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Condition rating of bridges is specifed in many countries since it provides a basis for the decision-making of maintenance actions
such as repair, strengthening, or limitation of passing vehicle weight. In practice, professional engineers check the textual
description of damages to bridge members, such as girders, bearings, expansion joints, and piers that are acquired from periodic
inspections, and then make a rating of the bridge condition. Te task is time-consuming and labor-intensive due to the large
amount of detailed data buried in the inspection reports. In this paper, a natural language processing- (NLP-) based machine
learning (ML) approach is proposed for automated and fast bridge condition rating, which can efciently extract the information
of defciencies in bridge members. Te proposed approach involves three major steps, say, data repository establishment, NLP-
based textual data processing, and ML-based bridge condition rating prediction. Te data repository is established with the
inspection reports of 263 concrete bridges, and in total there, are four condition levels for the bridges.Ten, the NLP-based textual
data processing approach is implemented to calculate the word frequency and the word clouds to visualize the characteristics of
bridges in diferent condition levels. Finally, four typical ML techniques are adopted to generate the predictive model of the bridge
condition rating. Te results indicate that the NLP-based ML prediction model has an accuracy of 89% and is very efcient so that
it can be used for large-scale applications such as condition rating for regional-level bridges.

1. Introduction

Te safety of bridges is signifcant to ensure the functioning
of the transportation network and economic development in
our society. During their service life, bridges are subjected to
various loads such as temperature [1], wind [2], trafc [3–5],
and earthquakes [6], which aggravate the defects of bridges.
Tese defects could cause bridge failures if they are not
detected and repaired. Wardhana and Hadipriono [7]
studied more than 500 bridge failures in the United States
between 1989 and 2000, revealing that 76% of them occurred
during operation. Xu et al. [8] analyzed 302 catastrophic

highway bridge collapses in China between 2000 and 2014,
out of which 171 were in-service bridges and had an average
service life of only 18.7 years.

Generally, periodic inspection bridge by bridge with
visual and nondestructive techniques is widely adopted
around the world, such as in the United States [9, 10], Japan
[11, 12], Korea [13], China [14, 15], Australia [16], and
European countries [17]. In practice, conditions of bridges
are rated into diferent levels [18], and the defcient bridges
are given more attention for load-carrying capacity evalu-
ation [19] or the implementation of a vehicle weight limit
[4]. Condition rating is mainly performed based on the
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textual description of damages to bridge members such as
girders, bearings, expansion joints, and piers, and then the
results are combined to obtain the overall rating of the
bridge. Te engineers for condition rating must be familiar
with relevant condition rating standards and be experienced
with bridge inspection practice. Considering that a condi-
tion rating is required for each bridge with a large amount of
textual data buried in the inspection reports, it is a time-
consuming and labor-intensive task. Terefore, it is para-
mount to propose methodologies for efcient and accurate
condition rating of bridges.

To achieve fast and automated bridge condition rating,
in the past few years, machine learning (ML) methods have
enjoyed fast development based on relevant information
from bridge database or inspection [20–22]. State-of-the-art
algorithms include artifcial neural networks (ANN)
[23–25], clustering [26, 27], decision trees (DT) [28, 29],
support vector machines [30–33], ensemble learning
methods [34–38], and unsupervised learning methods [39],
which have indicated both high accuracy and efciency.
Using the relevant historical inspection and inventory data
and records of maintenance, Huang [40] developed an ar-
tifcial neural network (ANN) model to predict bridge deck
deterioration with 11 features such as bridge age, deck
length, number of lanes, number of spans, and design load.
Te predicted condition rating showed an accuracy of
around 75%. Li and Burgueno [41] adopted several ANN
methods to evaluate bridge abutment conditions in the state
of Michigan with 8 input variables of bridge length, bridge
width, skew angle, age, annual temperature diference, av-
erage daily truck trafc, approach surface type, and struc-
tural type. Liu and Zhang [42] presented a deep learning-
based highway bridge components condition rating pre-
diction approach with 24 input features including geo-
graphic region, structural confguration, and other bridge
attributes. A case study on the condition rating of deck,
superstructure, and substructure demonstrated an accuracy
of over 85%. Xia et al. [43–45] developed a condition as-
sessment approach for network-level bridges using machine
learning-based techniques. Te maintenance scheme is also
optimized based on a deterioration model [46].

Tese studies indicate that ML-based methods have the
potential to achieve efcient and reliable condition ratings
for bridges. However, they mainly utilized the structural
parameters and geographic or environmental features as
input variables instead of directly utilizing the detailed
textual inspection data. In fact, detailed bridge inspection
reports contain rich information on bridge defciencies,
which is also usually required by bridge operators. However,
it is challenging to be directly used in the ML methods
because the textual descriptions in bridge inspection reports
are usually nonstandard and follow various writing patterns,
which hinders efective information extraction. Moreover,
the textual description in the inspection reports is actually at
the component level, while the fnal condition rating is at the
structure level. Hence, a highly nonlinear and complicated

relationship exists between the input variables (textual de-
scription) and out variables (bridge condition rating). Tese
two major issues make it difcult to build up simple ML
models for the prediction of the bridge rating.

