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Semiactive seismic control requires appropriate control laws that dictate the behavior of seismic suppression devices based on
measurements and feedback during an earthquake. Optimal control parameters should be determined in real time to achieve high
performance. Te initial ground motion characteristics of an earthquake substantially afect control performance. In this study,
a genetic algorithm (GA)-optimized long short-term memory (LSTM)-based intelligent control system (hereafter denoted
GA-LSTM system) for obtaining optimal control parameters for a semiactive variable-stifness isolation system was proposed.
First, the LSTM module classifes earthquakes as near-fault or far-feld events to determine the optimal control strategy. Second,
earthquakes from a global database are analyzed to determine a fuzzy inference surface for the optimal parameters of the
earthquake suppression system. Both numerical simulations and shaking table experimental results indicated that the proposed
GA-LSTM system exhibited superior isolation displacement and superstructure acceleration suppression for both near-fault and
far-feld earthquakes when compared with other control techniques.Te proposed intelligent control system is highly efcient and
could reliably protect structures from earthquakes with any ground motion characteristics.

1. Introduction

Countries located at tectonic plate junctions and seismic
belts experience thousands of earthquakes annually. Such
earthquakes threaten their economies and human life.
Numerous researchers have studied earthquake disaster
prevention techniques, including seismic design codes,
structural reinforcement systems, and postdisaster re-
habilitation strategies, to reduce the adverse impacts of
earthquakes. Earthquake early warning systems (EEWS)
have been developed in numerous countries in recent years.
Te EEWS concept was frst proposed by Nakamura et al. in
1988, who applied it to Japanese railways [1]. Tey proposed
implementing two-stage alarms that can indicate the arrival
of P- and S-waves and thus stop trains, reducing damage.
EEWSs have now been implemented in various industrial
felds. To establish an EEWS, a robust earthquake

monitoring network must frst be developed. Bakun et al.
and Espinosa-Arandaet al. designed EEWSs in the
United States and Mexico, respectively, by arranging nu-
merous seismographs that receive signals and transmit them
to remote areas to increase the time for disaster prevention
[2, 3].

Structural control is among the most efcient seismic
protection technologies for structures or equipment and can
be realized in three diferent forms: passive, active, and
semiactive control. Each of these control methods has its own
unique characteristics, advantages, and limitations. Passive
control involves the use of materials and devices that absorb
or dissipate seismic energy without requiring external power
input. In 1976, the application of seismic isolation was uti-
lized in Somplago Viaduct of the Udine-Tarvisio freeway. By
comprising sliding devices on the piers and the rubber
bumpers between the deck and the abutment, the structure
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successfully survived under several violent earthquakes [4]. In
1999, Shape Memory Alloy Devices (SMAD) were proposed
by Castellano et al. [5].Te innovative technique for restoring
cultural heritage structure improves the seismic resistance by
prestressing the structure while not overstressing it through
the alloy’s superelastic properties. In 2000, SMAD was placed
within the insertion of vertical post-tensioned tie bars to
increase the bending resistance and to restore the damaged
masonry bell tower in Italy [6, 7]. In 2010, Ozbulut and
Hurlebaus proposed a passive control method for protecting
bridges by including an isolation device constructed from
a nickel-titanium memory alloy between bridge columns and
decks [8]; numerical simulations revealed that this device
reduced bridge deck displacement during earthquakes by
approximately 50% compared with the original isolation
equipment. In addition, studies have proposed passive fric-
tion control systems [9–12] in which structural responses are
reduced by driving friction impedance between structural
elements and passive control devices during an earthquake. In
2019, Clemente et al. proposed a seismic isolation system
made of High Damping Rubber Bearings (HDRB), and
analysis of the actual behaviors of the HDRB system was
conducted under low energy earthquakes [13]. Passive con-
trol typically involves the installation of dampers or energy
dissipation devices, and the efectiveness depends on the
characteristics of the structure, including its mass, stifness
and damping ratio. By properly designing the system,
a passive antiseismic system with energy dissipation device
can protect the structure when subjected to either a far-feld
earthquake or a near-fault earthquake. As a result, in-
frastructures such buildings, bridges, and viaducts will not be
damaged under violent earthquakes [14]. Active control
devices, such as active tunedmass dampers, active tendons, or
active bracings, are often used to mitigate the vibration of tall
buildings caused by strong winds. Te total energy of the
controlled structure is typically minimized using an opti-
mization method such as linear–quadratic–Gaussian (LQG)
control [15]. However, these control methods often have high
energy requirements, and earthquakes often destabilize
power supply systems; thus, these systems are vulnerable to
power failures. Passive and active control methods can be
integrated to derive semiactive control methods, which
typically have greater stability and performance than either
method alone. Hence, semiactive systems are widely used for
structural control. For example, in 2000, Tritchkov et al.
proposed a retractable sliding device [16] that is isolated by
a mechanical link with a two-branch elastic force-
displacement response. In 2005, Narasimhan and Nagar-
ajaiah proposed a semiactive independent variable-stifness
(SAIVS) system [17] in which an actuator is used to change
the angle of four diamond-shaped springs to adjust the
system’s stifness, improving its performance. Semiactive
control requires efciency; thus, Lu et al. [18] proposed
a least-input-energy control law for a variable-stifness
semiactive isolation system with a leverage mechanism.

