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Tis study examines nonlinear signal-based control (NSBC) in shake table experiments with sliding structures, which have an
isolation efect during an earthquake. NSBC uses a nonlinear signal obtained from the outputs of a controlled system and its linear
model under the same input. Owing to the presence of the linear model, NSBC controllers are described by transfer functions,
even for controlling nonlinear systems. NSBC achieved excellent control of the shake table in experiments with a specimen having
nonlinear characteristics such as yielding of structural components. A sliding structure placed on a shake table signifcantly
jeopardises its control because the nonlinear severity of sliding is greater than yielding, and its compensation has not yet been fully
developed. Terefore, this study introduces NSBC into shake table experiments with sliding structures along with its linear model
design to enhance their robustness, utilising the analysis stability to evaluate the design. Numerical simulations with a shake table
with a sliding structure with a friction coefcient of 0.22 demonstrate the excellent performance of NSBC in table acceleration
control. However, inversion-based control (IBC), a basic compensation approach, shows its inefectiveness. In actual shake table
experiments with a sliding structure with a friction coefcient of 0.2, NSBC with a reasonable linear model achieved excellent table
acceleration control with almost 100% accuracy, whereas IBC was inefective.Tis study clarifes that NSBC can solve the problem
of control degradation caused by a sliding structure placed on the table.

1. Introduction

In the feld of earthquake engineering, a shake table plays an
important role in examining the seismic performance of
building structures and infrastructure [1, 2]. In a shake table
experiment, a specimen placed on the table is excited by
reproducing a predetermined signal, which is typically de-
rived from seismic acceleration data recorded during an
earthquake in the past or from artifcially generated data for
experimental purposes. Te reproduction of the excitation is
a matter of control, and its accuracy must be sufciently high
to precisely examine the specimen under the anticipated
situations or conditions.

Shake tables are commonly controlled using a pro-
portional-integral-derivative (PID) method applied to table
displacement or similar methods such as three-variable control
(TVC) [3, 4]. Tese controllers are designed such that the table
dynamics, including the controller, obtain the expected dy-
namic characteristics, such as second- or higher-order dy-
namics.When a heavy specimen is placed on the table, the table
dynamics afected by the interaction signifcantly difer from
those without the specimen [5, 6]. To compensate for this
infuence, an inversion of the dynamics, which is referred to as
inversion-based control (IBC) in this study, is commonly
employed as a feedforward controller acting on reference
signals [3, 4, 7]. Tis approach is efective only for cases in
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which the specimen is a linear system whose characteristics are
accurately refected in the feedfoward controller.

In shake table experiments, nonlinear characteristics
within an actuation system and the structure to be examined
degrade its control. Shake tables driven by hydraulic actu-
ators exhibit nonlinearity derived from the hydraulic fuid,
servo-valves, and friction of cylinders within the actuation
system [8–13]. Shake table experiments are mainly con-
ducted to observe seismic damage or failures in structures or
nonlinear characteristics in earthquake protection devices
[2]. Te appearance of nonlinear characteristics during
shaking is essential. When this occurs in a heavy specimen
placed on a table, the nonlinear characteristics degrade the
control, leading to instability in the worst case. An iterative
approach based on IBC [3, 14] is occasionally employed to
compensate for such nonlinear characteristics, but it is
mainly limited to fxed characteristics without uncertainty.
An efective approach based on feedback actions is required
to accurately control shake tables, regardless of the type of
nonlinear characteristics. It will be benefcial to its advanced
technique, substructuring shake table experimentation,
which is a prime subject actively studied in earthquake
engineering [15–21].

To the control issue of shake table experiments, minimal
control synthesis (MCS) [22, 23], which is a type of model
reference adaptive control [24], was intensively studied and
applied in various shake tables, mainly focussing on nonlinear
characteristics within the actuation system [25–27].Te success
of MCS has led to the class of adaptive control methods being
a major tool for shake table experiments involving nonlinear
characteristics [28–32]. However, adaptive control approaches
still have challenging issues, particularly for systems with large
unmodelled dynamics or rapid parameter variations. Tese
issues have been addressed via enhancements with additional
techniques (e.g., real-time parameter estimation [33] or
a backstepping technique [34–37]).

A class of improvements in IBC is another research topic
in shake table experiments with nonlinearity. Model-based
control (MBC), which employs an error feedback action into
IBC, has been actively investigated for shake table control
[13, 38–40]. MBC with a linear quadratic Gaussian controller
as its error feedback action has been applied to a shake table
sustaining a specimen equipped with wooden braces that
display nonlinear characteristics over its elastic range [39, 41].

Nonlinear signal-based control (NSBC) [42–45], which has
been specifcally established for nonlinear system control, is
defned as the addition of a nonlinear signal feedback action
into IBC. NSBC uses a nonlinear signal obtained from the
outputs of a controlled system and its linear model under the
same input. As NSBC relies on a linear model rather than
a controlled system, its controllers are described by transfer
functions, even for nonlinear system control. NSBC is ad-
vantageous because it requires only the output of a controlled
part in the controlled system for its feedback action and does
not require the outputs of other parts (e.g., structural responses
in shake table experiments) for the action. Te efectiveness of
NSBC has been demonstrated by dynamic substructuring
experiments [46, 47] and shake table experiments [44, 48, 49].
Te frst application of NSBC to shake table experiments [44]

was performed using a single-axis shake table with a steel
structure, whose weight was equal to the table weight. In the
experiments, NSBC successfully realised an expected earth-
quake excitation with almost 100% accuracy, even when the
structure on the table displayed severe nonlinear characteristics
owing to the yielding of its structural components.

Regarding the severity of nonlinearity, sliding is one of
the most severe phenomena observed in earthquake engi-
neering. In addition, the occurrence of sliding has a positive
impact on the seismic damage mitigation of structures
[50–52], and modern sliding isolation systems [53–55] that
intentionally utilise this aspect have become prominent
earthquake protection devices in this feld [56]. Te excel-
lence of sophisticated systems has led to the development of
similar sliding systems based on primitive materials that are
expected to exhibit an isolation efect during large earth-
quakes. Tese developments have been actively investigated
along with studies on the friction of various materials, such
as scraped tyres [57–59], sand [60], and common con-
struction materials [61–64], which are typically tested in
shake table experiments.

Te sliding of a specimen on a shake table afects the table
control, and its infuence increases as the weight of the
specimen increases [65]. When a heavy structure with a certain
friction coefcient slides on a shake table, the sliding structure
is shaken by an excitation that is completely diferent from the
required one. A countermeasure to this control problem has
not yet been fully developed, mainly because of the severities of
the nonlinear characteristics caused by the friction and the
interaction between the table and the sliding structure.

As NSBC can be a solution to this problem, this study
numerically and experimentally examines the performance
of NSBC in shake table experiments with a sliding structure
with a friction coefcient of approximately 0.2. Tis study is
an advancement of the preceding studies [44, 65], and its
novelty is summarised as follows.