To address similar challenges where huge amount of
textual data are presented, natural language processing
(NLP) technology has been adopted recently to convert text
data into digital vectors for better data mining. For instance,
Zhang and El-Gohary [47] utilized semantic NLP and
machine learning techniques to extract concepts from
documents such as building codes and match them to
concepts in the industry foundation classes for building
informationmodelling. Le and Jeong [48] implemented NLP
to detect data elements from text documents and used
machine learning to extract and classify roadway data items.
A human-encoded test showed that the precision and recall
rate are 92.76% and 81.02%, respectively. Liu and El-Gohary
[49] used semisupervised conditional random felds for
extracting information on defciencies and maintenance
actions from bridge inspection reports, which achieved
a precision of 94.1%. Mangalathu and Burton [50] applied an
NLP-based postdisaster damage evaluation approach using
the long short-term memory (LSTM) deep learning algo-
rithm to classify building damages after an earthquake.

Based on the above-mentioned background, the present
paper aims to develop a bridge condition rating approach
with direct textual data from inspection reports by com-
bining the NLP and ML methods. In total, 263 bridge in-
spection reports are collected, and the NLP is utilized to
process the textual data in the inspection reports to convert
them into vectors. Afterwards, they can be fed to the state-of-
the-art ML algorithms to train the condition rating pre-
dictive model. Te novelty of the present paper can be
explained in three-fold as follows:

(1) With the NLP, the textual description in the in-
spection reports can be directly used as input, and
the term frequency (TF), term frequency-inverse
document frequency (TF-IDF), and word clouds
can be obtained to illustrate the extracted in-
formation of the bridges and show a direct visuali-
zation of the reports

(2) Te ML methods can achieve high accuracy and
automated prediction of the condition rating of the
bridges, avoiding the time-consuming and labor-
intensive works by experienced engineers

(3) Since the approach is accurate, efcient, and automatic,
it can be extended in a large-scale application, such as
condition rating of the regional bridge network

A novel approach for estimating bridge condition rating
is introduced, utilizing NLP and ML techniques. Findings in
this study suggest that the NLP-based ML approach can
capture the information buried in the inspection reports and
provide a promising tool for efcient and accurate bridge
condition rating.
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2. The Proposed Method for Textual
Data-Based Bridge Condition Assessment

With tens of thousands of in-service bridges being inspected
every year, it is a challenging task to implement the con-
dition rating. Tis paper proposes an approach that com-
bines NLP with ML techniques for rapid, automatic, and
reliable condition rating. As illustrated in Figure 1, the
approach is composed of three steps, i.e., data repository
establishment, NLP-based textual data processing, and an
ML-based bridge condition rating prediction model. Herein,
the datasets are established with inspection reports of 263
highway bridges in China, which are classifed into four
condition ratings according to the condition levels, say, A, B,
C, and D, with the damage level increasing from light to
severe. Te three steps are described as follows.

In step 1, the data repository is established with in-
spection reports of a regional network of 263 bridges. Each
bridge consists of diferent components, such as the deck,
girder, bearing, expansion joints, pier, and foundation. Te
defects in each component of the bridge are recorded in the
report after inspection by engineers using visual or non-
destructive techniques. For example, textual descriptions of
concrete cracks could be expressed as “A longitudinal crack
is observed in the deck bottom plate with a width of 0.15mm
and a length of 2.2m.”Te condition rating of each bridge is
determined as the weighted sum of the damage extent of all
the components that are rated by professional engineers, and
it is extracted as the output for prediction in the ML model.
Note that the guidelines to rate the damage extent of the
components are defned by national standards.

In step 2, NLP-based textual data processing is per-
formed on the inspection reports to convert the text into
vectors, which can be directly used as the input of the ML
model. Te text in reports is preprocessed to remove re-
dundant information such as punctuation marks, excessive
space, and stop words. Two word frequency analysis pa-
rameters, i.e., TF and TF-IDF, will illustrate the extracted
information in the inspection reports. Word clouds with TF
or TF-IDF can visualize the condition-level information in
the inspection reports of bridges in diferent condition
ratings.

In step 3, the textual data processed in step 2 is fed into
the ML model to build up the predictive model of the bridge
condition ratings. Te datasets are divided into training and
testing sets as 70% and 30%, respectively. In the training
process, the grid search method is adopted to fnd the
hyperparameters with optimal performance for the ML
models, while the 10-fold cross-validation (CV) is conducted
to avoid any bias due to random sampling of the training
dataset. Ten the state-of-the-art ML models are evaluated
on the testing dataset, and four typical measures, i.e., pre-
cision, recall, F1-score, and accuracy, are used to estimate
the model performance.

