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Compared with the linear isolation system, the quasi-zero-stifness (QZS) nonlinear isolation system has the characteristics of
high static stifness and low dynamic stifness, which has better low-frequency vibration isolation performance. However, most of
the existing QZS isolators only consider the quasi-zero-stifness characteristic at the static equilibrium position achieved by the
parallel connection of positive and negative stifness structures. To optimize the isolation performance of the QZS system, a new
isolation device based on the parallel connection of oblique springs and vertical springs was proposed. Te device can not only
achieve quasi-zero-stifness at the static equilibrium position but also expand the interval of quasi-zero-stifness through pa-
rameter optimization design to optimize the stifness characteristics of the QZS system, thus efectively improving the vibration
isolation performance. Te QZS nonlinear systems with the optimal parameters were analyzed dynamically, and the nonlinear
motion equations were approximately solved based on the ffth-order polynomials ftted by the restoring force curves. A prototype
was further designed and fabricated to compare and analyze the vibration isolation performance of the QZS system and the
equivalent linear system through a shaking table test.

1. Introduction

A quasi-zero-stifness isolation system is generally com-
posed of the positive stifness mechanism for bearing the
main load and the negative stifness mechanism for of-
setting the positive stifness around the static equilibrium
position. Te high-static-low-dynamic stifness character-
istics make the QZS system have a wider isolation frequency
band and better isolation performance than the linear
stifness system [1]. A great deal of research and applications
have been carried out on QZS isolators with diferent
structures, such as multispring structures [2–5], special
spring structures [6–9], origami structures [10–12], buckling
beam structures [13–16], geometric nonlinear structures
[17–19], magnetic structures [20–22], bioinspired structures
[23–25], and other types of structures [26–30]. All these QZS
systems can be efectively used in low-frequency vibration
isolation.

Carrella et al. and Kovacic et al. frst studied the quasi-
zero-stifness system proposed by Molyneux [31] and

simplifed the model into a third-order approximate Dufng
equation. Tey further analyzed the static problems [32],
force and displacement transmissibility [33, 34], and its
application in rotor isolation [35]. Te dynamic analysis is
mainly based on the frst-order approximate solution ob-
tained by the harmonic balance method. It is considered that
the isolation performance of the QZS isolator can be re-
fected only when the downward jump frequency of the QZS
system is less than the corresponding resonance frequency of
the linear system. Neild and Wagg [36–38] studied the
amplitude-frequency response characteristics of the above
QZS isolator through a ffth-order polynomial function.
QZS systems are often limited in practical engineering
applications, one of the important reasons being that they
only form near the static equilibrium position region, which
means that the optimal performance of the QZS system is
limited to a small excitation amplitude. Considering that
some vibration will produce a larger displacement response,
how to achieve quasi-zero-stifness and expand the interval
of quasi-zero-stifness to optimize the stifness
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characteristics of the system and efectively improve the
vibration isolation performance has become a key problem
to be solved [39–41].

Tis paper focuses on the optimal parameter design of
the proposed device which uses quasi-zero-stifness around
the static equilibrium position, by comparing the values of
dynamic stifness in the entire compression stroke range of
the device, and the innovations are described as follows:

(1) In contrast to the conventional QZS system, a three-
spring QZS system was proposed by Molyneux, and
the physical and geometric parameters of the pro-
posed device can be adjusted and controlled through
a slide-link connection system and mechanical as-
sembly, allowing for more fexible adjustment and
use in practical engineering.

(2) Te proposed device can improve the vibration
isolation performance by expanding the quasi-zero-
stifness range through parameter optimization de-
sign.Te nonlinear dynamics analysis shows that the
proposed QZS system has a smaller vibration iso-
lation starting frequency and a larger vibration
isolation frequency range than the conventional QZS
system and the equivalent linear system for vibration
isolation, and the performance improves more sig-
nifcantly as the excitation amplitude decreases.

(3) In this paper, a new QZS isolation device based on
the parallel connection of oblique springs and ver-
tical springs has been developed, fabricated, and
tested by the authors. Te displacement trans-
missibility of the quasi-zero-stifness vibration iso-
lation system and the equivalent linear vibration
isolation system were compared and analyzed by the
shaking table test, which verifed the good low-
frequency vibration isolation performance of the
device.