(i) Tis study introduces a new linear model design where
parameters in a linear model of a controlled system
including a sliding structure are intentionally tuned to
enhance the robustness of NSBC. In addition, this
study introduces a method to approximately analyse
the stability of NSBC for a shake table with a sliding
structure. Te NSBC stability analysis based on the
Nyquist stability criterion can be used to evaluate
stabilitymargins obtained fromdiferent linearmodels.

(ii) Tis study numerically and experimentally demon-
strates the efectiveness of NSBC in shake table ex-
periments with a sliding structure, which displays
frictional behaviour whose nonlinear severity is greater
than yielding of structural components and the friction
behaviour of a sliding mass. Tis study clarifes that
NSBC can solve the problem of control degradation
caused by the sliding of the structure on the table.

Te remainder of this paper is organised as follows.
Section 2 studies the infuence of a sliding structure on shake
table control and describes the application of NSBC in shake
table experiments with a sliding structure with N-storeys.
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Section 3 numerically examines the control performance of
NSBC in shake table experiments with a single-degree-of-
freedom (SDOF) structure placed on a sliding mass, along
with its comparison with IBC. Section 4 introduces the
control performance of NSBC and IBC in actual shake table
experiments with a sliding structure consisting of a single-
storey steel structure and a slidingmass placed on a graphite-
lubricated sliding interface. Finally, Section 5 presents the
conclusions of this study.

2. Shake Table Control Degradation Caused by
Nonlinearity and Its Compensation by NSBC

2.1. Infuence of Sliding Structures on Shake Table Control.
Te sliding of the two systems, as shown in Figures 1(a) and
1(b), is frst formulated, followed by the formulation of the
sliding system on a shake table, as shown in Figure 1(c), to
investigate their interaction and infuence on shake table
control.

2.1.1. Sliding Structures. A mass placed on the ground, as
shown in Figure 1(a), slides when an applied force in its
sliding interface exceeds the maximum static friction of the
sliding mass. When the force is caused by ground move-
ment, which occurs during an earthquake, the slip and stick
states of the mass are described by the following equation:

m1€y1(t) �
Fex(t) � m1€yg(t)􏼐 􏼑 stick state: _x1(t) � 0( 􏼁,

−Fμv(t)sgn _x1(t)( 􏼁 slip state: _x1(t)≠ 0( 􏼁,

⎧⎪⎨

⎪⎩

(1)

where t is the time variable;m1 is the sliding mass; y1, yg􏽮 􏽯 is
the set of mass displacement and ground displacement in the
absolute coordinate, respectively; x1(� y1 − yg) is the
sliding displacement of the mass; sgn(a) � 1 (a> 0),{

0(a � 0), −1(a< 0)}; and Fμv is the kinematic friction. When
the kinematic friction Fμv is equal to the maximum static
friction Fμs, it becomes Fμv � Fμs � μmaxm1g, where μmax is
the maximum static friction, and g is the gravitational
acceleration.

Equation (1) rigorously distinguishes the states of stick
and slip by _x1(t) � 0 and _x1(t)≠ 0. Tis distinction is not
practical for numerical simulations because of the strict
requirement of zero velocity, which cannot be realised in
computation. Terefore, this study employs the Karnopp
model [66–68], which distinguishes between the two states
by the limit velocity on the stick state, εv. Subsequently, the
friction for the stick and slip states in equation (1) can be
uniformly expressed as follows:

F1(t) � m1€y1(t)( 􏼁 � Fex(t)(1 − H(t)) − Fμv(t)sgn _x1(t)( 􏼁H(t), (2)

where H(t) � χ Fex(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − Fμs􏼐 􏼑 + 1 − χ Fex(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − Fμs􏼐 􏼑􏼐 􏼑χ _x1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − εv􏼐 􏼑. (3)

χ(a) � 1 (a≥ 0), 0 (a < 0){ }; and F1 is the shear force ap-
plied to the sliding interface.

When a superstructure consisting of N-storeys is placed
on the sliding mass, as shown in Figure 1(b), the equations of
motion for both stick and slip states can be given as follows:

mN+1€yN+1(t) + fckN+1(t) � 0,

⋮
m2€y2(t) + fck2(t) − fck3(t) � 0,

F1(t) � 􏽘
N+1

i�1
mi€yi(t)⎛⎝ ⎞⎠ � Fex(t)(1 − H(t)) − Fμv(t)sgn _x1(t)( 􏼁H(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where Fex(t) � m1€yg(t) + 􏽐
N+1
i�2 mi€yi(t), and fcki(� fci+

fki) is the resultant force of damping and restoring forces on
the ith storey (i � 2, ..., N + 1). Note that
Fμv(t) � Fμs � μmax(􏽐

N+1
i�1 mi)g when the kinematic friction

Fμv is equal to the maximum static friction Fμs. In addition,
when the superstructure is a linear system with time-
invariant damping and stifness coefcients on the ith sto-
rey, the resultant force becomes fcki(t)(� fci(t) + fki(t)) �

ci( _yi(t) − _yi−1(t)) + ki(yi(t) − yi−1(t)).
According to equations (2) and (4), the equation of

motion for the sliding interface with and without the

superstructure can be uniformly described by the following
equation:

m1 €x1 (t) � − Fex(t) + sgn _x1(t)( 􏼁 · Fμv(t)􏼐 􏼑 · H(t). (5)

2.1.2. Shake Tables with Sliding Structures. Te PID method
is commonly employed in a shake table system as a basic
controller acting on the table displacement. In most cases,
the PID controller is designed such that the closed-loop
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transfer function, including the table and the controller
itself, has the following dynamics:

G0d(s) � G0/u(s)( 􏼁 �
y0(s)

u(s)
�

ω2
0b

s
2

+ 2ζ0bω0bs + ω2
0b

�
k0b

m0bs
2

+ c0bs + k0b

, (6)

where s is the Laplace variable; y0 is the table displacement; u
is the control input signal, which has the dimension of
displacement; and m0b,ω0b, ζ0b, c0b, k0b􏼈 􏼉 is the set of table
mass, circular frequency, its corresponding damping ratio,
and equivalent damping and stifness coefcients, re-
spectively, when no specimen is placed on the shake table.
According to equation (6), the bare shake table in the time
domain can be described by the following expression:

m0b€y0(t) + c0b _y0(t) + k0by0(t) � k0bu(t). (7)

when a sliding mass sustaining an N-DOF superstructure is
placed on the table as a specimen, as shown in Figure 1(c), its
equations of motion are given by the following equations:

mN+1€yN+1(t) + fckN+1(t) � 0,

⋮

m2€y2(t) + fck2(t) − fck3(t) � 0,

F1(t) � 􏽘
N+1

i�1
mi€yi(t)⎛⎝ ⎞⎠ � Fex(t)(1 − H(t)) − Fμv(t)sgn _x1(t)( 􏼁H(t),

m0€y0(t) + c0 _y0(t) + k0y0(t) � k0u(t) − F1(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where Fex(t) � m1€y0(t) + 􏽐
N+1
i�2 mi€yi(t); and m0,ω0, ζ0,􏼈

c0, k0} is the set of the table mass, circular frequency, its
corresponding damping ratio, and equivalent damping and
stifness coefcients, respectively, when the specimen is
placed on the table. Note that m0 contains the bare table
mass m0b and the mass of some experimental rigs m0α.