3. Data Repository for the Bridge
Condition Assessment

3.1. Introduction on the Regional Network of Bridges with
InspectionReports. As mentioned above, the data repository
is established with inspection reports of a regional network
of highway bridges located in Jiangsu Province, China. A
total of 263 bridges in diferent health conditions are col-
lected, which are reinforced concrete or prestressed concrete
bridges. Te construction of these bridges ranges from the
1980s to the 2000s, and they are mostly in satisfactory
condition. Te spatial distributions of the inspected bridges
on the highway network are illustrated in Figure 2, in which
we can fnd that they are located on 8 diferent highways, say,
highways G2, G15, G25, G2501, G36, G40, G205, and S102,
where G and S represent national and provincial highway,
respectively. Tey almost cover the whole area of Jiangsu
Province, and are representative of regional bridges.

Te variations of bridge types and condition ratings are
further illustrated in Figure 3. Figure 3(a) shows the dis-
tribution of the bridges with diferent span lengths, i.e., super
long-span bridges (>150m), long-span bridges (40–150m),
medium-span bridges (20–40m), small-span bridges
(5–20m), and culverts (<5m). Among medium-span
bridges and culverts take the most and fewest percentage
of 50.57% and 6.46%, respectively. Te distribution of
bridges with condition ratings is displayed in Figure 3(b)
according to the results of the inspection reports. Among the
263 bridges, 164, 82, 13, and 4 bridges were labelled as Levels
A, B, C, and D, respectively. Note that damage of bridges
becomes severe from Levels A to D, which requires diferent
maintenance actions. Te dataset covers the major bridge
types and condition ratings, which can potentially con-
tribute to predicting the condition rating for a new bridge.

For an illustration of the bridge inspection reports, an
example is shown herein, and the textual descriptions are
used as input in the machine learningmodel.Te contents of
the inspection report are shown in Figure 4 which is
translated into English. Chapter 1 usually describes the
overview of the inspected bridges, such as the location and
type. It is followed by two chapters showing the purpose and
basis of the inspection and inspection instruments and
components, respectively. Chapter 4 introduces the in-
spection content, method, and condition rating procedures.
Chapter 5 provides the statistical analysis of the inspection
results, while Chapter 6 is focused on analysis and main-
tenance suggestions about the main typical defects. Te
conclusion is given, and the annexe shows the summary of
information on the bridges and defects. Figure 5 illustrates
an example of the translated description of defects in the
expansion joints extracted from Chapter 6 of the inspection
report. Te main defects are described, and the causes are
then explained. Suggestions are given fnally for treatment of
the defects.
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3.2. Condition Rating Rules of the Bridges. Te inspection
reports were completed after the feld inspection of the
bridges visually or with nondestructive devices, and then the
condition rating of bridges is conducted by experienced
engineers through information processing of the textual
descriptions of bridge member damages. Te engineers
should have professional knowledge about the bridges and

be familiar with relevant inspection and maintenance
standards. Note that the bridge condition rating contains
diferent levels in diferent counties; for example, 10, 4, and 5
rating levels are adopted in the United States, Japan, and
China, respectively. In this paper, the condition rating was
conducted following the Chinese code for maintenance of
highway bridges [51], where the bridge health condition is

Collection of bridge
inspection reports

Textual description of the
bridge condition

Textual data processing
via NLP

Damage description and
bridge rating classifcation

Word frequency calculation
and visualization

Word extraction into vectors
by Jieba

Removing numbers

Removing spaces

Removing stopwords

New input

Application

Bridge condition rating

Model validationOptimal hyper
parameters

Grid search

30% data for testingTextual dataset

Model training

10-fold cross validation

70% data for training

Figure 1: Framework of the proposed method.

Figure 2: Distribution of the collected bridges in Jiangsu Province, China.
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133
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(a)

D, 4
4.94%

31.18%
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C, 13
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A, 164

1.52%

(b)

Figure 3: Information about the bridges in the data repository. (a) Distribution of the bridge types. (b) Distribution of the bridge condition
ratings.

Figure 4: Contents of the inspection report.

Figure 5: Example of description of the damage in expansion joints.
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divided into fve levels, i.e., Levels 1 to 5.Te bridges of Level
1 are in good condition, bridges of Level 2 require only
minor repairs or daily maintenance to ensure their safety,
bridges of Level 3 are in a relatively poor state with many
defects, and a small number of functional diseases have
taken place, which need to be repaired accordingly. In
bridges of Levels 4 and 5, a lot of severe material defects have
appeared and the structural functionality greatly de-
teriorated, thus the safety of these bridges is questionable
and the trafc should be closed for special inspection and
major repairs. Considering that only a limited number of
inspected bridges are rated as Levels 4 and 5 in the dataset so
they are combined together and fnally four levels are
designed as the condition ratings of the bridges, say, Levels
A, B, C, and D, representing the damage level of the bridge,
increasing from light to severe. A detailed description of the
condition rating of bridges in four condition levels is pre-
sented in Table 1.

According to the current maintenance standard of
highway bridges [51], the detailed condition rating rule is
shortly described below. Note that no cable-supported
bridges are included in the 263 bridges, and the rating
method is applicable. Te condition rating of a bridge is
defned as follows:

Dr � 100 − 
n

i�1

RiWi

5
, (1)

where Dr is the fnal rating score of the bridge, ranging from
0 to 100; Ri is the rating of each member ranging from 0–5;
Wi is the weighting coefcient of each member, and satisfes


n
i Wi � 100; and n is the total number of the components.