Recent improvements in computing power have enabled
the rapid development and implementation of artifcial
intelligence techniques such as neural networks. Te re-
current neural network (RNN) architecture was frst

proposed by Rumelhart et al. [19]. Unlike feed-forward
neural networks, which map inputs directly to specifc
outputs, RNNs recursively backpropagate errors to update
weight values during training and are thus typically more
suitable for processing time-series data [20]. In 1997,
Hochreiter and Schmidhuber proposed an RNN with
a constant error carousel, denoted the long short-term
memory (LSTM) model, to solve the vanishing gradient
problem [21]. In 2001, Kolen and Kremer indicated that
conventional RNNs are often unsuitable for handling tasks
with long time lags. RNNs can learn from only data with
time lags of up to 10 steps between relevant input events
[22]; however, LSTM can bridge large time legs of 1000 steps
or more. LSTM has been applied for handwriting recog-
nition [23] and even for speech recognition in Google Voice
in 2015. In 2019, Pawar et al. applied an LSTM model to
nonlinear stock market dynamics [24], and in 2020, Apaydin
et al. used the architecture for the challenging task of ac-
curately estimating river fows [25].

Conventionally, the classifcation of near-fault and far-
feld earthquakes was often performed using the method
proposed by Newmark et al. [26] on the basis of the ratio of
the measured vertical and horizontal acceleration. Sub-
sequently, scholars have found that the superposition of S-
waves along the rupture direction causes energy to accu-
mulate in this direction; especially for those stations adjacent
to the fault area [27–29]. Te ground motion velocity often
has pulses due to this energy accumulation. Numerous
studies have applied various analytical methods to earth-
quake data to determine groundmotion characteristics; such
methods include wavelet analysis for near-fault ground
motion classifcation [27] and seismic hazard analysis based
on an empirically calibrated framework or a probabilistic
framework [29] for assessing near-fault earthquakes char-
acteristics. Compared with those generated by far-feld
earthquakes, signals generated by near-fault earthquakes
have higher acceleration, velocity, and displacement peaks.
Moreover, velocity pulses can often be observed in the time
history of near-fault earthquake owing to the directional
nature of fault ruptures, permanent surface displacement,
earthquake magnitude, and other phenomena [30]. Because
these pulses cause structures to undergo rapid cyclic motion
and thus receive greater energy within a shorter period,
near-fault earthquakes often engender greater structural
damage than far-feld earthquakes do.

In this study, an efcient genetic algorithm (GA)-opti-
mized LSTM control system (hereafter, denoted GA-LSTM
system) for obtaining optimal control parameters for
a semiactive leverage-type stifness-controllable isolation
system (LSCIS) was developed [31]. Te proposed intelligent
isolation system was designed following the performance-
based control strategy for precious vibration-sensitive de-
vices such as cabinets in high-tech factories or precision
instruments in hospital. A fowchart of the system devel-
opment process is presented in Figure 1. A previously de-
veloped GA-based fuzzy controller did not perform well
since it could not efectively classify near-fault and far-feld
earthquakes. Accordingly, the goal of the present study was
to extend this controller by incorporating an LSTM-based
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prediction module. Moreover, the fuzzy inference surface of
the GA-based fuzzy controller was further enhanced by
selecting representative earthquakes from a world-wide
database and classifying them as sensitive and insensitive
to control parameters. Finally, simulations and experiments
were performed to verify the performance of the proposed
GA-LSTM system. Te rest of this paper is organized as
follows. In Section 2, the seismic database and the estab-
lishment of the LSTM prediction model are presented. In
Section 3, the numerical analysis model and formula for
determining the optimal stifness of the LSCIS isolation layer
are described. In Section 4, the derivation and fuzzifcation
of the potential energy weight parameter QEp in the
GA-LSTM control law are presented. Te fuzzy surface of
the control parameters based on near-fault/far-feld (NF)
ratio, which is a parameter to defne the near-fault property
of the earthquakes, and the predicted PGA is established to
optimize the control performance. In Sections 5 and 6,
comparisons of the control performance of the proposed
GA-LSTM system with that of conventional methods
through the use of both numerical simulations and a shaking
table experiment are provided. Finally, in Section 7,
a summary of the results and the conclusions are presented.

2. LSTM Prediction Module

2.1. Data Preprocessing. In this study, the LSTM model
proposed by Hochreiter and Schmidhuber in 1997 [32] was
modifed and used to establish an earthquake ground mo-
tion prediction module. An RNN was applied to classify the
recorded ground motion time-series data to determine
appropriate control parameters before the mainshock.
Ground motion data provided by the Next Generation
Attenuation of Ground Motions Project, completed by the

Pacifc Earthquake Engineering Research Center (PEER)
were collected [33]. Te near-fault database was selected
from the seismic database compiled by Shahi and Baker in
2014 [34], which is according to the NGA project of PEER.
Te earthquake data with the epicentral distance of more
than 15 kilometers was deleted to avoid some earthquakes
with velocity pulses but low intensity, which cannot cause
large displacements to the isolation layer. Te far-feld
earthquake database screens PEER seismic data other
than those written by Shahi and Baker [34], and the epi-
center must be 20 to 40 kilometers away. Tis method is to
make the seismic data have the diference between near-fault
and far-feld. Te earthquake arrival time is typically de-
termined using the short-term average (STA) and long-term
average (LTA) criterion (hereafter STA/LTA ratio) for the
vertical acceleration signals of P-waves, which arrive earlier
than the mainshock during an earthquake, as shown in
Figure 2. STA is the average value of the acceleration signal
over 1 second before the current time step, and LTA is the
average value of the acceleration signal over 10 seconds
before the current time step. Based on the previous research
[35], the value of STA/LTA can be treated as an indicator to
determine the triggering time of an earthquake in the control
system. If the STA/LTA value exceeds a preset threshold, the
ground motion data will be recorded as an earthquake event
until the recession of the STA/LTA value. In the end, the
database was used to collect 1652 earthquake data, including
754 near-fault earthquakes, and 898 far-feld earthquakes.