According to equation (8), the shear force F1, which is
the friction force in the sliding interface, clearly disturbs the
shake table. When the sliding structure has an interface with
a near-zero friction coefcient, the friction force is negli-
gible, and the sliding does not disturb the table control.
However, when the force is not negligible owing to a high
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Figure 1: Sliding systems and a shake table: (a) slidingmass, (b) sliding structure on the ground, and (c) sliding structure placed on the table.
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friction coefcient, it disturbs the shake table control,
resulting in control degradation. As F1 in equation (8) is
proportional to the mass of the sliding structure, the shake
table control is considerably disturbed by the sliding of
a heavy structure with a high friction coefcient. To properly
excite a specimen on the table, the shake table must be
accurately controlled, regardless of the properties of the
specimen to be tested.

2.2. Nonlinear Signal-Based Control for a Shake Table Sup-
porting a Sliding Structure. Tis study employed NSBC for
shake table experiments with sliding structures and exam-
ined its control performance. Here, the principles of NSBC
are briefy described and its controller design for table ac-
celeration control is detailed.

2.2.1. NSBC for Acceleration Control at Shake Table
Experiments. NSBC has the nonlinear signal feedback ac-
tion as shown in Figure 2, as well as the feedforward

controller derived from IBC, as shown in Figure 3. Te
nonlinear signal enables us to measure the unmodelled
dynamics within the controlled system by comparing it with
its linear model as follows:

σ(s)(� y(s) − y(s)) � G(s)e
− τs

− G(s)e
− τs

􏼐 􏼑u(s) � ∆G∆τ(s)G(s)e
− τs

u(s), (9)

where ∆G∆τ(s) � (1 + (∆G(s)/G(s)))e−∆τs − 1; σ is the
nonlinear signal; y is the controlled output signal of the
controlled system G; y is the output of the linear model G;
∆G(� G − G) denotes the unmodelled dynamics, which are
typically derived from some nonlinear characteristics within
G; and ∆τ(� τ − τ) is the diference between the pure time
delay in the controlled system τ and its estimate τ. According
to equation (9), the nonlinear signal at ∆τ � 0 becomes
σ(s) � ∆G(s)e− τsu(s). Tis indicates that, when the estimate
of the pure time delay is accurate, the unmodelled dynamics,

which cannot be directly measured, can be indirectly
measured in the form of the nonlinear signal. Note that the
description of the controlled system in NSBC (Figure 2)
varies depending on the controlled output signal y: at dis-
placement [acceleration] control, the controlled system is
described by G(s) � G0d(s)(� y0(s)/u(s)) [G(s) � G0a

(s)(� s2G0d(s))], and its linear model is G(s) � G0d(s)(�

y0(s)/u(s)) [G(s) � G0a(s)(� s2G0d(s))].
Using the nonlinear signal, the error signal can be ob-

tained as follows:

e(s)(� r(s) − y(s)) � r(s) − y(s) − σ(s) � r(s) − G(s)e
− τs

u(s) − σ(s), (10)

where e is the error signal; and r is the reference signal. As u
in equation (10) is associated with the signals r, e, σ{ }, the
control input signal in NSBC is described as follows:

u(s) � ur(s) + ue(s) + uσ(s)( 􏼁 � Kr(s)r(s) + Ke(s)e(s) + Kσ(s)σ(s), (11)

where Kr, Ke, Kσ􏼈 􏼉 is the set of controllers acting on signals
r, e, σ{ }, respectively.

By substituting equation (11) into equation (10), the
error signal can be rewritten as follows:

e(s) �
1 − G(s)e

− τs
Kr(s)

1 + G(s)e
−τs

Ke(s)
r(s) −

1 + G(s)e
− τs

Kσ(s)

1 + G(s)e
−τs

Ke(s)
σ(s).

(12)

Te NSBC controllers in equation (11) are designed to
realise a zero error in equation (12) with τ � τ � 0; this
condition indicates cancelling the infuence of the reference
and nonlinear signals on the error signal. Ten, the general
forms of NSBC controllers are described by the following
equation:

Kr(s) �
Fr(s)

G(s)
, Ke(s) �

Fe(s)

G(s)
, Kσ(s) � −

Fσ(s)

G(s)
, (13)

σ (s)

+
++ +

y (s)
r (s)

u (s)

Kσ (s)

Kr (s)

Controlled system

Linear model 

Ke (s)
e (s)

G (s)e−τs

+
ue (s)

ur (s)

uσ (s)
ȳ (s)− −

G (s)e−τs

−

−

Figure 2: Nonlinear signal-based control.
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where Fr, Fe, Fσ􏼈 􏼉 is the set of flters associated with the
controllers Kr, Ke, Kσ􏼈 􏼉, respectively. In equation (13), Kr is
the feedforward controller based on the linear model
transfer function G(s), and its sole use corresponds to IBC in
Figure 3. Kσ is the nonlinear signal feedback controller used
to cope with the unmodelled dynamics (e.g., nonlinear
characteristics) within the controlled system. Ke is the error
feedback controller optionally employed to forcibly mini-
mise the error signal, which remains even after the activation
of Kr and Kσ.

When NSBC was applied to shake table experiments
with a steel structure [44], the controllers with Ke(s)�

0 accurately realised an earthquake excitation, even though
the structure displayed signifcantly severe nonlinear char-
acteristics. In the experiments, the following control input
signal was found to be suitable for the acceleration control of
a shake table:

u(s) � ur(s) + uσ(s)( 􏼁 � K
∗
r €r (s) + K

∗
σ(s)€σ(s), (14)

where €σ(s) � €y0(s) − €y0(s); €r is the reference acceleration
signal to be realised on the table; €y0 is the shake table

acceleration signal measured by a sensor, and €y0 is the
acceleration signal computationally calculated using G0a and
u. In equation (14), the signal uσ , which relies on the
feedback signal €σ, drives to cancel the infuence of the
nonlinear signal on the error signal e, resulting in a high
control accuracy. When the linear model transfer function
for the table acceleration and control input signal, G0a(s), is
given, it can be employed as G(s) � G0a(s) in Figure 2.
When the inversion of G0a(s) is a stable and proper transfer
function, the controllers in equation (14) become

K
∗
r (s) �

1
G0a(s)

, K
∗
σ(s) � −

Fσ(s)

G0a(s)
. (15)

Te flter Fσ basically limits the frequency components
from being fed back, and its design afects the stability. A
previous study [44] on the stability of NSBC demonstrated
that the second-order bandpass Butterworth flter passing
the range of 0.2–20.0Hz could efectively maintain stability
in shake table experiments with nonlinear characteristics.
Tus, this study also employed the same bandpass flter as Fσ.
Tis bandpass range sufciently covers the frequency range
of typical seismic acceleration records.