According to the rating score, the condition is classifed into
the above-mentioned four levels as follows:

(1) Level A: Dr ≥ 88
(2) Level B: 88>Dr ≥ 60
(3) Level C: 60>Dr ≥ 40
(4) Level D: Dr < 40

Te weighting coefcient Wi of eachmember is shown in
Table 2. It can be observed that diferent members in the
bridge have diferent weights due to the load-carrying
mechanisms. Te substructures such as abutment, pier,
and foundation have the highest weighting coefcient, fol-
lowed by the main and ordinary load-bearing members in
superstructures. In addition, the rating criterion of each
member Ri is also given in Table 3, which is determined
according to the defect condition that is evaluated by ex-
perienced engineers. Te specifc rule actually involves three
steps. First, the rating of the member is determined
according to the observed defects and is rated as 0, 1, and 2
based on the degree of the defects (from small to big and/or
few to many and/or light to severe); then the rating is further
modifed considering the efect of the member defects on the
structural function, which is divided into three levels, say,
no, or unimportant efect, small or secondary efect, and big
or important efect. After the combination of the two steps,
the rating is again modifed to refect the time-dependent

evolution and development of the defects. If the defects are
stable, the rating score will be minus 1; if the defects develop
fast, then the score will be increased by 1; otherwise, if the
defects develop slowly, the score keeps the same. Finally, the
score of the member ranges from 0 to 5, representing the
member in perfect, good, fairly, poor, and dangerous con-
ditions, respectively. In summary, this rating procedure is
very complicated and requires lots of prior professional
knowledge to complete this task, thus, it will be time-
consuming and labor-intensive.

4. NLP-Based Textual Data Processing and
Information Extraction

4.1. NLP-Based Processing of the Textual Data. Te bridge
reports in the dataset are written in human language, so they
are usually very long to include as much information as
possible. Only experienced engineers can extract key in-
formation from the report. In order to develop fast and
automatic predictive models for condition rating, a reliable
information extraction method is required to process a large
amount of textual description data in the reports. Herein, we
adopted NLP to conduct this task, in which NLP refers to
transforming human language into machine language that
computers can process.

Te NLP process involves tasks such as automatic in-
formation retrieval, text and speech processing, and lan-
guage translation. NLP methods fall mainly into three
categories, which are rule-based, statistics-based, and ma-
chine learning-based. NLP in early times are usually based
on hand-crafted rules in information extraction from a large
amount of textual data [52]. Te common rules are usually
related to syntax or semantics, which refer to grammar and
meaning, respectively. Statistics-based NLP methods utilize
probability on sequences of words, which usually uses TF
and TF-IDF as measures in the framework. ML-based NLP
makes use of algorithms that learn from input textual data
and focus on the most common patterns in the data.

In this paper, NLP is used to analyze the lexical and
grammatical structure on the basis of text in the reports and
then convert the whole text into discretized word vectors. To
this end, the following preprocessing procedures are con-
ducted on the text data in the reports: (1) removing
punctuation marks such as periods, commas, and brackets;
(2) removing excessive space; and (3) removing stop words
such as articles, conjunctions, pronouns, and prepositions.
By removal of these terms, little information is lost, and
more focus can be given to the important words. In addition,
the size of the dataset can be reduced which saves much
training time in the next step. A few typical examples are
demonstrated in Table 4.

It is observed that the stop words such as “the,” “is,”
“and,” and “in” are removed with the processing procedure,
and it can avoid the mistaken separation of meaningful
descriptions. For example, the word vectors extracted by
NLP are “superstructure,” “box girder,” “diaphragm,”
“vertical crack,” “diagonal crack,” “wet joints,” “transversely
cracked, and “eforescence” in condition Level B, which can
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correctly represent the information in the original textual
descriptions.

4.2. Word Vectorization and Frequency Analysis. After
preprocessing of the text datasets, the textual descriptions
are converted to word vectors that can be directly fed into
the ML algorithms, and also, the word frequency analysis
can be conducted to obtain the frequently used words. Here,
two measures are adopted to refect the importance of words
in the textual data of inspection reports, i.e., TF and TF-IDF.
Term frequency (TF) is defned as the frequency of a word
that occurs in the text, which refects its importance and is
expressed as

TF(w, d) �
count(w, d)

size(d)
, (2)

where count(w, d) represents the times of a word w occurs
in a text d; and size(d) represents the total number of words
in text d.

It can be seen from equation (2) that a word will have
a large TF value if it often occurs in the report. However,
some words that are not so relevant to the defects of the
member will also have a large TF value, e.g., the words about
themember types will also have a high TF value. To solve this
problem, a new index, inverse document frequency (IDF), is
proposed to measure the informativeness of a word w, i.e.,

IDF(w, D) � log
N

df(w, D)+1
, (3)

where N represents the total number of documents in the
data repository; and df represents the total number of a word
in the document set D.

