype bridge [10, 17, 33]. The Scanlan-nonlinear VIF
model [10] is most widely used in predicting the VIR of the
bridge because it only requires a single wind tunnel test to
identify the main parameters in the VIF model. Neverthe-
less, Zhu et al. [17] found that the Scanlan-nonlinear model
could predict the maximum amplitude of VIR with satis-
faction but it could not give the time history of the measured
VIF satisfactorily. Zhu et al. [17] then proposed a new
semiempirical VIF model for a single-box deck section, as
shown in (15), in which the cubic term (71/D)21'1/U in the
Scanlan-nonlinear model was replaced by (#/U)’. Com-
pared with the Scanlan-nonlinear model, this model could
predict both the VIR and VIF well.

. 2 .
y1<1 —sl<g> >3+Y%], (15)

~ 1
fvw = EPUZD
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FiGgure 13: Identified VIF time histories for the three modes of vibration in one minute at (a) 0.275 Hz, (b) 0.550 Hz, and (c) 0.825 Hz.

where p is the air density, U is the mean wind speed, D is the
characteristic length of the bridge, and Y,Y,,and ¢, are the
coefficients of self-excited force (VIF).

The VIF model expressed by equation (15) was estab-
lished based on the wind tunnel test, in which VIV of
a bridge deck section is regarded as a SDOF system. From
the amplitude spectrum of the measured VIF by Zhu et al.
[17], one can find that besides the significant amplitude of
VIF at the fundamental frequency, the amplitudes of VIF at
the multiple frequencies also occupy considerable pro-
portion. However, owing to the bridge deck section in the
wind tunnel test being a SDOF system, the VIF at the

multiple frequencies could not induce the resonant vibration
of the corresponding modes of vibration, except for the VIF
at the fundamental frequency. Nevertheless, when VIV
occurs in a real bridge, the bridge is a multi-degree-of-
freedom system and the multiple-frequency VIF can induce
the resonant vibration of the corresponding modes of vi-
bration. Therefore, the VIF model proposed by Zhu et al.
[17] for the SDOF system is not applicable in this study. To
describe the VIF more accurately, a general polynomial VIF
model for a twin-box deck with all the linear terms, qua-
dratic nonlinear terms, and cubic nonlinear terms is adopted
in this study.
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~i
Fyy =

i L
fyv = J-o Fyvé; (x)dx,

where Y,,Y,,Y5,Y,, Y, ¢,6,,65,¢, are the nine  to- be-
determined parameters in the VIF model and f, is the i
generalized VIF to be computed.

R (Yl’ Y, Y3, Y5, 6568, 54) =

where ;’:,Iv(tj) and }sz (t;) are the values of the gener-
alized VIFs at time ¢}, determined according to equations
(14) and (16), respectively, and # is the total number of the
data point in one minute.

The parameters Y,Y,,Y5,Y,,Ys, ¢, &, &, and &, can be
identified by seeking the minimal value of the target residue
function expressed by equation (17). The Lev-
enberg-Marquardt method is used for optimization [33].
Since one-minute time history is used for identification, 30
groups of VIF parameters can be obtained. Afterwards,
equation (16) can be used to calculate the VIF. Figures 14(a)-
14(d) shows the scatters between the computed and mea-
sured amplitudes of acceleration responses and three gen-
eralized VIFs at each time step of 0.02 s during 20:00-20:30.
The solid line is the straight line with the slope of 1. If the
scatters are closer to the solid line, the identified VIF pa-
rameters are of high accuracy for the concerned quantity. It
can be found from Figure 14(a) that the scatters of accel-
eration response amplitude are so close to the solid line that
the identified VIF parameters are of high accuracy for the
acceleration responses. It is clear to see from Figures 14(b)-
14(d) that the discreteness of the first and third generalized
VIFs is relatively larger and the discreteness of the second
generalized VIF is the largest, compared with the acceler-
ation response. One of the reasons could be because the
value of the double-frequency VIF is smaller than that of the
fundamental-frequency and triple-frequency VIF. Never-
theless, the identified VIF parameters still process enough
accuracy for the three generalized VIFs.