2.2.2. Stability of NSBC. Te stability of NSBC depends on
the feedback signals, e and σ, which are uniformly expressed
by the following equation:

e(s)

σ(s)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �
1

L(s)

1 − Kr(s) + Kσ(s)( 􏼁ΔGΔτ(s)G(s)e
−τs

− Kr(s)G(s)e
−τs

Kr(s) + Ke(s)( 􏼁ΔGΔτ(s)G(s)e
−τs

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦r(s), (16)

where

L(s) � 1 + ∆G∆τ(s) + 1( 􏼁G(s)Ke(s) − ∆G∆τ(s)G(s)Kσ(s)􏽨 􏽩e
− τs

, (17)

which is the closed-loop characteristic equation governing
the stability.

According to equation (16), the error signal e has the
following relation with the reference signal r:

Ge/r(s) �
e(s)

r(s)
􏼠 􏼡 �

1 − Kr(s) + Kσ(s)( 􏼁∆G∆τ(s) + Kr(s)􏼈 􏼉G(s)e
− τs

L(s)
. (18)

Equation (18) can be assessed for various controller
designs, once the controlled system with nonlinear char-
acteristics is equivalently or approximately described by
a Laplace form.

Stability of NSBC with the controller designs can be
assessed on the basis of equation (17). When the error

feedback action is not activated, i.e., Ke(s) � 0, which is the
case in this study, it becomes

L(s) � 1 − ∆G∆τ(s)G(s)Kσ(s)e
− τs

� 1 + ∆G∆τ(s)Fσ(s)e
− τs

.
(19)

G (s)e−τs

Controlled system

Kr (s)
r (s) u (s) y (s)

Figure 3: Inversion-based control: Kr (s)�G (s)−1.
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According to equation (19), the linear model G and flter
Fσ(s) can be used for maintaining stability and increasing
stability margins, as they are factors that are fexibly designed
in the equation.

2.2.3. Linear Model and Controller Designs for Shake Table
Experiments with Sliding Structures. A linear model of the
controlled system plays a fundamental role in NSBC. Tis
study introduces a linear model design based on the stick

state of the sliding structure because the structure remains
within the state in a system identifcation test, which are
commonly performed before the main experiments using
earthquake excitations.Tis design is exemplifed for a shake
table sustaining a sliding structure shown in Figure 1(c).

Based on the stick state of the sliding structure, a linear
model for the shake table and sliding structure can be de-
scribed as follows:

mN+1
€yN+1(t) + fckN+1(t) � 0,

⋮

m2
€y2(t) + fck2(t) − fck3(t) � 0,

€y1(t) � €y0(t),

m0
€y0(t) + c0

_y0(t) + c0y0(t) − fck2(t) � k0u(t) − m1
€y1(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

where fcki(t)(� fci(t) + fki(t)) � ci(
_yi (t) − _yi−1(t)) +

ki(yi(t) − yi−1(t)); yi, mi, ci, ki, (i � 1 · · · N + 1)􏽮 􏽯 denotes
the displacement, mass, damping coefcient, and stifness in
the ith storey of the linear model, respectively; and
y0, m0, c0, k0􏽮 􏽯 is the set denoting the displacement, mass,

damping coefcient, and stifness associated with the shake
table part in the linear model, respectively.

Tis linear model can be described by the set of transfer
functions for the corresponding stories, which is described
as follows:

GN+1/N(s) �
yN+1(s)

yN(s)
􏼠 􏼡 �

cN+1s + kN+1

mN+1s
2

+ cN+1s + kN+1
,

GN/N−1(s) �
yN(s)

yN−1(s)
􏼠 􏼡 �

cNs + kN

mNs
2

+ cN+1 + cN( 􏼁s + kN+1 + kN􏼐 􏼑 − cN+1s + kN+1􏼐 􏼑GN+1/N(s)
,

⋮

G2/1(s) �
y2(s)

y1(s)
􏼠 􏼡 �

c2s + k2

m2s
2

+ c3 + c2( 􏼁s + k3 + k2 − c3s + k3􏼐 􏼑G3/2(s)
,

G1/0(s) �
y1(s)

y0(s)
􏼠 􏼡 � 1,

G0/u(s) �
y0(s)

u(s)
􏼠 􏼡 �

k0

m0 + m1( 􏼁s
2

+ c0 + c2( 􏼁s + k0 + k2 − c2s + k2􏼐 􏼑G2/1(s)
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

In equation (21), the transfer function Gi/i−1(s) contains
Gi+1/i(s), which also contains Gi+2/i+1(s), and this relation
continues until i�N. Tus, the transfer function G0/u(s) is
obtained by calculating the transfer functions in the order of
GN+1/N(s), GN/N−1(s), · · · , G1/0(s), G0/u(s). As G0/u(s) de-
notes the relation between the table displacement and the
control input signal, it can be expressed by G0d(s) � G0/u(s)

and its relation with the table acceleration becomes

G0a(s) � s2G0d(s). By employing G0a(s) as G(s) in Figure 2,
equation (14) can be used to determine the input signal for
table acceleration control using the controller in
equation (15).

Te design of the linear model is fairly fexible, allowing
various settings for the linear model parameters:
mi, ci, ki, (i � 1 · · · N + 1)􏽮 􏽯 and m0, c0, k0􏽮 􏽯 in this case. In
fact, NSBC achieved perfect tracking control of multi-storey
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nonlinear systems even by a linear model whose stifness
coefcients are intentionally set to zero, despite the presence
of stifness elements in the actual controlled system [45]. In
addition, a linear model with a larger damping than the
actual control system enhances the stability margin for
nonlinear system control. Based on these features, a linear
model for NSBC can be fexibly designed to enhance its
performance.

3. Numerical Examination

3.1. Numerical Conditions. A series of shake table experi-
ments in the numerical simulation was performed using the
setup in Figure 4(a), with the setting of a constant damping

coefcient and a trilinear hysteretic spring shown in Fig-
ure 4(b) within the SDOF superstructure. An excitation
employed for the simulation is the acceleration data shown
in Figure 5, which was recorded by the Japan Meteorological
Agency (JMA) during the Hyogo-Ken Nanbu (Kobe)
earthquake in 1995. Tese data are used as the reference
signal to be reproduced in the shake table experiments and
referred to as the JMA Kobe motion in this study.

3.1.1. Shake Table and Sliding Structure. Te equations of
motion for the table an sliding structure in Figure 4(a) are as
follows:

m2€y2(t) + c2 _y2(t) − _y1(t)( 􏼁 + fk2(t) � 0,

F1(t) � m1€y1(t) + m2€y2(t)( 􏼁 � Fex(t)(1 − H(t)) − Fμv(t)sgn _x1(t)( 􏼁H(t),

m0€y0(t) + c0 _y0(t) + k0y0(t) � k0u(t) − F1(t),

⎧⎪⎪⎨

⎪⎪⎩
(22)

where Fex(t) � m1€y0(t) + m2€y2(t). Te restoring force fk2,
derived from the nonlinear spring with the characteristic
shown in Figure 4(b), is described as follows:

fk2(t) � r22k2δ2(t) + 1 − r21( 􏼁k2z21(t) + r21 − r22( 􏼁k2z22(t), (23)

where δ2(t) � y2(t) − y1(t); _z2l(t) � _δ2(t) χ( _δ2􏽮 (t))χ(∆2l

−z2l(t)) + χ(− _δ2(t))χ(∆2l + z2l(t))}(l � 1,2); and ∆2l, r2l􏼈 􏼉 is
the set of the lth elastic limit and stifness reduction factor of
the nonlinear spring, respectively.