2. Isolation Device Description and
Static Analysis

Te device consists of three parts: the bearing plate and
connecting rod; the vertical and oblique spring systems; and

upper and bottom limit plates, vertical rails, and sliders. Te
three main components are integrated through a central
connection block, enabling the device to achieve quasi-zero-
stifness at the static equilibrium position through the
parametric adjustment of the spring stifness characteristics,
as shown in Figure 1.

Te negative stifness system consists of eight sym-
metrically arranged precompressed inclined springs. By
adjusting the distance between the upper and bottom limit
plates or the distance between the four vertical rails, the
precompression coefcients of the inclined spring can be
easily adjusted, thus changing the stifness characteristics of
the negative stifness system. Similarly, by replacing diferent
vertical springs, the vertical stifness system can be con-
trolled according to diferent needs. Ten the two systems
can be connected in parallel to achieve the adjustable quasi-
zero-stifness characteristics.

Te inclined springs of the device are supported in-
ternally by a piston rod to maintain stability in compression,
a damping fuid can be added inside the piston rod, and the
springs can be replaced by other stifness elements with
better compressibility and elasticity to meet the actual needs
in diferent projects. Te geometric parameters of the QZS
device and the physical parameters of the spring system are
shown in Figure 2, with the device in a static equilibrium
position, which is the force state of the device under the
design mass load.

Te isolation device introduces the following parame-
ters: linear stifness coefcient k2 for the vertical spring;
linear stifness coefcient k1 and softening cubic stifness
coefcient k3 for the precompressed inclined spring; pre-
compression coefcient δ and vertical projection length h for
the oblique spring system; the displacement parameter x of
the isolated object from the static equilibrium position; and
distance e of the upper and lower threaded caps from the
central connection block.

Note that
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relationship between the vertical applied force f and the
resulting displacement x can be given as follows.

When −h<x< h

f � 4k2x +
1 + sgn(x + e)(x − e)

2
sgn[abs(x + e)(x − e)] ×

· 4k1(h − x)

����������
a
2

+ b
2

+ h
2

􏽰
+ δ

��������������

a
2

+ b
2

+(h − x)
2

􏽱 − 1⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ − 4k1(h + x)

����������
a
2

+ b
2

+ h
2

􏽰
+ δ

��������������

a
2

+ b
2

+(h + x)
2

􏽱 − 1⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠
⎧⎪⎨

⎪⎩

+ 4k3
h − x

��������������

a
2

+ b
2

+(h − x)
2

􏽱

��������������

a2 + b2 +(h − x)2
􏽱

−
����������
a2 + b2 + h2

√
− δ􏼒 􏼓

3

− 4k3
h + x

��������������

a
2

+ b
2

+(h + x)
2

􏽱

��������������

a2 + b2 +(h + x)2
􏽱

−
����������
a2 + b2 + h2

√
− δ􏼒 􏼓

3
,

(1)

2 Structural Control and Health Monitoring



where sgn(x) is the symbolic function and abs(x) is the
absolute value function, further introducing the di-
mensionless parameter: 􏽥f � f/(4k2

����������
a2 + b2 + h2

√
), 􏽥x � x/

����������
a2 + b2 + h2

√
, 􏽥h � h/
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√
, 􏽥δ � δ/

����������
a2 + b2 + h2

√
,

α � k1/k2, and β � k3(a2 + b2 + c2)/k2, and the force ex-
pression of the nondimensional form can be derived as
follows:

􏽥f � 􏽥x +
1 + sgn(􏽥x + 􏽥e)(􏽥x − 􏽥e)

2
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Figure 1: View of quasi-zero-stifness isolation device.
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Figure 2: Te geometric parameters of the QZS device and the physical parameters of the spring systems.
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Te expressions of each of these simplifed parameters
are as follows: ψ1 � 􏽥h − 􏽥x,ψ2 � 􏽥h + 􏽥x, P1 �

�����������
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,
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􏽰
,∆1 � (1 + 􏽥δ)/P1 and ∆2 � (1 + 􏽥δ)/P2

Te nondimensional stifness 􏽥K can be further derived as
follows:

􏽥K � 1 +
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It can be seen from the Figure 2 that when e � 0, the
upper and bottom compression stroke of the device is the
vertical projection length h of the oblique spring, and the
force analysis of the system when e≠ 0 is not considered for
the time being.