Evidently, the more common a word is in the document,
the larger the denominator, the smaller the IDF, and the
closer it gets to zero. Ten, the index TF-IDF is the mul-
tiplicative value of TF and IDF as follows:

TF − IDF(w, d, D) � TF(w, d) · IDF(w, D). (4)

It can be seen that TF-IDF is proportional to the number
of occurrences of a word in the document and inversely
proportional to the number of occurrences of the word in

the entire language. Terefore, TF-IDF tends to flter out
common words and retain important ones. Compared with
TF, which sometimes is not enough to measure the im-
portance of a word in the report, TF-IDF has the advantage
of being simple, fast, and easy to understand.

After the vectorization of the bridge reports and cal-
culation of the TF and TF-IDF measures, we can obtain the
word cloud, where the key words are extracted to demon-
strate their importance. Te larger the words shown in the
word cloud, the higher TF they have. Figure 6 gives the word
clouds for the four condition Levels A, B, C, and D to make
a direct comparison between the key words in the textual
data of the four diferent levels. It is illustrated that the
frequent words are highly related to the health condition of
the inspected bridges regarding the existing defciencies,
which means the information on bridge defciencies can be
efciently captured and visualized with the NLP. Note that
though the bridge inspection reports were in Chinese, the
proposed approach is also applicable to inspection reports in
other languages.

In addition, the frst 10 words in the four condition levels
ranked according to their TF values and TF-IDF values are
also analyzed herein, which are listed in Tables 5–8. It is
noticed that in bridges with condition Level A (Table 5), the
bridge component names such as “deck,” “superstructure”
and “substructure” appear the most, with TF values of 1.45,
0.99, and 0.99, respectively. Te top TF-IDF values of 0.426
and 0.413 belong to “inspection” and “deck.” In comparison,
words describing the bridge defciency appear less fre-
quently, and “crack” has TF and TF-IDF values of 0.98 and
0.244, respectively. However, in bridges with condition Level
B (Table 6), words that describe the bridge defciency be-
come more in the data, e.g., “crack” and “damage”, re-
spectively, have TF values of 3.05 and 2.83, which are also the
top two most frequent words. Te top three words ranking
following the TF-IDF values are “rebar rusting,” “damage,”
and “crack,” whose TF-IDF are 0.427, 0.413, and 0.409,
respectively.

In Table 7, the two most frequent words are “damage”
and “crack,” whose TF values are 3.08 and 2.85 and TF-IDF
values are 0.421 and 0.358, respectively. It is found that the
frequency of words describing defciencies obviously in-
creased in Levels B and C compared with Level
A. Furthermore, for bridges with Level D (Table 8), the TF
values for “cracking” and “crack” reach 8.75 and 8.00, and
the corresponding TF-IDF values are 0.567 and 0.487. Te
TF and TF-IDF values for other words describing de-
fciencies are also very high. For example, the TF values are
6.50, 5.75, and 5.00 for “rebar rusting,” “damage,” “exposed
rebar,” etc.

In general, it is observed that words of bridge member
names are most frequent in Level A, while words describing
bridge defects such as “crack” and “damage” appear fewer
times. In comparison, the words of bridge defciency are
more frequent in bridges of the other three condition levels.
Te frequent words describing defects observed in Level D
clearly stand out. However, Levels B and C can hardly be
separated due to the close frequency of words representing
defects with TF or TF-IDF. Te tabulated word frequencies

Table 2: Weighting coefcient Wi of each member.

Unit Member Weighting
coefcient

Superstructure

Main load-bearing member 20
Ordinary load-bearing

member 5

Bridge deck system 11
Bearing 3

Substructure

Abutment and foundation 23
Pier and foundation 24
Foundation scour 8

Regulating structures 3
Wing wall 1

Slope 1
Others Others 1
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ofer a comprehensive overview of the damages across all
bridges at each level. It presents an integrated perspective on
the words associated with the condition of the bridges.
However, it cannot aid in identifying the damage level of
each specifc bridge. Terefore, the TF-IDF of the inspection
report for each bridge is utilized as the input in the machine
learning model for the prediction of the condition rating of
the bridges.

5. Adopted Machine Learning Techniques

Four commonly used algorithms, i.e., DT, SVM, RF, and
GBRT, are employed to build up accurate and reliable
prediction models for the condition rating of bridges. A brief
introduction of the backgrounds is frst presented herein.

5.1. Decision Tress (DT). DT is a tree-structured model that
can be used for both classifcation and regression problems
[53]. A DT is generally made up of tree nodes and directed
edges. Generally, there are three kinds of nodes in a DT, i.e.,
a root node, several internal nodes, and several leaf nodes.
Te decision process of the model starts from the root node,
where a certain feature of the sample will be tested and split
to the child internal nodes according to the results. Te
sample is tested and split recursively until it reaches the leaf
node, which is taken as the fnal decision result. Te path
from the root node to each leaf node corresponds to a de-
cision path. According to the split criterion, diferent al-
gorithms for building DT can be used. Here, the
classifcation and regression tree (CART) algorithm which is
based on the mean square error is adopted. Supposing the
input space can be divided into N subspaces R1,R2, . . . ,RN,
the DT model can be expressed as

y � fDT(x),

� 
N

n�1
cnI x ∈ Rn( ,

(5)

where x is the input variables; I(·) is the indicator function;
and cn is the prediction value by the nth leaf node.