As kinematic friction is generally afected by the sliding
velocity [53, 61, 64, 69], this study refects its characteristics
in numerical simulations.Te kinematic friction in equation
(22) can be expressed as follows:

Fμv(t) � μmin + μmax − μmin( 􏼁e
− c _x1(t)| |􏼚 􏼛 m1 + m2( 􏼁g,

(24)

where μmin is the minimum friction coefcient during
sliding and c is the intensity of the friction reduction. Note
that equation (24) with c � 0.0 maintains the maximum
static friction during the sliding state.

Te detailed parameters employed in the simulation
were based on a system identifcation test performed on an
actual shake table sustaining a sliding steel structure, which
is shown later in Section 4.1. Ten, the parameters of the
shake table were set as follows: m0(� m0b + m0α � 200
+115 kg) � 315 kg, c0 � 4.78 kNs/m, and k0 � 71.06 kN/m.
Te sliding structure was designed to have a sliding mass of
m1 � 225 kg and an SDOF superstructure with the following
parameters: m2 � 200 kg, c2 � 120Ns/m, and k2 � 43.00
kN/m. Te trilinear hysteretic spring in equation (23) was
modelled with Δ21 � 0.03m,Δ22 � 1.5 kNs/mΔ21, r21 � 0.5,

and r22 � 0.05. Te kinematic friction in equation (24) was
modelled as μmax � 0.22, μmin � 0.15, and c � 20.0, according
to a previous study on graphite lubrication of steel andmortar
[64]. Te velocity limit for the Karnopp model used in
equation (22) was set to εv � 0.001, which is commonly used
in this model [68]. Te pure time delay was set as τ � 4.0ms,
according to the identifcation test.

Prior to studying the interaction between a shake table and
sliding structure, the structure with the aforementioned pa-
rameters was numerically placed on the ground and simulated
with 80% JMA Kobe motion. Te response of the structure is
shown in Figure 6, including the friction varyingwith the sliding
velocity. By comparing with the structural response of the
sliding mass rigidly fxed on the ground, as shown in
Figure 6(c), it can be easily observed that the occurrence of
sliding efectively mitigates the structural damage and con-
tributes to maintaining the structure almost within the elastic
range. Te numerical simulations for shake table experiments
with a sliding structure are expected to produce identical or
sufciently similar results.

3.1.2. Control Accuracy. Tis study evaluated the control
accuracy of a shake table experiment, based on the sim-
ilarity of the realised table acceleration and its reference
acceleration signal. Te similarities in the time and fre-
quency domains were calculated by using the following
eqaution:
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St €r, €y0( 􏼁 � 1 +
􏽐 €r(t) − €y0(t)( 􏼁

2

􏽐 €r(t)2
􏼠 􏼡

− 1

× 100%,

Sf €r, €y0( 􏼁 � 1 +
􏽐 Ar(f) − Ay0(f)􏼐 􏼑

2

􏽐 Ar(f)2
⎛⎝ ⎞⎠

− 1

× 100%,

(25)

where {Ar, Ay0} is the set of Fourier amplitude spectra of
€r, €y0􏼈 􏼉, respectively. St directly measures the similarity of
the two signals from the time history data, while Sf is
focussed on the amplitudes of the Fourier spectra in
a limited frequency range. Sf in this study is evaluated in
the range of 0.1–20.0 Hz, which covers the frequency
components in most earthquake excitations.

Shake table 
m0

(=m0b + m0α)c0, k0

m2

k2

c2

Sliding mass

F1
x1

Sliding
interface

Superstructure

m1

(a)

k2

r21k2

fk2

Δ21

δ2

r22k2

Δ22

(b)

Figure 4: Shake table experiment with a sliding mass and an SDOF superstructure: (a) schematic drawing and (b) trilinear hysteretic spring
embedded in the superstructure.
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Figure 5: JMA Kobe motion: (a) time history acceleration and (b) Fourier amplitude spectra.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Fr
ic

. C
oe

ff.

-0.1 0 0.1 0.2 0.3-0.2
Sliding Disp. (m)

(a)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Fr
ic

. C
oe

ff.

-1 -0.5 0 0.5 1 1.5-1.5
Sliding Vel. (m/s)

(b)

With sliding 
Without sliding 

-2

-1

0

1

2

Fk
 (k

N
)

-0.05 0 0.05 0.1-0.1
Inter-storey Drift (m)

(c)

Figure 6: Responses of a sliding structure subjected to 80% JMA Kobe motion: (a) friction coefcient vs. sliding displacement, (b) friction
coefcient vs. sliding velocity, and (c) hysteresis in the superstructure.
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3.2. Numerical Simulation. Te linear model required for
NSBC was built based on the stick state of a sliding structure,
and its equations of motion can be described by equation

(20) with N� 1. Based on equation (21) with N� 1, the
transfer functions for the linear model can be obtained as
follows:

G2/1(s) �
y2(s)

y1(s)
􏼠 􏼡 �

c2s + k2

m2s
2

+ c2s + k2
,

G0/u(s) �
y0(s)

u(s)
􏼠 􏼡 �

k0

m0 + m1( 􏼁s
2

+ c0 + c2( 􏼁s + k0 + k2 − c2s + k2􏼐 􏼑G2/1(s)
,

G0a(s) �
s
2
y0(s)

u(s)
􏼠 􏼡 � s

2
G0/u(s).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

By employing the linear model as G(s) � G0a(s) in
Figure 2, the NSBC input signal for Figure 4 is determined
using equations (14) and (15). Te flter Fσ was designed as
a second-order Butterworth flter with a bandpass range of
0.2–20Hz.

Te parameters in the linear model were designed using
the initial parameters of the controlled system,
m0, c0, k0, m1, m2, c2, k2􏽮 􏽯 � m0, c0, k0, m1, m2, c2, k2􏼈 􏼉 and
τ � τ. Tis design is equivalent to the case where all initial
parameters of the controlled system (i.e., the shake table and
sliding structure) are known and refected in the NSBC
controllers, and it is referred to as Linear Model 1 in this
study. In the simulation, the unmodelled dynamics is the
nonlinearity within the superstructure only, and the shake
table does not have any nonlinear characteristics, although
actual systems in practice do. Noise was added intentionally
to the table acceleration and displacement to make the
simulation more realistic.

3.2.1. Numerical Results of IBC. Prior to examining NSBC,
shake table experiments were computationally simulated
with IBC, which was executed in the form of NSBC with
Ke(s) � Kσ(s) � 0. Te simulations were performed for
JMA Kobe motion with diferent amplitudes: {10%, 20%,
40%, 60%, 80%, and 100%}. Te results are summarised in
Table 1. Te detailed results for 20% and 80% amplitudes are
illustrated in Figures 7 and 8, respectively. Tese two am-
plitudes were selected to maintain the consistency with the
experimental results shown later.