If 􏽥K � 0 is specifed at 􏽥x � 0 and e � 0, then the value of α
and β can be obtained as follows:
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, (5)

when β> 0, the oblique spring is soft, and when β< 0, the
oblique spring is hard. In order to ensure that the oblique
springs on both sides are not in a state of tension, the in-
dividual parameters of the springs also need to satisfy the

following:
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following equation:
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Substituting equation (6) into equation (5) and making
α> 0 and β> 0 lead to 0< 􏽥h< 0.577. Terefore, when con-
sidering the precompression of the oblique spring system,
the value of 􏽥h is best chosen between 0 and 0.5 in order to
ensure that the mechanical properties of the QZS isolation
system are meaningful.

3. Optimum Parameter Design of the
QZS Device

In order to optimize and extend the quasi-zero-stifness
interval of the device, it is necessary to keep the di-
mensionless stifness 􏽥K-surface as close to the zero axis as
possible at the static equilibrium position (􏽥x � 0), while
ensuring the positive stifness characteristics of the device
over the entire range of compression strokes. When e � 0,
bringing equation (5) into equation (3) yields
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Figure 3 shows the three-dimensional surface diagram of
the dimensionless stifness 􏽥K with parameters 􏽥x and 􏽥δ for
􏽥h � 0.2 and α � 1, as well as the 􏽥K − 􏽥x diagram and the 􏽥K − 􏽥δ
diagram for diferent viewpoints. It can be seen from Fig-
ure 3 that the abrupt change in the value of dimensionless
stifness 􏽥K is at 􏽥δ � 3􏽥h

2
/(1 − 􏽥h

2
) and 􏽥δ � 0. Tis is due to the

fact that the conditions 􏽥δ ≠ 3􏽥h
2/(1 − 􏽥h

2
) and 􏽥δ ≠ 0 need to be

satisfed in equation (5); otherwise, the expression is
meaningless.

Considering that the stifness ratio α needs to be greater
than 0, a three-dimensional surface plot of the stifness ratio
α with parameters β and 􏽥δ can be made for 􏽥h � 0.1, as well as
α− β diagram and α− 􏽥δ diagram from diferent viewpoints,
as shown in Figure 4. It can be seen that the sudden change
of the stifness ratio α is at 􏽥δ � 􏽥h

2
/(1 − 􏽥h

2
). When 􏽥h

2
/(1 −

􏽥h
2
)< 􏽥δ < 1 and 0< β< 8, the stifness ratio α of the QZS

device is greater than 0. Note that the values of β and 􏽥δ are
taken only in consideration of the parameters that may be
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taken in practical engineering applications and do not imply
that the stifness ratio α is greater than 0 only when β and 􏽥δ
are taken in this interval.

Figures 5 and 6 show the α− β view and α− 􏽥δ view when
􏽥h � 0.2 ∼ 0.5. It can be seen that the stifness ratio α of the
QZS device is greater than 0 for 􏽥h � 0.2 ∼ 0.4, 􏽥h

2
/(1 − 􏽥h

2
)<

􏽥δ < 1, 0< β< 8 and for 􏽥h � 0.5, 􏽥h
2
/(1 − 􏽥h

2
)< 􏽥δ < 1, 0< β< 4.

From Figures 4 to 6, it can be seen that when the pre-
compression factor 􏽥δ > 􏽥h

2/(1 − 􏽥h
2
) and the softening cubic

stifness factor 0< β< 4, the stifness ratio α> 0 can meet the
needs of the actual project.