Moreover, to avoid the over-ftting issue, tree pruning
should be also carried out using some specifc loss function
to make the tree simple and robust. Te major model pa-
rameters are the maximum depth of the tree; maximum leaf
nodes; minimum samples for split; minimum samples of leaf
node; etc.

5.2. SupportVectorMachine (SVM). Support vector machine
(SVM) is a kind of supervised ML method proposed by
Vapnik with colleagues at AT&T Bell Laboratories [54]. In
essence, the input variables are mapped to a high-
dimensional feature space by nonlinear transformation,
and then a hyperplane is found in the space for linear
classifcation or regression. Tis mapping process generally
adopts the kernel function method. Te specifc learning
strategy of SVM is to maximize the left and right data in-
terval of the hyperplane, which can be abstracted into the
mathematical problem of solving convex quadratic pro-
gramming, and the learning algorithm of SVM is the op-
timization algorithm of solving convex quadratic
programming. Te main parameters are parameters of
kernel function and penalty coefcient in optimization.
Taking the binary classifcation problem as an example, the
SVM model can be defned as

y � fSVM(x),

� βTx − b.
(6)

where β and b denote the normal vector and the bias
constant from zero, respectively.

5.3. Random Forest (RF). Te DT and SVM, or some other
supervised learning methods, are actually individual-type
algorithms, which only generate a single predictive model. In
ML, there are also ensemble learning methods that can
generate several predictive models and then combine them
into one according to some rules, which has been proven to
be obviously superior to individual learning methods. RF is
one typical ensemble method that belongs to the bagging
family [55]. It takes advantage of two powerful techniques,

Table 3: Rating criterion Ri of each member in the bridge.

Defect status and scale Combined rating

Defect degree and scale Degree
Small⟶ big
Few⟶ many
Light⟶ severe

Scale 0 1 2

Efect on the structural function
No, unimportant 0 0 1 2
Small, secondary +1 1 2 3
Big, important +2 2 3 4

Combination of the above two evaluations — 0 1 2 3 4

Modifcation on the defect development
Stable −1 — 0 1 2 3

Develop slowly 0 0 1 2 3 4
Develop fast +1 1 2 3 4 5

Final condition rating result 1 2 3 4 5

Structural Control and Health Monitoring 9
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i.e., bootstrap and random feature selection. At every step of
building a tree, N samples are randomly selected as a subset
with bootstrap from the entire database, and K features are
randomly selected and used as the split node to build a DT
with the subset. After several (or M) steps, one obtains M

DTs from the above procedure, and the fnal output is the
average of all the outputs by the M trees as follows:

y �
1

M


M

i�1
fDT,i(x), (7)

where fDT,i(·) is the weak learner by the DTmethod at step
i≤M. In addition to the original parameters of DT, the
number of trees is an extra yet important parameter.

5.4. Gradient Boosting Regression Tree (GBRT). GBRT is
another family of ensemble learning method [56], which is
also developed based on the DT method. Unlike RF which
builds single predictive models in parallel using Bootstrap, it
is a boosting family which generates a single predictive
model in sequence according to the model performance at

(a) (b) (c) (d)

Figure 6: Word clouds for the four condition levels of the bridges. (a) Level A. (b) Level B. (c) Level C. (d) Level D.

Table 5: Word frequency and TF-IDF values for the top 10 fre-
quent words in bridges with condition Level A.

Words Frequency TF Words TF-IDF
Deck 237 1.45 Inspection 0.426
Superstructure 163 0.99 Deck 0.413
Substructure 163 0.99 Found 0.378
Crack 160 0.98 Substructure 0.365
Cracking 158 0.96 Expansion joints 0.307
Damage 148 0.90 Cracking 0.255
Expansion joints 143 0.87 Damage 0.245
Deck bottom
plate 113 0.69 Crack 0.244

Longitudinal 111 0.68 Superstructure 0.231

Lateral 108 0.66 Deck bottom
plate 0.203

Table 6: Word frequency and TF-IDF values for the top 10 fre-
quent words in bridges with condition Level B.

Words Frequency TF Words TF-IDF
Crack 250 3.05 Rebar rusting 0.427
Damage 232 2.83 Damage 0.413
Rebar rusting 207 2.52 Crack 0.409
Concrete 167 2.04 Exposed rebar 0.351
Cracking 159 1.94 Cracking 0.276
Exposed rebar 152 1.85 Concrete 0.258
Deck 128 1.56 Deck 0.240
Lateral 111 1.35 Vertical 0.239
Vertical 104 1.27 Found 0.214
Longitudinal 90 1.10 Expansion joints 0.201

Table 7: Word frequency and TF-IDF values for the top 10 fre-
quent words in bridges with condition Level C.