In this study, the frst 3 seconds of the horizontal
acceleration record were preprocessed and used as the
input to the LSTM module. To standardize the earthquake
records acquired from various databases in the world, the
sampling frequency of all records was unifed to 50 Hz,
and the number of 3 s time-series was set to 151.

Ground motion database

New data from NGA-West2
PEER Ground Motion Database

Ground motion prediction module

Long Short-Term Memory

Near fault Far feld

First 3 sec. Signal (Horizon)
Training : 80%
Testing : 20%

First 3 sec. Signal
(Horizon & Vertical)

NF ratio PGA

Parameter optimization analysis

3D Fuzzy inference system
(axes : NF ratio, PGA, QEp)

Determinate QEp

LSCIS optimal control

GA-LSTM control law for LSCIS

Figure 1: Flowchart of the GA-LSTM control system.
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Furthermore, the amplitude of the 3 s horizontal accel-
eration record was discretized into 402 intervals of
0.005 cm/s2, as shown in Figure 3(a) to enhance the
contrast between points in the time history. To reduce the
efects of outlier data, amplitudes of 0 cm/s2 were assigned
to the interval 200, and those less than −1000 cm/s2 or
greater than 1000 cm/s2 were assigned to the intervals
0 and 401, respectively. Te output time history is dis-
played in Figure 3(b) and was determined to be an ef-
fective discretization of the data in that it could retain the
characteristics, amplitudes, and phases of the original
earthquake waves.

2.2. LSTMModule. Te LSTM module is structured with an
input data length of 151 and an embedding layer at the
beginning to reduce the dimension of the training data from
402 to 10, as shown in Table 1. Te LSTM module has 10
neurons, and all of the input and past output values are
connected to the neurons in the LSTM memory cell. Te
module includes two hidden layers with 80 and 20 neurons;
the Rectifed Linear Unit (ReLU) function serves as the
excitation function in both layers of the AI network. Finally,
because the LSTM module was designed for predicting
ground motion characteristics, the output layer scale was set
to 1 in this study, with a binary sigmoid function serving as
its excitation function. Each layer includes a dropout layer to
avoid excessive dependencies between neurons that could
cause overftting. A binary cross-entropy loss function was
selected as the loss function in this study. Approximately
80% of the input data were randomly selected as training
samples; the remaining 20% were used for testing. Each
sample comprised 151 data points and was labeled as 1 for
a near-fault earthquake or 0 for a far-feld earthquake.
Earthquakes were classifed as near-fault if the network
output was greater than or equal to 0.5 and as far-feld
otherwise.

Te training results are displayed in Figure 4; by the
80th training generation, both the accuracy and error
curves had gradually converged. Te confusion matrix for
the test dataset is presented in Figure 4(c). Te accuracy of
the LSTM module in distinguishing near-fault and far-
feld earthquakes was determined to be approximately
94%. Tese results thus indicate that the LSTM module
can classify an earthquake only 3 s after receiving an
earthquake signal, and this module is likely to be efective
for use in an intelligent control mechanism. On the basis
of the ground motion characteristics, the optimal control
parameters can be adjusted for diferent control
objectives.

3. LSCIS and Control Law

3.1. LSCIS Analytical Models. As mentioned, the intelligent
GA-LSTM system was proposed for controlling the LSCIS
[31]. Mathematical and physical models of the LSCIS are
presented in Figures 5 and 6, respectively. A lever connects
the isolation layer and a spring of constant stifness (Fig-
ure 6); the length ratio of the lever arm can be altered by
moving the pivot position. In Figures 5 and 6, ms represent
the mass of the superstructure; mb represents the mass of the
isolation layer; cs represents the damping coefcient of the
superstructure; ks represents the stifness of the super-
structure; xp(t) represents the pivot displacement; €xg(t)

represents the ground acceleration; and xs(t) and xb(t)

represent the relative-to-the-ground displacement of the
superstructure and isolation layer, respectively. In Figure 5,
kr0 denotes the initial isolation stifness when the pivot is at
the center of the lever arm (i.e., when xp � 0). ∆kr(t) is the
increment or decrement of the isolation stifness due to the
pivot displacement xp(t).