According to the selection range of parameters, the
three-dimensional surface plots of its dimensionless stifness
􏽥K with parameters 􏽥x and 􏽥δ for diferent values 􏽥h � 0.1,
􏽥δ∈ [0.04, 5]; 􏽥h � 0.2, 􏽥δ∈ [0.08, 5]; 􏽥h � 0.3, 􏽥δ∈ [0.14, 5]; and
􏽥h � 0.4, 􏽥δ∈ [0.22, 5] when the softening cubic stifness co-
efcient β � 0.05, 0.25, 0.5, and 0.75 are shown in Figure 7. It
can be seen that for diferent values of β and 􏽥h, the concavity

and convexity of the 3D surface are transformed at a certain
value of 􏽥δ. When the value of 􏽥δ is in the small range, the
dimensionless stifness 􏽥K is a 3D concave surface, and when
the value of 􏽥δ is in the large range, the dimensionless stifness
􏽥K is a 3D convex surface.

To see this property more clearly, the 3D surface plots of
the dimensionless stifness 􏽥K with parameters 􏽥x and 􏽥δ are
made by taking β � 0.5, 􏽥h � 0.1, and 􏽥δ∈ [0.04, 5], as well as
the 􏽥K − 􏽥x diagram and the 􏽥K − 􏽥δ diagram views from dif-
ferent viewpoints, as shown in Figure 8. It can be seen from
Figures 7 and 8 that the dimensionless stifness 􏽥K surface
produces a shift in concavity at a critical value of 􏽥δ.
Terefore, the critical parameter 􏽥δ value is found by solving
for 􏽥K

″
(0) � 0.

By deriving equation (7), the frst-order derivative 􏽥K
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and the second-order derivative 􏽥K
″ can be further derived as

follows:
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By equation (9), the equation of 􏽥K
″
(0) � 0 can be obtained

as equation (11), and the corresponding curves of the critical
parameters 􏽥δ and 􏽥h when 􏽥K

″
(0) � 0, β � 0.05 can be made, as

shown in Figure 9. It can be seen that when the parameter 􏽥h is
small, the change of the critical parameter 􏽥δ is also small, and

when the parameter 􏽥h is large, the change of the critical pa-
rameter 􏽥δ also increases, especially when 􏽥h> 0.3, the variation of
the critical parameter 􏽥δ increases sharply. For practical use,
considering the limited compression coefcient 􏽥δ of the spring,
a smaller value of 􏽥h is chosen in the optimal parameter selection.
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α 1 − 􏽥h
2

􏼒 􏼓 1 − 5􏽥h
2

􏼒 􏼓(1 + 􏽥δ) −
1 + 2α 1 − 1 − 􏽥h

2
􏼒 􏼓(1 + 􏽥δ)􏼔 􏼕

2􏽥δ
2
3􏽥h

2
− 􏽥δ 1 − 􏽥h

2
􏼒 􏼓􏼔 􏼕

× 5􏽥h
4

− 6􏽥h
2

+ 1􏼒 􏼓􏽥δ
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(10)
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‴

(x) � 15α 1 − 􏽥h
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􏼒 􏼓(1 + 􏽥δ)
3ψ1

P1
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3ψ2
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7ψ1
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7ψ2
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P2
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4
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ψ1
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2
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2
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4 24∆1 − 15( 􏼁 + 2ψ1

6 216∆1 − 55( 􏼁 + 40ψ1
2

P1
6

+
3ψ1

4 􏽥h
2

− 1􏼒 􏼓 35∆1
2

− 32∆1 + 5􏼐 􏼑 + 2ψ1
6 48∆1 − 15( 􏼁

P1
8

+
6ψ1

4 􏽥h
2

− 1􏼒 􏼓 35∆1
2

− 48∆1 + 15􏼐 􏼑 + 12ψ1
6 24∆1 − 15( 􏼁

P1
10

2.5 3 43.5 4.5
δ~

0.4

0.2

0.1

0.3
0.35

0.25

0.15

0.05

h~

When the parameter h is small, the
variation of the critical parameter δ 
is smaller.

~
~

When the parameter h is large, the
variation of the critical parameter δ 
is larger.