According to Table 1, the control accuracy for the 10%
excitation is satisfactory, especially in Sf. Tis is because
a nonlinear characteristic does not appear under the exci-
tation owing to the small amplitude, which is not sufciently
large to induce sliding in the structure. As shown in Figure 7,

the structure under 20% excitation clearly slid. Te sliding
has degraded the table control of IBC, resulting in a sig-
nifcant reduction from the results of the 10% excitation, as
shown in Table 1.

Te control accuracies decreased signifcantly at larger
excitations, as shown in Table 1. At 80% excitation, the
realised table acceleration signifcantly difered from the
reference signal in time and frequency domains, as shown
in Figure 8, resulting in extremely low accuracies:
Sf � 21.04% and St � 16.95%. Tis result indicates that the
expected experiment shown in Figure 6 is impossible using
IBC. Te results of 100% excitation were even worse than
those of the 80% excitation. Tese results clarify the in-
efectiveness of IBC for shake table experiments with
a sliding structure.

3.2.2. Numerical Results of NSBC. Shake table experiments
based on NSBC with Linear Model 1 were computationally
simulated for the JMA Kobe motion with the same am-
plitudes as those conducted with IBC. Te results are
summarised in Table 2, and the detailed results of 20% and
80% excitations are illustrated in Figures 9 and 10,
respectively.

As shown in Figure 9, NSBC has accurately realised
20% JMA Kobe motion, even though the structure has
clearly slid on the table. Tis resulted in satisfactory ac-
curacies: Sf � 99.13% and St � 95.73%, which are consid-
erably better than those of IBC, which are shown in
Table 1. As shown in Table 2, at even larger excitations,
NSBC produced similar or better results than those at 20%
excitation. At 80% excitation, the table acceleration
realised by NSBC was satisfactorily similar to the refer-
ence signal in the time and frequency domains, as ob-
served in Figure 10. In addition, the experiment realised

Table 1: Numerical results of IBC with Linear Model 1.

Excitation JMA Kobe
Amplitude 10% 20% 40% 60% 80% 100%
Sf[€r, €y0] (%) 99.41 81.07 37.91 26.08 21.04 18.62
St[€r, €y0] (%) 95.86 67.51 29.74 20.67 16.95 15.13
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Figure 7: Numerical results of IBC for 20% JMAKobemotion: (a) time history of the table acceleration, (b) Fourier amplitude spectra of the
table acceleration, (c) friction coefcient vs. sliding displacement, (d) friction coefcient vs. sliding velocity, and (e) shear force vs. inter-
storey drift in the superstructure.

80% JMA Kobe 
Table Acc. 

20 255 100 15
time (s)

-10

-5

0

5

10

A
cc

 (m
/s

2 )

80% JMA Kobe 
Table Acc. 

201050 15
Freq. (Hz)

0

0.1

0.2

0.3

0.4

|F
 (f

)| 
(m

/s
2 )

-0.1-0.2 0.1 0.2 0.30
Sliding Disp. (m)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Fr
ic

. C
oe

ff.

-0.5 0-1 0.5 1 1.5-1.5
Sliding Vel. (m/s)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Fr
ic

. C
oe

ff.

-2

-1

0

1

2

Fk
 (k

N
)

-0.05 0 0.05 0.1-0.1
Inter-storey Drift (m)

(a) (b)

(c) (d) (e)

Figure 8: Numerical results of IBC for 80% JMAKobemotion: (a) time history of the table acceleration, (b) Fourier amplitude spectra of the
table acceleration, (c) friction coefcient vs. sliding displacement, (d) friction coefcient vs. sliding velocity, and (e) shear force vs. inter-
storey drift in the superstructure.
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by NSBC was sufciently close to the expected experiment
shown in Figure 6. Even at 100% excitation, NSBC did not
exhibit control degradation, as observed in Table 2,
confrming its efectiveness in shake table experiments
with a sliding structure. Note that St in Table 2 is improved
at larger excitations because noise in the table acceleration
becomes less infuential to the index as the amplitude
increases.

3.3. Stability Margin and Its Improvement by Linear Model
Designs. NSBC with Linear Model 1 can efectively control
a shake table sustaining a sliding structure, according to
Section 3.2.2. However, stability is not guaranteed during the
actual practice because the numerical simulations were
performed without uncertainty within shake tables, which
are typically observed during actual practices. To assess the
stability and improve its margin, we introduce a stability
analysis of NSBC for shake table control with a sliding

structure and a linear model design in which linear model
parameters are intentionally tuned to increase the stability
margin. As a new design, Linear Model 1.5 is built by using
G0a(s) in equation (26) with the parameters, m0, c0, k0,􏽮

m1, m2, c2, k2} � m0, 1.5c0, 1.5k0, m1, m2, c2, k2􏼈 􏼉.
Te stability analysis conducted in this study is based on

table dynamics during two states (stick and slip) of the
structure on the table. As the linear model is built based on
the dynamics during the stick state, as shown in equation
(26), the controlled system needs to be represented by the
dynamics during the slip state. However, as sliding is
a nonlinear phenomenon, it cannot be precisely described by
a Laplace transform. Tus, by disregarding the infuence of
the sliding structure and friction, this study describes the
controlled system as follows:

G0a(s) �
s
2
y0(s)

u(s)
􏼠 􏼡 �

k0s
2

m0s
2

+ c0s + k0
. (27)

Table 2: Numerical results of NSBC with Linear Model 1.

Excitation JMA Kobe
Amplitude 10% 20% 40% 60% 80% 100%
Sf[€r, €y0] (%) 99.73 99.13 98.61 98.84 98.80 99.03
St[€r, €y0] (%) 94.99 95.73 95.44 96.38 96.46 96.84
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Figure 9: Numerical results of NSBC for 20% JMA Kobe motion: (a) time history of the table acceleration, (b) Fourier amplitude spectra of
the table acceleration, (c) friction coefcient vs. sliding displacement, (d) friction coefcient vs. sliding velocity, and (e) shear force vs. inter-
storey drift in the superstructure.
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Temodelling error dynamicsΔG, which is necessary for
the stability analysis based on equation (19), can be ap-
proximated by the set of G(s) � G0a(s) in equation (27) and
G(s) � G0a(s) in equation (26).

Stability of NSBC based on Linear Models 1 and 1.5 was
analysed, and the results are illustrated in Figure 11 along
with the relevant error. According to Figure 11(a), the

stability margin of Linear Model 1.5 is greater than that of
Linear Model 1, indicating the efectiveness of the design. In
Figure 11(b), the error dynamics of Linear Model 1.5 are not
signifcantly diferent from those of Linear Model 1.

Simulationswith the numerical conditions identical to those
described in Section 3.2 were performed with NSBC based on
Linear Model 1.5, and the results are summarised in Table 3.
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Figure 10: Numerical results of NSBC for 80% JMAKobe motion: (a) time history of the table acceleration, (b) Fourier amplitude spectra of
the table acceleration, (c) friction coefcient vs. sliding displacement, (d) friction coefcient vs. sliding velocity, and (e) shear force vs. inter-
storey drift in the superstructure.
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Linear Model 1.5 also achieved the satisfactory control
accuracies, as shown in in Table 3, although the results are
slightly lower than those of Linear Model 1, as shown in
Table 2. Tis result indicates that Linear Model 1.5 attains
a higher stability margin than Linear Model 1, achieving
similar high control performance.