6.3. Validation of Obtained VIF Model. To validate the
identified VIF parameters in the VIF model, Figures 15(a)-
15(h) present the comparative results of time histories and
Fourier amplitude spectra between the computed and
measured acceleration responses and the three generalized

lpU2D|: 24y, Bty (’7’)
2 v "D U

. 2 .
1; 1\ i i (M) 1\’
_YSI(U> _Y1£2<U bV (5) ~Telp) ]

15

by ity
‘UD

2
"b)

(16)

6.2. Parametric Identification via NLSF. The parameters in
the VIF model expressed by equation (16) can be identified
based on the measured generalized VIF time histories in
Section 5 through the nonlinear least squares fitting (NLSF).
The target residue function in NLSF is defined as follows:

(17)

i(i(fvw( )= Tunlt ))2>,

i=1 \ j=1

VIFs in one minute. Figures 15(a) and 15(b) show the
comparison between the computed and measured acceler-
ation response time histories and Fourier amplitude spectra
for a wind speed of U= 8.8 m/s in one minute. It can be seen
that the computed acceleration time history agrees well with
the measured one in general. One can also find that the
computed Fourier amplitude spectrum also agrees well with
the measured one at the three dominant frequencies.
Figures 15(c)-15(h) display the comparisons between the
computed and measured first, second, and third generalized
VIF time histories and Fourier amplitude spectra for a wind
speed of U= 8.8 m/s in one minute. The computed first and
third generalized VIF time histories and Fourier amplitude
spectra agree well with the measured ones, except for only
small errors in the fitting of high peaks. Nevertheless,
Figures 15(e) and 15(f) show that there are some differences
between the computed and measured second generalized
VIF time histories and Fourier amplitude spectra.

6.4. Further Analysis of Parameters in VIF Model. There are
a total of nine parameters, associated with the nine terms, in
the VIF model expressed by equation (16). It is of practical
interest to know whether some parameters and some terms
in the VIF model can be dropped without significant in-
fluence on the accuracy of the VIF model. A self-adaptive
simplification method (SASM) is thus proposed to de-
termine the importance of each parameter/term in the VIF
model for the Xihoumen Bridge and find the most suitable
VIF model. R-squared (R) is a common measure that
provides information about the goodness of fit of a model by
taking a value within the range from 0 to 1. When R equals 1,
the model fits the data perfectly and when R equals 0, the
model fails to explain the data. In this study, R; between the
measured i generalized VIF fVIV and the computed it
generalized VIF fv1v is defined as
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FIGURE 14: Scatters between computed and measured amplitudes: (a) acceleration response; (b) the first generalized VIF; (c) the second

generalized VIF; (d) the third generalized VIF.
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Ficure 15: Comparisons of time histories and amplitude spectra between the computed and measured acceleration responses and three
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VIF.

13, SSE,
Ri=3 ,;(1 SSTL)’ (19
2
SEk = Z [fvw( ) fVIV( ) ] > (19)
j=1
A 2
SST), = Z fVIV( ) fVIV k| > (20)

j=1

where n is the number of data points in one-minute; k is the
number of one-minute samples, SSE is the sum squared
error between the measured ' generallzed VIF szIV and
the computed i™ generalized VIF 7, viv» obtained by equa-
tions (14), (16), and (19) in order; and SST is the sum squared
error between the measured ith generalized VIF 7\ viv and the
average measured i generalized VIF fVIV, calculated by
equations (14) and (20) in order.

Table 3 lists the R;, R,, R; values and the corresponding
parameters involved in the VIF model. It is seen that when
all the linear terms, quadratic nonlinear terms, and cubic
nonlinear terms in the VIF model expressed by equation (16)
are taken (1* line in Table 3), the first generalized VIF time
history has a high degree of fit and the value of R, is 0.99. The
second and third generalized VIF time histories also have an
acceptable degree of fit and the values of R, and R, are 0.86
and 0.89, respectively. The importance of each parameter in
the VIF model expressed by equation (16) is tested by
eliminating the associated term one by one. The results
shown in Table 3 finally confirm that if the parameters
Y,,Y,and Y. are eliminated, the values of R;,R,,and R, are
still 0.99, 0.84, and 0.89, respectively (12" line in Table 3).
Since these R values are almost the same as those with all the
terms included in the VIF model, one may conclude that all
the quadratic nonlinear terms in equation (16) can be taken
away without influence on the accuracy of the VIF model.
This VIF model is called the simplified VIF model.

TaBLE 3: Analysis of the parameters in the VIF model.