~
~

Figure 9: Correspondence curves of the critical parameter 􏽥δ and 􏽥h when 􏽥K
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2 4∆2 − 3( 􏼁 + 10ψ2
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4
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6ψ2
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3ψ2
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− 1􏼒 􏼓 35∆2
2

− 32∆2 + 5􏼐 􏼑 + 2ψ2
6 48∆2 − 15( 􏼁

P2
8

+
6ψ2

4 􏽥h
2

− 1􏼒 􏼓 35∆2
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− 48∆2 + 15􏼐 􏼑 + 12ψ2
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P2
10 ,

(12)

􏽥K
⁗

(0) � −90α × 1 − 􏽥h
2

􏼒 􏼓(1 + 􏽥δ) 1 − 14􏽥h
2
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4

􏼒 􏼓
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4
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2

− 15􏼒 􏼓􏽥δ
2

+ 198􏽥h
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6

− 88􏽥h
4

− 4􏽥h
2

+ 8,

(13)

􏽥f � −0.75α × 1 − 􏽥h
2

􏼒 􏼓(1 + 􏽥δ) 1 − 14􏽥h
2

+ 21􏽥h
4

􏼒 􏼓

− 0.05β ×(1 + 􏽥δ) 315􏽥h
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− 525􏽥h
4

+ 225􏽥h
2

− 15􏼒 􏼓􏽥δ
2

+ 198􏽥h
6

− 258􏽥h
4

+ 234􏽥h
2

− 30􏼒 􏼓􏽥δ − 112􏽥h
6

− 88􏽥h
4

− 4􏽥h
2

+ 8􏽥x
5

+ o 􏽥x
5

􏼐 􏼑

� χ􏽥x
5

+ o 􏽥x
5

􏼐 􏼑.

(14)

From the correspondence between the values of the
critical parameter 􏽥δ and 􏽥h in Figure 10, the relationship
between the nonlinear coefcients χ and the critical pa-
rameter 􏽥δ and 􏽥h can be further obtained, as shown in
Figure 10. It can be seen that for diferent values of β and
critical parameters 􏽥δ and 􏽥h, the nonlinear coefcients χ show
increasing and then decreasing characteristics, and when 􏽥δ
and 􏽥h are larger, the nonlinear coefcients χ are negative,
which is not allowed to occur in practical applications.

When 􏽥K
″
(0) � 0, a further derivative of equation (10) is

required in order to perform a Taylor series expansion of the
dimensionless restoring force 􏽥f. Te third-order derivative
􏽥K
‴ and fourth-order derivative 􏽥K

⁗ and 􏽥K
⁗

(0) can be
further derived, as shown in equations (12)–(14). Further
combining equations (11) and (14), the dimensionless re-
storing force 􏽥f at 􏽥x � 0 can be expanded in a ffth-order
Taylor series, as shown in equation (15).

In summary, when considering diferent softening cubic
stifness coefcients β, we can obtain four diferent sets of
optimal parameters for the QZS device as follows: β � 0.05,
α � 0.542, 􏽥h � 0.108, 􏽥δ � 2.66, χ � 0.1640; β � 0.25,
α � 0.826, 􏽥h � 0.099, 􏽥δ � 1.35, χ � 0.3076; β � 0.5,
α � 1.015, 􏽥h � 0.109, 􏽥δ � 1.03, and χ � 0.4120; and β � 0.75,
α � 1.148, 􏽥h � 0.107, 􏽥δ � 0.88, and χ � 0.4714.

4. Dynamic Analysis of the QZS Device under
Optimal Parameter

4.1. Comparison of Exact and Approximate Expressions.
Figure 11 shows the comparison curves between the exact
expression of the dimensionless restoring force 􏽥f and the ffth-
order Taylor series expansion for four diferent sets of opti-
mization parameters. It can be seen that the ffth-order Taylor
series expansion fts poorly at the end of the compression
stroke of the device, and the error between the approximate
expression and the exact expression increases with the increase
of the displacement 􏽥x of the QZS system. When β � 0.05, the
ffth-order Taylor series expansion fts best, and along with the
increase of β, the ffth-order expansion fts gradually worse, and
when the dimensionless displacement 􏽥x is less than 0.05, it fts
well for diferent values of β.