Te relationship between the stifness increment ∆kr[n]

and the pivot displacement xp[n] of the isolation layer at
time step n can be derived as follows [31]:
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Figure 2: STA/LTA triggering criterion for vertical acceleration signal.
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∆kr[n] �
2Lxp[n]

0.5L − xp[n]
2

⎡⎢⎣ ⎤⎥⎦kr0, (1)

where L is the total length of the lever. Tis equation in-
dicates that the stifness increment ∆kr[n] of the LSCIS can
be controlled in real time by changing the position of the
leverage pivot point. Conversely, if the desired stifness
increment ∆kr[n] is determined by a control law, the pivot
position to achieve this increment can be computed by
solving equation (1) as follows:

xp[n] �
L kr0 + 0.5∆kr[n] −

��������������

kr0
2

+ kr0∆kr[n]



 

∆kr[n]
,

(2)

In this study, for practical reason, the range of the pivot
point xp[n] was assumed to be between 0.5L and −0.5L, and
the corresponding range of the stifness increment ∆kr(t)

was assumed to be between −0.8kr0 and 0.5kr0.
Te dynamic equation of the LSCIS can be expressed

using the following state-space equation derived from the
Lagrange equation [18]:

_z(t) � Az(t) + B ∆ur(t) + uf(t)  + E€xg (t), (3)

where z(t) denotes the state vector,A denotes the systemmatrix,
B denotes the isolation force matrix, and E denotes the seismic
disturbance matrix. ∆ur[n] and uf(t) are the restoring force
increment and friction force of the isolation layer, respectively.
Details of matrices z(t),A, B, and E are provided as follows:
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Figure 3: Preprocessing of the database for LSTM module. (a) Intervalization process. (b) Time history of a discretized earthquake.

Table 1: Structure of LSTM module.

Model: “sequential_1”
Layer (type) Output shape Number of parameters
embedding_1 (embedding) (None, 151, 10) 4020
dropout_1 (dropout) (None, 151, 10) 0
lstm_1 (LSTM) (None, 10) 840
dense_1 (dense) (None, 80) 880
dropout_2 (dropout) (None, 80) 0
dense_2 (dense) (None, 20) 1620
dropout_3 (dropout) (None, 20) 0
dense_3 (dense) (None, 1) 21
Total number of parameters: 7381
Total number of trainable parameters: 7381
Total number of nontrainable parameters: 0

Structural Control and Health Monitoring 5



Train History
ac

cu
ra

cy

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0 10 20 30 40 50 60 70 80
Epoch

train

(a)

Train History
0.7

0.6

0.5

lo
ss

0.4

0.3

0.2

0 10 20 30 40 50 60 70 80
Epoch

train

(b)

Confusion
Matrix

Predicted
Value

Near

134 8

11 179

Near

Actual Value

Not Near

Not
Near

(c)
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A �
−M− 1C −M− 1K

I 0
⎡⎣ ⎤⎦,

z(t) �

_xs(t)

_xb(t)

xs(t)

xb(t)

⎧⎪⎪⎪⎪⎪⎨
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,

B �

0

−1/mb

0

0

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩
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,

E �

−1

−1
0

0

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

M �
ms 0

0 mb

 ,

K �
ks −ks

−ks ks + kr0
 ,

C �
cs −cs

−cs cs

 ,

(4)

where M, K, and C are the structural mass, stifness, and
damping matrices, respectively. In this study, the force term in
each time step∆t was assumed to be constant; the discrete-time
solution of equation (3) could then be obtained as follows:

z[n + 1] � Adz[n] + Bd ∆ur[n] + uf[n]  + Ed €xg [n], (5)

Ad � e
A∆t

,

Bd � A− 1 Ad − I( B,

Ed � A− 1 Ad − I( E,

(6)

whereAd, Bd, and Ed are the discrete-time matrices. z[n + 1]

is the discrete-time state vector at time step n + 1. According
to equation (5), the restoring force increment ∆ur[n] is
related to the stifness increment ∆kr[n] and can be
expressed as follows:

∆ur[n] � ∆kr[n]xb[n] � ∆kr[n]Ddz[n],

Dd � 0 0 0 1 .
(7)

Te value of uf[n] in (5) can be calculated by using the
shear balance method [18, 31] as follows:

uf[n] � min uf[n]


, uf,max sgn uf[n] , (8)

uf,max � μMg, (9)

uf[n] � − DvBd( 
− 1Dv Adz[n] + Bd∆ur[n] + Ed €xg[n] ,

(10)

Dv � 0 1 0 0 , (11)

where μ denotes the friction coefcient of the isolation layer;
M denotes the total weight of the LSCIS, including the
superstructure (M � ms + mb); g denotes gravitational ac-
celeration; uf[n] denotes the hypothetical friction force
obtained with the isolation layer in the sticking state;
sgn(uf[n]) denotes the positive or negative sign of uf[n];
and Dv denotes the confguration matrix of the support
velocity term. According to equations (8)–(10), the frictional
force uf[n] for each step can be determined, and the state
vector z[n + 1] can be further derived using equation (5).

3.2. Determination of the Optimal Value for ∆kr[n]. Te
optimal stifness increment ∆kr[n] was determined using
a control law called feed-forward predictive earthquake
energy analysis (FPEEA) [36]. In FPEEA, the optimal
stifness increment ∆kr[n] is calculated by minimizing the
energy efciency index of the system, which includes the
system kinetic energy and potential energy. Te main
concepts of the FPEEA control method are briefy described
as follows.