Table 3: Numerical results of NSBC with Linear Model 1.5

Excitation JMA Kobe
Amplitude 10% 20% 40% 60% 80% 100%
Sf[€r, €y0] (%) 99.58 98.69 97.53 97.95 97.97 98.23
St[€r, €y0] (%) 94.82 95.14 94.13 95.05 95.19 95.70
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Graphite
(0.06 kg)
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(d) (e)

(c)

Figure 12: Experimental setup: (a) bare shake table, (b) mortar bases, (c) iron block, (d) lubrication by graphite, and (e) sliding structure
(SDOF structure and sliding mass) on the table.
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Figure 13: Table dynamics, G0d, identifed by band limited white-noise random excitation with diferent amplitudes: (a) 10.0mm and (b)
2.0mm.

Table 4: Experimental results of IBC based on Linear Model 1.

Excitation JMA Kobe
Amplitude 10% 20%
Sf[€r, €y0] (%) 94.10 79.43
St[€r, €y0] (%) 81.82 61.65
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4. Experimental Examination

4.1. Experimental Conditions, System Identifcation, and
Linear Models. Shake table experiments in this study were
performed using a single-axis electrodynamic table, shown in
Figure 12(a), which has a size of 1.2×1.2m and a weight of

200 kg. A set of mortar bases, shown in Figure 12(b), was
placed on the table, and a sliding steel structure was placed on
themortar bases, as shown in Figure 12(c).Tis steel structure
consisted of two masses connected by steel plates. Te frst
mass corresponds to the sliding mass in Figure 4(a), and the
second mass and plates correspond to the superstructure in
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Figure 14: Experimental results of IBC based on Linear Model 1 for 20% JMA Kobe motion: (a) time history of the table acceleration, (b)
Fourier amplitude spectra of the table acceleration, (c) friction coefcient vs. sliding displacement, (d) friction coefcient vs. sliding velocity,
and (e) shear force vs. inter-storey drift in the superstructure.
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Figure 15: Experimental results of NSBC based on Linear Model 1 for 10% JMA Kobe motion: time history of table acceleration.
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Figure 4(a). Te steel plates demonstrated the fexibility of
a building structure and functioned as an element that dis-
played nonlinear characteristics, similar to those shown in
Figure 4(b). Te set of blocks shown in Figure 12(d) had an
iron at its centre, which was placed on each corner of the
sliding mass. Te fat area (20× 20mm) on the iron block, as
shown in Figure 12(d), was attached to the bases, forming the
sliding interface of the sliding structure. Tis interface was
lubricated with graphite to achieve a friction coefcient of
approximately 0.2. With this lubrication, 0.06 kg of graphite
was scattered on themortar base for each iron block, as shown
in Figure 12(e). During the preparation of this experiment, the
frst and second masses were measured as m1 � 225 kg and
m2 � 200 kg, respectively, and the experimental rigs directly
placed on the table were m0α �115 kg, resulting in
m0 �m0b+m0α � 315 kg. Based on the total weight of the
sliding structure, m1 +m2 � 425 kg, and the contact pressure
at the interface became 2.6N/mm2.

Te shake table had a magnetostrictive displacement
transducer and two servo accelerometers for control. Te
sliding mass was equipped with four wire displacement
transducers placed at its corners to measure its sliding
displacement and two strain gauge accelerometers attached
to the mass for its acceleration. Te superstructure was
equipped with two wire displacement transducers placed on
protection stands to measure its interstorey drift and two
strain gauge accelerometers on the second mass.

System identifcation tests were performed with a band-
limited random excitation containing frequency compo-
nents of 0.1–50Hz, with two diferent amplitudes of 10.0 and
2.0mm.Te dynamics of the table displacement and control
input signal obtained for the two amplitude cases are il-
lustrated in Figure 13.

Te dynamics in Figure 13(a), which were obtained with
an amplitude of 10.0mm, was modelled by the following
expression:

Table 5: Experimental results of NSBC based on Linear Model 1.5.

Excitation JMA Kobe
Amplitude 10% 20% 40% 60% 80%
Sf[€r, €y0] (%) 99.45 98.64 98.48 98.97 99.17
St[€r, €y0] (%) 94.14 91.96 92.98 94.25 95.22
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Figure 16: Experimental results of NSBC based on LinearModel 1.5 for 20% JMAKobemotion: (a) time history of the table acceleration, (b)
Fourier amplitude spectra of the table acceleration, (c) friction coefcient vs. sliding displacement, (d) friction coefcient vs. sliding velocity,
and (e) shear force vs. inter-storey drift in the superstructure.
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G0d(s) � G0/u(s)( 􏼁 �
131.6s

2
+ 78.96s + 2.829e04

s
4

+ 9.665s
3

+ 431.5s
2

+ 1980s + 2.829e04
,

G0a(s) � s
2
G0d(s).

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(28)

Based on m0, m1, m2􏼈 􏼉 � 315,225,200{ } kg and equation
(26), the equivalent table parameters were found to be c0 �

4.78 kNs/m and k0 � 71.06 kN/m, and the superstructure
was found to have the following parameters: c2 � 120Ns/m
and k2 � 43.00 kN/m.

In the system identifcation test with an amplitude of
2.0mm, as shown in Figure 13(b), the obtained dynamics
slightly difered from those obtained with an amplitude of
10.0mm, indicating that the shake table had some nonlinear
characteristics depending on its amplitude.

Based on the identifed parameters, Linear Model 1 was
built using equation (26) with the following parameters:
m0, c0, k0, m1, m2, c2, k2􏽮 􏽯 � m0, c0, k0, m1, m2, c2,􏼈 k2}. Tis
resulted in a transfer function identical to that expressed by
equation (28). To improve the stability margin of Linear
Model 1, Linear Model 1.5 was alternatively built using
m0, c0, k0, m1, m2, c2, k2􏽮 􏽯 � m0, 1.5c0,􏼈 1.5k0, m1, m2, c2, k2}.

4.2. Shake Table Experiments with Linear Model 1. Shake
table experiments based on NSBC and IBC were conducted
using Linear Model 1. Based on this model, the NSBC

controllers were designed using equation (15) with G(s) �

G0a(s) for the control input signal in equation (14). Te
bandpass flter Fσ(s) in equation (15) was identical to that
used in the numerical simulations. IBC was executed by
NSBC with Kσ(s) � Ke(s) � 0.

4.2.1. Experimental Results of IBC with Linear Model 1.
Shake table experiments with IBC were performed for two
amplitudes of 10% and 20%. Te results are summarised in
Table 4. Te results for the 20% excitation are illustrated in
Figure 14. Te sliding interface had a friction coefcient of
approximately 0.2, as observed in Figure 14(c).

At 10% excitation, the structure did not slide, and
nonlinear characteristics that occurred in this experiment
were limited. Te control accuracies in Table 4 are
Sf � 94.10% and St � 81.82%, which were much lower than
those of the numerical simulation in Section 3.2.1. Tis is
attributed to the nonlinear characteristics of the shake table.