4.2. Force and Displacement Transmissibility. Assuming that
the device has viscous damping in the vertical direction,
when a simple harmonic force excitation is applied to the
isolated object or a displacement excitation is applied to the
foundation, the equation of motion can be derived as

mx
″
(t) + cx

′
(t) + f � F cosωt,

m€z(t) + c _z(t) + f � mω2
Ze cosωt,

(15)
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Figure 10:Te relationship curve between the nonlinear coefcient χ and the values of critical parameters 􏽥δ and 􏽥h: (a) β � 0.05, (b) β � 0.25,
(c) β � 0.5, and (d) β � 0.75.
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By dimensionless processing: 􏽥f � f/(4k2
����������
a2 + b2 + h2

√
),

􏽥x � x/
����������
a2 + b2 + h2

√
, 􏽥F � F/(k2

����������
a2 + b2 + h2

√
), 􏽥Ze � Ze/����������

a2 + b2 + h2
√

, 􏽥z � z/
����������
a2 + b2 + h2

√
, Ω � ω/ω0, ω0

2 � k2/m,
and 2ξ � cω0/k2, the equations can be further derived as

􏽥x
″
(τ) + 2ξ􏽥x

′
(τ) + 4χ􏽥x

5
(τ) � 􏽥F cos(Ωτ), (16)

􏽥z
″
(τ) + 2ξ􏽥z

′
(τ) + 4χ􏽥z

5
(τ) � Ω2 􏽥Ze cos(Ωτ). (17)

Assuming the so-called T-periodic solutions 􏽥x(τ) �

A cos(Ωτ + θ) and 􏽥z(τ) � 􏽥Z cos(Ωτ + θ), then applying the
harmonic balance method to equations (16) and (17), the
following equations can be derived as

−Ω2A +
5
2
χA

5
􏼒 􏼓

2
+(−2ξAΩ)

2
� 􏽥F

2
, (18)

−Ω2 􏽥Z +
5
2
χ 􏽥Z

5
􏼒 􏼓

2
+(−2ξ 􏽥ZΩ)

2
� Ω4 􏽥Ze

2
. (19)

Note that the dimensionless force transmitted to the
isolated structure by the QZS system is 􏽥ft � 2ξ􏽥x′(τ)+

4χ􏽥x5(τ). Assuming 􏽥ft � 􏽥Ft cos(Ωτ + θ) and 􏽥x(τ) � A cos
(Ωτ + θ) and expanding 4χ􏽥x5(τ) into Fourier series, it can
be obtained as 􏽥Ft

2
� (5/2χA5)2 + (2ξAΩ)2. Combined with

equation (19), the force transmissibility TF can be further
deduced as

TF �
􏽥Ft

􏽥F
�

|A|

����������������

5/2χA
4

􏼐 􏼑
2

+(2ξΩ)
2

􏽱

􏽥F
. (20)

Te conventional QZS system consists of a vertical
spring connected at point O with two oblique springs, as
shown in Figure 12 [33, 42]. Te force transmissibility of
conventional QZS system TF was given in equation (21)
where χ � 1.6459 was used at β � 0. When considering
β � 0, we can also obtain a set of optimal parameter for the
QZS device from equation (2) as follows: α � 1, 􏽥h � 0.447,
􏽥δ � 0.876, and χ � 1.0805

TF �
􏽥Ft

􏽥F
�

|A|

����������������

3/4χA
2

􏼐 􏼑
2

+(2ξΩ)
2

􏽱

􏽥F
. (21)

Similarly combining equation (19), the relative dis-
placement transmissibility TZ � 􏽥Z/􏽥Ze can be further derived
as

−Ω2TZ +
5
2
χ 􏽥Ze

4
TZ

5
􏼒 􏼓

2
+ −2ξTZΩ( 􏼁

2
� Ω4. (22)

Te relative displacement transmissibility of conven-
tional QZS system TZ tra was given in equation (23) where
􏽥Ze � 0.0449 was used at β � 0 [42].