Words Frequency TF Words TF-IDF
Damage 40 3.08 Damage 0.421
Crack 37 2.85 Crack 0.358
Deck bottom
plate 31 2.38 Slab bridge 0.354

Slab bridge 26 2.00 Deck bottom
plate 0.354

Cracking 25 1.92 Cast-in-place 0.299
Deck 24 1.85 Exposed rebar 0.272
Lateral 23 1.77 Deck 0.265
Cast-in-place 21 1.62 Cracking 0.256
Concrete 20 1.54 Expansion joints 0.231
Exposed rebar 20 1.54 Lateral 0.212

Table 8: Word frequency and TF-IDF values for the top 10 fre-
quent words in bridges with condition Level D.

Words Frequency TF Words TF-IDF
Cracking 35 8.75 Cracking 0.567
Crack 32 8.00 Rebar rusting 0.498
Rebar rusting 26 6.50 Crack 0.487
Damage 23 5.75 Exposed rebar 0.428
Exposed rebar 20 5.00 Vertical 0.386
Vertical 18 4.50 Damage 0.381
Eforescence 16 4.00 Eforescence 0.342
Lateral 15 3.75 Lateral 0.218
Longitudinal 9 2.25 Box girder 0.171
Spalling 8 2.00 Longitudinal 0.137
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every step.Te initial database is used to train a single model,
and then each sample in the database will get a weight
according to the prediction accuracy of this model. Te
weighted new dataset will be used to train a newmodel in the
next step. After several steps, one attains several single
models and each model will have a weight computed based
on its loss function. Te fnal result is the weighted sum of
these models, i.e.,

y � 
M

i�1
αifDT,i(x)c, (8)

where αi is the weight of the weak learner at step i≤M.
Similar to RF, a major parameter for GBRT is the number of
trees. In addition, a learning rate c ∈ [0, 1] is usually
employed to overcome the overftting issue.

6. Implementation and Application of the
Proposed Method

To implement the state-of-the-art machine learning models,
i.e., the single learner DT, SVM, and the ensemble learner
RF, GBRT, the whole database is frstly divided into 70%
training and 30% testing sets. Ten the hyperparameters are
determined for the learners. Finally, the models are adopted
on the testing sets to predict the condition rating of the
bridges.

6.1. Tuning of Hyperparameters. In the machine learning
models, hyperparameters should be specifed in advance. In
single learners like DT, key parameters include the maxi-
mum depth of the tree, the minimum samples of the leaf
node, and the minimum samples for the split. In SVM, one
important parameter is kernel, and the radial basis function
(rbf) is adopted. Another two parameters are C and gamma,
which are measures of error and curvature of the decision
boundary. Similarly, the hyperparameters are also required
in the ensemble learners, i.e., RF and GBRT, such as the
number of estimators, the maximum depth of the trees, the
minimum samples of leaf node, and the learning rate.

Inappropriate selection of hyperparameters will lead to
problems of underftting or overftting. Terefore, a strategy
is adopted as follows. Firstly, a range of parameter values are
selected based on previous experience and the grid search
method is then used to determine the value in an iterative
manner. 10-fold cross-validation is carried out to overcome
the bias induced in random sampling of the training set
[57, 58]. With this strategy, the optimal hyperparameters are
obtained as shown in Table 9.

Moreover, the learning curves of the four MLmodels are
provided in Figure 7 to consider the efects of the size of the
training data. For the training sets, the accuracy is low at the
beginning, but increases quickly and becomes stable in DT
learner. In comparison, the other three learners share
a similar trend. Te accuracy starts as high as around 1.0 but
decreases gradually before stabilizing. Tis is because
overftting usually occurs when training sets are very few.
Ten the accuracy becomes stable with the increase of

training data. On the other hand, the accuracy for the testing
sets all starts at low values, while it improves with the
number of training sets. It can be observed that the model
accuracy becomes stable when the training samples reach
around 180 (around 70% of the whole datasets). Tis verifes
that the split of the whole datasets into 70% and 30% is
reasonable.

6.2. Prediction Results and Discussion. After choosing the
hyperparameters, the prediction is carried out. Te per-
formance of the diferent machine learning models is
evaluated using a confusion matrix. Te confusion matrix is
a plot of actual versus predicted classes, in which an element
Cij is the number of actual samples known to be in class i, but
predicted as class j. It is hence clear that the diagonal and of-
diagonal elements represent the number of correctly and
incorrectly classifed samples, respectively.

Four common measures of model performance are used
for the evaluation of the prediction results. Te accuracy of
a machine learning model is defned as the ratio between the
number of correctly classifed samples and the total number
of samples. Precision is defned as the percentage of pre-
dicted samples that are correctly classifed by the learning
model, while recall rate is defned as the percentage of the
actual samples that are correctly predicted. Te higher
precision and recall rate demonstrate the better prediction
performance of the machine learning algorithm. When
precision and recall indicate the diferent performance of
models, it is difcult to compare, so the F1-score is a measure
of a model’s accuracy calculated with the harmonic mean of
precision and recall as follows:

F1 �
2 · precision · recall
precision + recall

. (9)

Te confusion matrix for training and testing sets with
the four machine learning algorithms is shown in Figure 8. It
can be seen that the DT, SVM, RF, and GBRTmodels have
an accuracy of 82%, 84%, 81%, and 89% on the testing set,
respectively. Tey all display acceptable prediction accuracy.
Te model performances on Levels A and B are usually
better than Levels C and D, which is due to the class im-
balance, i.e., there are fewer data in categories Level C and

Table 9: Final hyperparameters for the ML models.