To determine the optimal ∆kr[n], the energy efciency
indicator J[n + 1] can be set as follows:

LSCIS model from Figure 5

Leverage pivot

Telescopic leverage arm

Isolation spring

X

Y

xb (t)

xk (t)

L/2

L/2 xp (t)

Figure 6: Physical model of the LSCIS.
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J[n + 1] � Ek[n + 1] +
R

2
∆kr[n]

2
+ QEp Ep,sup[n + 1] + Ep,iso[n + 1] , (12)

where Ek[n + 1] is the total kinetic energy of the LSCIS; R is
the weighting factor for the control force (R≥ 0); Ep,sup[n +

1] and Ep,iso[n + 1] are the potential energy of the super-
structure and the isolation layer at time step n + 1, re-
spectively; and QEp is the weighting factor for potential

energy. Te second term ((R/2)∆kr[n]2) in (12) is included
to avoid excessive changes in both stifness increments
∆kr[n] and the LSCIS leverage pivot. Furthermore, the
system kinetic energy Ek[n + 1] in equation (12) can be
expressed as follows:

Ek[n + 1] �
1
2
z[n + 1]

TD2
TMD2z[n + 1] + DMD2z[n + 1] _xg[k] +

1
2
DMDT

_xg[n] 
2
,

D � 1 1 ,

D2 �

1 0

0 1

0 0

0 0
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

(13)

where _xg[n] is the ground velocity.
Because the sampling interval is usually extremely small,

the ground velocities at step n + 1 and step n can be assumed
to be identical ( _xg[k + 1] ≈ _xg[k]), simplifying the control
calculations. Subsequently, to minimize the energy index
J[n + 1] and solve for the optimal stifness increment
∆kr,opt[n], the energy index in equation (11) can be difer-
entiated with respect to the variable ∆kr[n] and set to zero as
follows:

d(J[n + 1])

d ∆kr[n]( 
� 0. (14)

Substituting equations (12) into (14) the optimal stifness
increment ∆kr,opt[n] can be determined as follows:

∆kr,opt[n] �
− a2[n] + QEp × b3,sup + QEp × b3,iso[n] 

a1[n] + R + QEp × b2,sup[n] + QEp × b2,iso[n]
,

(15)

where the coefcients a1[n], a2[n], b2,iso[n], b2,sup[n],
b3,iso[n], and b3,sup and the other additional matrices are as
defned in Table 2.

AdT � DTAd,AdL � DLAd,B1dT � DTB1d,B1dL � DLB1dEdT � DTEd,EdL � DLEd. (16)

4. GA-LSTM Control System

Te FPEEA and GA-fuzzy control laws have been applied to
LSCIS [36, 37]. In FPEEA, the groundmotion characteristics
of an earthquake are divided into six intervals according to
their energy distributions before the arrival of the main
strike [36] to determine the potential energy weighting
factor QEp. However, as only six weighted control pa-
rameters with high degree of discreteness can be selected in
the FPEEA, the GA-fuzzy control was used to further
quantify the characteristics of near-fault and far-feld
earthquakes on the basis of a quantitative index [37]. To
adjust QEp, two parameters, namely, NF ratio and predicted
PGA, were used to establish a fuzzy surface in the GA-fuzzy
control [37].

However, these two control laws have defects. First, the
energy intervals in FPEEA have low sensitivity to ground
motion characteristics, and the GA-fuzzy control may
misclassify near-fault and far-feld earthquakes. Second, if
insufcient data are available, both the FPEEA and GA-fuzzy

control would exhibit low performance levels. Accordingly,
the GA-LSTM system, a method based on LSTM, was
proposed in this study for classifying earthquakes. More-
over, the PEER ground motion database was adopted to
analyze the “sensitivity” of earthquake events. Tat is, some
earthquake motions are sensitive to variations in QEp, and
changing QEp can improve the performance of the system;
these earthquakes were denoted “sensitive” earthquakes in
this study. Other earthquakes for which modifying the
weights did not afect system performance were denoted
“insensitive” earthquakes. Te proposed procedure was
intended to optimize the control efciency.

4.1. Earthquake Sensitivity andQEp. According to equation
(15), the weighting factor QEp is a key control parameter.
Te numerical model for the LSCIS (Figures 5 and 6) was
simulated using the system parameters listed in Table 3 to
evaluate earthquake sensitivity. Te specimen parameters
listed in Table 3 were obtained by a series of the system
identifcation procedures before the experimental
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verifcation detailed in Section 6. For the system identif-
cation of the superstructure, a 22.01 kg mass block is added
on the top of the superstructure. Acceleration and dis-
placement signals are recorded under a free vibration test,
and the natural frequency Fs of the superstructure can be
identifed as 1.98Hz through Fast Fourier Transform (FFT)
analysis. Te hysteresis loop was then drawn together with
the displacement signal to determine the stifness value ks of
the superstructure, which is approximately 3400N/m.

For identifying the parameters of the isolation layer, the
pivot of the LSCIS mechanism is fxed at the origin, and the
initial stifness value kr0 and friction coefcient μ were
calculated by drawing a hysteresis loop of the isolation layer
obtained from another free vibration test to decide spring
stifness kr0, which turn out to be 600N/m. Te optimal
stifness increment ∆kr,opt[n] was calculated using equation
(15). Te range of the control parameter QEp was set to
0–200, and the pivot limit parameter R was set to 8 × 10− 8.
Te optimal value of QEp typically depends on the control
goal; for near-fault earthquakes, the control goal is to
minimize the peak displacement of the isolation layer. For
far-feld earthquakes, the control goal is to minimize the
peak acceleration of the superstructure.