−Ω2TZ +
3
4
χ 􏽥Ze

2
TZ tra

3
􏼒 􏼓

2
+ −2ξTZ traΩ( 􏼁

2
� Ω4. (23)

Based on equations (18) and (20), the force trans-
missibility TF of the QZS system and the equivalent linear
system is plotted for the four diferent sets of optimal pa-
rameters, as shown in Figure 13. As can be seen from
Figure 13, compared to the equivalent linear system, the
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Figure 11: Te dimensionless vertical force 􏽥f and ffth-order Taylor approximation expansion: (a) β � 0.05, α � 0.542, 􏽥h � 0.108, and
􏽥δ � 2.66, (b) β � 0.25, α � 0.826, 􏽥h � 0.099, 􏽥δ � 1.35, and χ � 0.3076, (c) β � 0.5, α � 1.015, 􏽥h � 0.109, 􏽥δ � 1.03, and χ � 0.4120, and (d)
β � 0.75, α � 1.148, 􏽥h � 0.107, 􏽥δ � 0.88, and χ � 0.4714.
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Figure 12: A three-spring model of a conventional QZS
mechanism.

12 Structural Control and Health Monitoring



quasi-zero-stifness system with optimal parameters has
a wider isolation frequency range and a lower amplitude of
vibration, which can isolate lower-frequency vibrations. For
the QZS system, as the excitation amplitude 􏽥F decreases or
the nonlinear coefcients χ decreases, the maximum value of
the force transmissibility and the corresponding resonant
frequency decrease, resulting in better isolation performance
compared to the equivalent linear system.

As shown in Figure 14, the force transmissibility of the
proposed QZS system and the corresponding conventional
QZS system are plotted for two amplitudes of force exci-
tation based on equations (20) and (21). It is easy to fnd that
the proposed QZS system has a lower amplitude, a smaller
isolation start frequency, and a larger isolation frequency
range compared with the conventional QZS system and
equivalent linear system, and the isolation performance
becomes better as the amplitude of force excitation
decreases.

Based on equation (22), the relative transmissibility
TZ of the QZS system and the equivalent linear system is
plotted for two diferent sets of parameters, as shown in
Figure 15(a). One set of parameters is the optimal pa-
rameters when the nonlinear coefcient χ � 0.1640, and
the other one is the one for the QZS system when 􏽥h � 0.1
without considering the nonlinear coefcient β. It is worth
noting from Figure 15(a) that when the nonlinear co-
efcient χ � 0.1640, the maximum value of relative
transmissibility under harmonic excitation conditions

disappears, which gives the QZS system with optimal
parameters better low-frequency vibration isolation
performance than the QZS system without considering
the nonlinear coefcient β and the equivalent linear
system.

Figure 15(b) shows a comparison of the relative dis-
placement transferability between the proposed QZS system
and the corresponding conventional QZS system under the
same damping and excitation, 􏽥Ze � 0.0449 and β � 0. It can
be seen that the proposed QZS system has a better vibration
isolation performance than the conventional QZS system
due to the construction of the device with two sets of
symmetrically arranged precompressed tilting springs,
which further optimizes the mechanical properties of the
QZS system.

5. Dynamic Experiments of the QZS Device

Although considering the nonlinear coefcient of the tilted
precompression springs can optimize the stifness charac-
teristics of the QZS system and thus improve the vibration
isolation, the nonlinear springs are not readily available on
the market, so we frst manufactured the proposed device
using linear springs to test and evaluate the vibration iso-
lation performance of the QZS system, as shown in
Figure 16(a). Figure 16(b) shows the device to remove the
negative stifness system and simulate the equivalent linear
system with positive stifness springs.
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Figure 13: Force transmissibility of the QZS system and equivalent linear system with the damping coefcient of 0.05: (a) comparison of
nonlinear systems with diferent optimal parameters when 􏽥F � 0.01, (b) partial enlargement of (a), (c) comparison of nonlinear systems with
diferent values of 􏽥F when χ � 0.1640, and (d) partial enlargement of (c).
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Equivalent linear system
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Figure 15: Relative displacement transmissibility of the proposed QZS system, the corresponding conventional QZS system, and the
equivalent linear system: (a) ξ � 0.05, and β≠ 0 and (b) ξ � 0.026, β � 0, and 􏽥Ze � 0.0449.
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Figure 16: Te QZS device and experimental model design: (a) the shaking table test of the QZS system: (1) the four degree of freedom
shaking table, (2) the QZS device, (3) the isolated object, (4) four accelerometers, (5) INV-3602A signal acquisition system, and (6) computer
for data acquisition and (b) the shaking table test of the equivalent linear system.
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Figure 14: Force transmissibility of the proposed QZS system and the corresponding conventional QZS system with ξ � 0.05 and β � 0.
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Te Frame diagram of the shaking table experiment
platform is shown in Figure 17. Te accelerometers are
arranged on the shaking table and the isolated object, and the
picked up acceleration signal is collected by the INV-3602A
signal collector and subsequently processed by the Coinv
DASP V10 software. To compare the vibration isolation
performance of the QZS system and the equivalent linear
system, displacement excitations were set in the frequency
ranges of 3Hz, 4Hz, 5Hz, 6Hz, 8Hz, 10Hz, 12Hz, 15Hz,
17Hz, 21Hz, and 25Hz, all with an excitation amplitude of
0.4mm and a sampling frequency of 1024Hz.