Model Parameter Values

DT
Maximum depth of the tree 3

Minimum samples of leaf node 5
Minimum samples for split 5

SVM
Kernel rbf

C 100
Gamma 0.01

RF
Number of estimators 110

Maximum depth of the tree 4
Minimum samples of leaf node 1

GBRT
Maximum depth of the tree 3

Learning rate 0.01
Number of estimators 70
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D. Tis issue was shown in previous studies [59] to impair
the classifcation performance. Tough approaches were
investigated in machine learning felds, the fundamental
solution is to incorporate more inspection data on the more
defcient (Levels C and D) bridges.

Te results of the prediction with the four machine
learning models are summarized in Table 10. On condition
rating Level A, the F1-score of the four models are 0.88, 0.89,
0.88, and 0.93, while on Level B, the results are 0.78, 0.78,
0.76, and 0.88. Similarly, for Level C samples, F1-scores are
0.75, 0.67, N/A, and 0.40 for the four models, respectively.
Te results indicate that all models have the best perfor-
mance in category Level A, which is followed by Level B and
Level C. Tis is due to the diference in the number of
training sets. It is obvious that more training data can
generate better prediction performance.Tere are only 9 and
2 training sets in condition rating Levels C and D,

respectively, and the prediction on the testing sets is poor
compared with Levels A and B. Besides, GBRTdemonstrates
the highest F1-score in diferent rating levels, which clearly
outperforms other models. It should be noted that the
prediction results are very instructive, especially for future
work with an emphasis on the collection of inspection re-
ports of bridges in more defcient levels.

Previous studies were usually devoted to the pre-
diction of the health conditions of bridge components
such as concrete slabs [60], concrete decks [40], bridge
abutment walls [41], and the superstructure and sub-
structure [42]. While in this study, the condition rating of
the bridge structure is carried out to provide compre-
hensive guidance for stakeholders of bridges. Further-
more, a prediction accuracy of 89% is demonstrated with
the case study of 263 highway bridges, showing the ap-
plicability to more bridges.
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Figure 7: Learning curves for diferent ML methods (a) DT. (b) SVM. (c) RF. (d) GBRT.
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Figure 8: Confusion matrix for training and testing sets with diferent ML methods. (a) Training dataset: DT. (b) Testing dataset: DT.
(c) Training dataset: SVM. (d) Testing dataset: SVM. (e) Training dataset: RF. (f ) Testing dataset: RF. (g) Training dataset: GBRT. (h) Testing
dataset: GBRT.
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7. Conclusions

Condition rating of existing bridges is an essential indicator
of bridge health, which is closely connected with potential
maintenance procedures. As professional background in
inspection practice and familiarity with the relevant
maintenance standards are involved in the condition rating
process, the traditional human-based assessment is often
time-consuming and laborious.

Tis paper explores a rapid condition rating method
using a machine learning model based on textual inspection
data of bridges. Te NLP technique is used to extract the
information in the text description of the bridge inspection
reports and convert them into digital vectors. Te meth-
odology is verifed with the condition rating of 263 highway
bridges of diferent types and health conditions in Jiangsu,
China.Te main contributions in this study are summarized
as follows:

(1) Automatic information extraction is achieved using
an NLP-based technique, i.e., word vectorization,
which can capture the most relevant features of the
existing bridge defciencies buried in the enormous
and complicated textual data in inspection reports.
Tis has been clearly demonstrated with the word
clouds of the bridges in four condition rating levels.

(2) Based on knowledge about bridge defciencies and
inspection practice, TF and TF-IDF can illustrate the
hidden infuence of important words in the condi-
tion rating of bridges. With the measures of the top
10 frequent words, the abundant textual data in
inspection reports are adaptively correlated with the
condition rating of the bridges. Tis “explainable”
nature of the approach can provide guidance for
inspectors to improve efciency in the inspection
practice.

(3) Te ML-based approach utilizes the valuable while
nonstandard textual information in the bridge

inspection report, to achieve efcient and accurate
bridge condition rating prediction.Tis is signifcant
as the details of component-level defects are in-
telligently exploited to realize bridge-level
assessment.

(4) With state-of-the-art machine learning models,
a close agreement is obtained between the prediction
and the actual condition ratings. Te results indicate
that the most accurate model in this study, i.e.,
GBRT, can reach an accuracy of 89% on the
testing sets.

Te proposed method saves much time and labor in
condition rating and can signifcantly complement the
traditional human-based assessment. It is also worth noting
that the proposed method uses words and frequencies as
input and can be applied to inspection reports in diferent
languages. A limitation is the imbalanced dataset with fewer
samples in class such as Level D, which may afect the
performance of the trained model. Te future study will
focus on the collection of bridges with severe damage
conditions. With rapid and reliable condition ratings, ef-
fective maintenance actions can be more wisely focused on
bridges with poor health conditions.
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