Sensitivity of an earthquake can be determined from the
characteristics of the ground motion and also from the
properties of the structural system that withstand the
earthquakes. Tis study shows the control results of an
elastic structure; however, the structure condition is also
adjustable in each step, including LSCIS control law,
GA-LSTM control system, and numerical simulation. On

the basis of the simulation results derived for peak isolation
displacement, near-fault earthquakes could be divided into
sensitive and insensitive earthquakes in this study. Near-
fault earthquake No. 1227-1 was determined to be a typical
example of a sensitive earthquake (Figure 7(a)); the optimal
value of QEp that could minimize the peak isolation dis-
placement could be derived for this earthquake. Moreover,
earthquake No. 728-1 was determined to be a typical ex-
ample of an insensitive earthquake (Figure 7(b)); the value of
the peak isolation displacement was insensitive to variations
in QEp. For insensitive earthquakes, determining the op-
timal QEp value was noted to be challenging.

Te QEp values that could minimize peak isolation
displacement for each sensitive near-fault earthquake are
plotted in Figure 7(c); the horizontal axis of the fgure
represents the earthquake number, and the vertical axis
represents the corresponding optimal QEp value. Te
complex distribution of sensitive near-fault earthquakes in
Figure 7(c) indicates that a module for determining the
optimal QEp would be necessary for practical applications.

Sensitive far-feld earthquakes were also identifed by
removing cases for which modifying QEp substantially af-
fected the peak acceleration of the superstructure. Earth-
quake No. 359-2 was noted to be a typical example of
a sensitive far-feld earthquake (Figure 8(a)); an optimal QEp

value that could minimize the peak acceleration of the su-
perstructure could be derived for this earthquake. By con-
trast, earthquake No. 344-1 was determined to be
a representative example of an insensitive far-feld earth-
quake (Figure 8(b)).

Table 2: Details of each control coefcient.

Coef. Values
a1[n] z[n]TB1d

TD2
TMD2B1dz[n]

b2,iso[n] B1dLz[n](AdLz[n] + EdL €xg[n])kr0

b2,sup[n]
B1dLz[n]ks(2(AdLz[n] + EdL €xg[n]) + (AdTz[n] + EdT €xg[n]))+ B1dTz[n]ks (2(AdTz

[n] + EdT €xg[n]) + (AdLz[n] + EdL €xg[n]))

a2[n] z[n]TB1d
TD2

TMD2(Adz[n] + Ed €xg[n]) + DMD2B1dz[n] _xg[n]

b3,iso[n] 0.5(AdLz[n])2kr0 + 0.5(EdL €xg[n])kr0 + AdLz[n]EdL €xg[n]kr0

b3,sup[n]

0.5(AdLz[n])2ks + 0.5(EdL €xg[n])ks + AdLz[n]EdL €xg[n]ks + 0.5(AdTz[n])2ks + 0.5
(EdT €xg[n])ks + AdTz[n]EdT €xg[n]ks − 0.5AdTz[n]EdL €xg[n]ks − 0.5AdLz [n]EdT €xg

[n]ks

Table 3: Parameters of superstructure and isolation layer.

Project Values

Superstructure

Superstructure mass (ms) 22.01 kg
Horizontal strength (ks) 3400N/m
Horizontal damping (cs) 1.971N-sec/m
Natural frequency (fs) 1.98Hz

Isolation layer

Isolation platform mass (mb) 38.445 kg
Leverage length (L) 0.38m
Spring stifness (kr0) 600N/m

Coefcient of friction (μ) 0.008
Leverage pivot moving range (xp) (0.0505 L, −0.191 L) m

Isolation stifness range (kr) (−0.8kr0, 0.5kr0) N/m
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Te optimized QEp value for each of the selected sen-
sitive far-feld earthquakes and the overall distribution of
these values are presented in Figure 8(c). Most QEp values
for sensitive far-feld earthquakes were low; thus, the cor-
responding average QEp value in Figure 8(c) was used for
the control law for these earthquakes in this study.

4.2. Fuzzy Surfaces for near-Fault Earthquakes. As illustrated
in Figure 7(c), the optimal value of QEp varied for sensitive
near-fault earthquakes. To determine this value, the GA-
Fuzzy control based on the NF ratio and predicted PGA was
applied [35]. A continuous surface was then established by
fuzzifying the optimal QEp as a function of the NF ratio and
predicted PGA.

Te predicted PGA was estimated through a support
vector regression model during the frst 3 seconds before
the earthquake trigger point by using the following input
parameters: absolute value of acceleration (Pa), which
represents the maximum absolute acceleration, absolute
value of velocity (Pv), which represents the maximum
absolute velocity, absolute value of displacement (Pd),

which represents the maximum absolute displacement,
efective predominant period (τc), integral of the squared
velocity (IV2), and cumulative absolute velocity (CAV)
[37]. Details regarding τc, IV2, and CAV are presented as
follows:

τc �
2π

�
r

√ ,where r �


tp

0 _u(t)
2dt


tp

0 u(t)
2dt

, (17)

IV2 � 
tp

0
_u(t)

2dt, (18)

CAV � 
tp

0
|€u(t)|dt, (19)

where u(t) is the vertical displacement, _u(t) is the vertical
velocity, €u(t) is the vertical acceleration, and tp was set to
3 seconds.