Te root-mean-square value of the obtained time-domain
displacement signal is used as the corresponding excitation
amplitude and response amplitude, and the absolute dis-
placement transmittance expressed in decibels (dB) is further
obtained by the ratio of the two, as shown in Figure 18(a).Te
stifness of the equivalent linear system in the experiment is
k2 � 18572N/m, the load mass is 7.5 kg, and the resonant
frequency can be obtained by ω0 � (k2/m)0.5/2π � 7.92Hz.
Based on the maximum value of the experimental displace-
ment transmissibility of 19.95 dB, the damping ratio of the
linear system can be obtained as ξ � 0.045, and the theoretical

Accelerometers

Isolated object

Accelerometers

Positioning bolts

Shaking Table

Figure 17: Frame diagram of the shaking table experiment platform.
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Figure 18: Te experimental and theoretical displacement transmissibility curves of the QZS system and the equivalent linear system: (a) ω
as the horizontal coordinate and (b) Ω as the horizontal coordinate.
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displacement transmissibility of the equivalent linear system
is further obtained, as shown in Figure 18(b).

Te dimensionless vertical force in the dynamical analysis of
the proposed QZS system uses 􏽥f � 2.051􏽥x3, which is obtained
by ftting the restoring force curve under the experimental
parameters. Te experimental displacement excitation ampli-
tude of 0.4mm is dimensionlessly treated as 􏽥Ze � 0.00148, and
the theoretical displacement transmissibility of the QZS system
can be further obtained, as shown in Figure 18(b).

When the harmonic excitation amplitude is 0.4mm, the
absolute displacement transmissibility of the QZS system has
no peak value compared to the equivalent linear system and
has a smaller vibration isolation starting frequency and
a larger vibration isolation frequency range. Te absolute
displacement transmissibility shown in Figure 18 demon-
strated the vibration isolation advantage of the proposed
QZS system with respect to the equivalent linear system.

6. Conclusions

A new isolation device with spring systems has been proposed
to improve vibration isolation performance by achieving
quasi-zero-stifness characteristics at the static equilibrium
position and enlarge the QZS range through the optimal
parameter design. Te main conclusions are as follows:

(1) Te static characteristics of the isolation device were
theoretically studied for the proposed QZS system,
and four sets of optimal stifness curves are obtained
by considering the nonlinear softening coefcient of
the preloaded springs. Tese optimal stifness curves
can enlarge the QZS range and have lower dynamic
stifness in the entire compression stroke range.

(2) By analyzing the force and displacement trans-
missibility, the results show that (a) the QZS system
with optimal parameters has a wider isolation fre-
quency range and lower amplitude of vibration
compared to the equivalent linear system and (b) the
maximum value of relative transmissibility under
harmonic excitation conditions disappears, which
gives the QZS system with optimal parameters better
low-frequency vibration isolation performance than
the QZS system without considering the nonlinear
coefcient and the equivalent linear system.

(3) Te shaking table test demonstrated the vibration
isolation advantage of the proposed QZS system with
respect to the equivalent linear system by comparing
and analyzing the experimental and theoretical ab-
solute displacement transmissibility.
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