At 20% excitation, the structure clearly slid, as shown in
Figure 14, and caused control degradation, resulting in
Sf � 79.43% and St � 61.65%, which are again worse than
those of the numerical simulations.
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Figure 17: Experimental results of NSBC based on LinearModel 1.5 for 80% JMAKobemotion: (a) time history of the table acceleration, (b)
Fourier amplitude spectra of the table acceleration, (c) friction coefcient vs. sliding displacement, (d) friction coefcient vs. sliding velocity,
and (e) shear force vs. inter-storey drift in the superstructure.
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It should be noted that experiments with larger exci-
tations were not performed because their poor results were
deduced from the numerical simulation and the experi-
mental results of 10% and 20% excitations.

4.2.2. Experimental Results of NSBC with the Linear Model 1.
Shake table experiments with NSBC were scheduled to be
performed using JMA Kobe motion with the two amplitudes
of 10% and 20%. However, NSBC with Linear Model 1
became unstable in the experiment with 10% excitation, as
shown in Figure 15. Tis can be attributed to the nonlinear
characteristics of the table. Tis result confrms the un-
suitability of Linear Model 1 for the shake table experiments
in this study.

4.3. Shake Table Experiments with Linear Model 1.5.
Shake table experiments based on NSBC were conducted
using Linear Model 1.5. Based on this linear model, NSBC
controllers were designed using equation (15) with G(s) �

G0a(s) for the control input signal in equation (14). Te
bandpass flter Fσ (s) was the same as the one one used in
Linear Model 1.

Shake table experiments based on NSBC using Linear
Model 1.5 were conducted with JMA Kobe motion with the
amplitudes: {10%, 20%, 40%, 60%, and 80%}. Te experi-
mental results are summarised in Table 5, and the detailed
results of the 20% and 80% excitations are illustrated in
Figures 16 and 17, respectively. Note that the experiment
with 100% excitation was not executed because the 80%
excitation resulted in a large sliding displacement, which was
near the limit of the allowable range of sliding.

NSBC based on Linear Model 1.5 maintained stability in
all experiments with diferent amplitudes, unlike NSBC
based on Linear Model 1, which became unstable at 10%
excitation. Tis simply demonstrates the superiority of
Linear Model 1.5 over Linear Model 1.

At 10% excitation, NSBC based on Linear Model 1.5
achieved the expected control with sufcient accuracies of
Sf � 99.45% and St � 94.14%. During this experiment, the
structure did not slide on the table owing to the small ex-
citation. Although the 20% excitation clearly caused the
structure to slide on the table, as shown in Figure 16, its table
acceleration was sufciently close to the reference signal in
both time and frequency domains. Te control accuracies
were Sf � 98.64% and St � 91.96, which were remarkably
better than IBC results for 20% excitation as shown in
Table 4.

In the experiments with larger excitations, the control
accuracies were similar to or better than those with smaller
excitations, as shown in Table 5. At 80% excitation, the table
acceleration was accurately controlled, as shown in
Figures 17(a) and 17(b), with high accuracies of Sf � 99.17%
and St � 95.22%, which are the best results among all the
experiments conducted in this study. St at this excitation was
the highest in Table 5, because the infuence of the noise
contaminating the table acceleration decreased as the ex-
citation amplitude increased.

In addition to the accurate control of the shake table
shown in Figures 17(a) and 17(b), the responses of the
sliding structure in Figure 17(c)–17(e) reasonably match the
numerical results of the sliding structure in Figure 6. Tis
result also supports the reliability of the experiments con-
ducted with NSBC based on Linear Model 1.5.

5. Conclusions

Tis study examined the performance of NSBC in shake
table experiments with a sliding structure based on
a graphite-lubricated interface. Its high performance was
verifed through numerical simulations and actual experi-
ments. Te results obtained in this study are summarised as
follows:

(i) As building a linear model of a controlled system is
essential for NSBC, this study introduced its design
for a shake table with a sliding structure. Te linear
model is built based on the controlled system during
the stick state of a sliding structure rather than the
slip state. Te designs of the linear model and NSBC
controllers were exemplifed by a shake table and
a sliding structure, which consists of sliding mass
and an N-DOF superstructure. In addition, this
study introduced an approximate stability analysis
of NSBC for such shake table experiments, in which
the controlled system is represented by table dy-
namics during the slip state of the sliding structure.

(ii) To enhance the robustness of NSBC against un-
certainty within a shake table, this study addi-
tionally introduced a linear model design in which
the model parameters corresponding to damping
and stifness of the shake table are intentionally
assumed to be larger than the identifed values. Its
efectiveness was demonstrated by the stability
analysis for two diferent models: Linear Model 1,
built using the exact initial parameters of the
controlled system, and Linear Model 1.5, built using
1.5 times the damping and stifness values corre-
sponding to its shake table part.

(iii) Numerical simulations were performed for shake table
experiments with a sliding structure consisting of an
SDOF superstructure and a sliding mass, and a sliding
interface with a friction coefcient of 0.22. In the
simulations, IBC, which is a basic compensation
method for shake table control, produced satisfactory
results only when the sliding structure remained in the
stick state, and its control accuracy signifcantly de-
teriorated as the sliding amplitude increased. Con-
trarily, NSBC accurately realised an expected
earthquake excitation with high accuracy: almost
100%, even when the structure on the table slid
substantially. Linear Models 1 and 1.5 did not exhibit
signifcant diferences in terms of control accuracies.

(iv) In the experiments, a sliding structure consisting of
a one-storey steel structure and a sliding mass was
placed on a sliding interface lubricated with
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graphite, realising a friction coefcient of approx-
imately 0.2. First, NSBC controllers were built using
Linear Model 1 with the exact parameters of the
controlled system obtained from a system identi-
fcation test. However, a shake table experiment
using NSBC with this model became unstable,
mainly because of the nonlinear characteristics
within the table. Contrarily, NSBC based on Linear
Model 1.5 maintained stability and achieved an
expected earthquake excitation with high accuracy,
i.e., over 99.6% and 95.2% in the frequency and time
domains, respectively.

(v) In this study, NSBC with a reasonable linear model
achieved accurate control of the shake table even
when the table sustained a sliding structure whose
weight (425 kg) was 2.1 times greater than the bare
table weight (200 kg). Tis study clarifed that NSBC
can solve the problem of control degradation of
shake tables with heavy sliding structures.

Te stability analysis of NSBC for shake table experi-
ments involving the sliding phenomenon must be further
elaborated for more accurate assessments. Furthermore,
systematic designs of the linear model and NSBC controllers
should be constructed. Tis study focused on examining the
control performance of NSBC for shake table experiments
with a single-storey sliding structure, based on the sliding
interface having a friction coefcient of approximately 0.2.
Its performance for diferent friction coefcients can be
found in the study with a rigid sliding mass [65]. We will
further investigate the control performance of NSBC in
shake table experiments with sliding structures with mul-
tistorey superstructures. As applications of NSBC are cur-
rently limited to single-axis shake tables, we will investigate
the applicability of NSBC to multi-axial shake tables.
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