Parameters

in the model Ry R Ry Accepted
Y,,Y,,Y,,Y,, Y, ¢6,6,8,64 099 086  0.89 Yes
Y,, Y5, Y, Y5, 60,65, 85, 022 0.04 0.07 No
Y,Y3,Y,,Y5,6,6,65,8 099 036 0.27 No
Y,Y,, Y, Ys,6,6,65,8 099 082 0.89 Yes
Y,Y,, Y5, Y5, 6,6,65,¢ 0.99 0.83 0.89 Yes
Y, Y, Y5, Y, 6,6,63,8 099 082 0.89 Yes
Y.,Y,,Y;,Y,, Y5, 6,68 086 059 0.58 No
Y,Y,,Y5,Y,, Y5, 6,635,8 099 022 048 No
Y,,Y,,Y,,Y,, Y5, 6,6,8 093 0.68 0.67 No
Y,Y,,Y3,Y,, Y5, 6,6,8 099 011 044 No
Y ,Y,, Y5, e,6,635,8 099 085 0.89 Yes
Y,Y,,6,6,85¢ 099 084 0.89 Yes
Y,Y,, 6,68 093 068 0.67 No
Y,,Y,, 6,658 086 0.59 0.58 No
Yi,e,6,858 0.99 036 0.27 No
Y,Y,, 6,658 099 021 048 No
Y.V, 6,68 0.99 0.10 0.44 No
Y, 60,6, € 022 0.04 0.07 No

Figures 16(a)-16(d) shows the scatters between the
computed amplitudes by the simplified VIF model and the
measured amplitudes of acceleration responses and three
generalized VIFs at each time step of 0.02 s during 20:00-20:
30. It is seen that the simplified VIF model has a high ac-
curacy to describe acceleration responses and VIF time
histories. The relationships between the identified param-
eters in the simplified VIF model and the mean wind speed
are also explored based on field-measured acceleration data
and wind data via the procedure shown in Figure 1. The
variations of identified parameters in the simplified VIF
model with mean wind speed are shown in Figure 17. The
black circular points represent the correlation between the
mean wind speed and VIF parameters. It is seen from
Figure 17 that there is a linear correlation between each VIF
parameter and mean wind speed.
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FIGURE 16: Scatters between the computed amplitudes by the simplified VIF model and the measured amplitudes: (a) acceleration response;
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FIGURE 17: Variations of identified parameters in the simplified VIF model with mean wind speed: (a) Y;; (b) Y; (c) &; (d) &; (e) &5 (f) &,.

7. Conc]uding Remarks (1) By analyzing the measured acceleration data of the

real suspension bridge during the VIV event, it is
The framework for VIF identification of a long-span bridge found that the vortex-induced acceleration responses
based on field-measured wind and acceleration data has are dominated by three frequencies: fundamental
been proposed in this study. The proposed framework has frequency of 0.275Hz, double-frequency of
been applied to a real suspension bridge with a recent VIV 0.550Hz, and triple-frequency of 0.825Hz. These
event. The major findings and conclusions from this study three dominant frequencies correspond to the 8™,

can be summarized as follows: 14™ and 23" modes of vibration of the bridge.
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(2) By wusing the variational mode decomposition
(VMD), the three intrinsic mode functions (IMFs)
are successfully extracted from the measured ac-
celeration response time history. The three IMFs are,
in fact, the modal responses corresponding to the
three dominant modes of vibration of the bridge.

(3) The three acceleration IMFs are integrated in the
frequency domain to obtain their respective velocity
and displacement time histories. The results show
that these three IMFs all satisfy the 7/2 phase dif-
ference and 27zf multiples among the acceleration,
velocity, and displacement responses after the fre-
quency domain integration.

(4) The Fast Bayesian FFT method is used to identify the
natural frequencies and damping ratios of the bridge
from the measured acceleration data. The identified
natural frequencies are used to update the design
document-based finite element model of the bridge
together with the particle swarm optimization
algorithm.

(5) Based on the updated model and the measured
modal responses, the time histories of the three
generalized VIFs are successfully identified accord-
ing to the theory of structural dynamics.

(6) A polynomial VIF model with all the linear terms,
quadratic nonlinear terms, and cubic nonlinear
terms is used in this study for the twin-box deck. The
nine parameters in the polynomial VIF model are
successfully identified using the nonlinear least
squares fit (NLSF).

(7) The self-adaptive simplification method (SASM) is
used to assess the importance of each term in the
polynomial VIF model. It is found that the quadratic
nonlinear terms in the polynomial VIF model could
be taken away without affecting the accuracy of the
VIF model for the concerned bridge. The simplified
polynomial VIF model performs well in describing
the relationship between the VIF parameters and
mean wind speed.

Nevertheless, the VIF model with the parameters
identified from the VIV event used in this study should be
further examined if it is applicable for a new VIV event
whose modes are different from the VIV event used in
this study.
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