In addition to the aforementioned six parameters, two
additional parameters were used to calculate the NF ratio:
the horizontal high-frequency accumulated acceleration
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Figure 7: Sensitivity analysis of near-fault earthquakes for peak isolation displacement. (a) Sensitive earthquake #1227-1. (b) Nonsensitive
earthquake #728-1. (c) Distribution of QEp.
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energy (CEa)horizontal and accumulated velocity (CEv)horizontal
[35]. Te NF ratio was then calculated as a function of the
eight parameters, as expressed in the following equation:

NFRatio � 
8

i�1

xi

xiN + xiF/2( 
  ×

xiN

xiF

⎧⎨

⎩

⎫⎬

⎭,

x1 � Pa,

x2 � Pv,

x3 � Pd,

x4 � τc,

x5 � IV2,

x6 � CAV,

x7 � CEa( horizontal,

x8 � CEv( horizontal,

(20)

where xiN and xiF are the average values of xi for near-fault
and far-range earthquakes, respectively. Equation (20) was
used to derive the NF ratio for each earthquake in this study.
Te average value of each parameter and the NF ratio are
listed in Table 4.

TeNF ratio and predicted PGA values for selected near-
fault earthquakes are plotted in Figure 9. Based on the
earthquake distribution and quantity, these earthquakes
were classifed into 20 blocks (Figure 10). Te QEp value for
each block was estimated on the basis of the optimal value
for the earthquake events in the block.

Te average QEp values derived for selected sensitive
near-fault earthquakes are presented in Figure 11. Because
blocks (II, VL), (III, VL), and (IV, VS) had no sensitive
earthquakes (Figure 10), the control parameters for these
three blocks were determined by taking the average of the
parameters for the two adjacent blocks.Tese discrete values
were further smoothed using a fuzzy controller based on the
NF ratio and predicted PGA (horizontal and vertical axes of
Figure 11). Te membership function of the NF ratio
comprised fve functions (I–V), and the membership
function of the predicted PGA comprised four functions VL,
SL, SS, and VS where VL is very large; SL is slightly large; SS
is slightly small, and VS is very small. Te output mem-
bership function was used to classify the earthquakes into 18
groups according to the value of QEp in Figure 11. Finally,
fuzzy inference was performed using Mamdani fuzzy logic,
and the center-of-gravity method was applied for defuzzi-
fcation. Te contour of the control parameter QEp as
a function of the predicted PGA and NF ratio is presented in
Figure 12.

In the improved GA-LSTM control system, the LSTM
prediction module is frst employed to detect the ground
motion characteristics. If an earthquake is detected as a near-
fault earthquake, the optimal QEp can be quickly de-
termined by the established fuzzy system. Otherwise, QEp is

set to 23 if the earthquake is a far-feld earthquake. In this
research, structural conditions are considered and coupled
into the analytical model in the design stage of the proposed
GA-LSTM control system. Tus, the proposed GA-LSTM
control system can be applied to all types of structures with
satisfactory performance. Moreover, the robustness and
reliability of the GA-LSTM control system can also be
supported by the fuzzy logic core.

5. Numerical Simulations

Te control performance of the proposed LSCIS along with
the GA-LSTM system was evaluated numerically for two
sensitive earthquakes and compared with the performance
of other control laws. Te selected earthquakes were not
those used to design the controller and are outlined as
follows:

(1) Christchurch earthquake (2011): station, Shirley
Library; magnitude, 6.2; peak acceleration, 3.4152m/
s2 (0.348 g); PEER Database Sequence #8130-2 (near-
fault)

(2) Coalinga earthquake (1983): station, Parkfeld Fault
Zone 4; magnitude, 6.36; peak acceleration,
1.1876m/s2 (0.121 g); PEER Database Sequence
#343-2 (far-feld)

Te predicted LSTM labels for the near-fault Christ-
church earthquake and far-feld Coalinga earthquake were
0.999 and 0.054, respectively, indicating that the network
could correctly classify the earthquakes. Te two earth-
quakes were then input into the numerical model for the
LSCIS, and the model was executed using the system pa-
rameters listed in Table 3.Te time histories of the structural
responses, including superstructure acceleration, isolation
layer displacement, and pivot displacement, are illustrated in
Figures 13–16. In addition, the displacement (xs, xb), ve-
locity ( _xs, _xb), and acceleration (€xs, €xb) of the LSCIS under
diferent control laws are listed in Tables 5 and 6; the
subscripts s and b represent the superstructure and isolation
layer, respectively.

5.1. Control Performance for the near-Fault Christchurch
Earthquake (2011). As presented in Table 5, for the near-
fault Christchurch earthquake, the isolation displacement xb
observed for the GA-LSTM system was 17.5 cm, which was
substantially lower than that observed for passive control
(24 cm), indicating that the GA-LSTM system has superior
performance. Because of the reduction of the isolation
displacement, the peak superstructure displacement, the
velocity of the isolation layer, and the velocity of the su-
perstructure decreased. However, the diference in the peak
acceleration was small between the two methods.

As shown in Figure 13, the GA-LSTM system also
outperformed the FPEEA it reduced the isolation dis-
placement and superstructure acceleration 7–10 s after the
mainshock. Te FPEEA erroneously treated this earthquake
as a far-feld event, reducing its ability to control the iso-
lation displacement. Moreover, the improper control of
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isolation displacement reduced the control of the acceler-
ation response.Tus, the poor control results derived for the
FPEEA can be attributed to the fact that the FPEEA does not
accurately determine the earthquake type.

Max. Acceleration of Superstructure under Far-field Ground Motion #359-2
2.2

2.1

2

1.9

1.8

1.7

1.6

1.5

1.4

1.3

A
cc

el
er

at
io

n 
(m

/s
2 )

0 4020 8060 100 200160140120 180
QEp

(a)

Max. Acceleration of Superstructure under Far-field Ground Motion #344-1

A
cc

el
er

at
io

n 
(m

/s
2 )

0 4020 8060 100 200160140120 180
QEp

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

(b)

20020 40 60 80 100 120
Number

140 160 180

Q
E p

Optimized QEp Distribution of Far-field Sensitive Ground Motion
200

180

160

140

120

100

80

60

40

20

0
0

(c)

Figure 8: Sensitivity analysis of far-feld earthquakes for peak structural acceleration. (a) Sensitive earthquake #359-2. (b) Nonsensitive
earthquake #344-1. (c) Distribution of QEp.

Table 4: Average values of the parameters.

Near-fault GMs Far-feld GMs
Pa (cm/s2) 0.1769 0.0374
Pv (cm/s) 6.7413 1.5630
Pd (cm) 2.6831 0.6138
CAV (cm/s) 0.1023 0.0247
IV2 (cm2/s) 50.984 1.5872
τc ( sec ) 3.9576 4.0131
(CEa)horizontal (cm2/s4) 0.0209 0.0039
(CEv)horizontal (cm/s) 0.9708 0.1249
NF ratio 9.4968 3.8355
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Figure 9: Te NF Ratio and PGA value of near-fault earthquakes.
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As displayed in Figure 14, although the GA-fuzzy control
and the GA-LSTM system exhibited similar responses, the
isolation displacement of the GA-LSTM system was ap-
proximately 1.5 cm lower than that of the GA-fuzzy control,
indicating that the GA-LSTM system had better perfor-
mance. Because the GA–LSTM system can update its control
laws on the basis of whether an earthquake is sensitive, the

fuzzy surface established using representative earthquake
events can improve its control performance.

5.2. Control Performance for the Far-Field Coalinga Earth-
quake (1983). As listed in Table 6, for the far-feld Coalinga
earthquake, the GA-LSTM system produced superior con-
trol performance for superstructure acceleration when
compared with the other control laws. Te peak super-
structure acceleration observed for the GA-LSTM system
(1.66m/s2) was substantially lower than that observed for the
passive control (2.1m/s2).

As illustrated in Figure 15, although the GA-LSTM
system and FPEEA exhibited similar performance levels, the
GA-LSTM system had superior overall performance in the
control of superstructure acceleration. Tus, control pa-
rameters determined by the GA-LSTM system can engender
superior performance in reducing superstructure accelera-
tion from the impact of far-feld earthquakes.

Te FPEEA was noted to exhibit superior performance
to the GA-fuzzy control (Figure 16 and Table 6). Although
the GA-fuzzy control parameters resulted in lower super-
structure acceleration than did the FPEEA parameters
(Table 6), the FPEEA engendered superior isolation accel-
eration, velocity, and displacement performance. Further-
more, the FPEEA achieved lower superstructure
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Table 5: Peak responses of near-fault Christchurch earthquake.

Control law xs(m) xb(m) _xs(m/s) _xb(m/s) €xs(m/s2) €xb(m/s2)

Passive 0.2739 (1.000) 0.2418 (1.000) 0.9838 (1.000) 0.9394 (1.000) 4.9646 (1.000) 3.8710 (1.000)
FPEEA 0.2403 (0.877) 0.2159 (0.893) 1.0553 (1.073) 0.9555 (1.017) 7.2437 (1.459) 5.7031 (1.473)
GA-fuzzy 0.2157 (0.788) 0.1881 (0.778) 0.7911 (0.804) 0.7754 (0.825) 4.5986 (0.926) 3.8003 (0.982)
GA-LSTM 0.2006 (0.732) 0.1742 (0.720) 0.7412 (0.753) 0.7204 (0.767) 4.3079 (0.868) 3.4468 (0.890)
Note. Te numbers in parentheses represent the ratio to the peak response of the passive control.

Table 6: Peak responses of the far-feld Coalinga earthquake.

Control law xs(m) xb(m) _xs(m/s) _xb(m/s) €xs(m/s2) €xb(m/s2)

Passive 0.1214 (1.000) 0.1085 (1.000) 0.5159 (1.000) 0.4842 (1.000) 2.0924 (1.000) 1.8605 (1.000)
FPEEA 0.0606 (0.500) 0.0529 (0.488) 0.3274 (0.635) 0.3027 (0.625) 1.9564 (0.935) 1.3123 (0.705)
GA-fuzzy 0.0762 (0.628) 0.0668 (0.616) 0.3633 (0.704) 0.3463 (0.715) 1.7104 (0.817) 1.4138 (0.760)
GA-LSTM 0.0632 (0.521) 0.0557 (0.514) 0.3278 (0.635) 0.3044 (0.629) 1.6644 (0.795) 1.1143 (0.599)
Note. Te numbers in parentheses represent the ratio to the peak responses of the passive control.
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Figure 13: Comparison between the responses of FPEEA and GA-LSTM (near-fault Christchurch earthquake). (a) Superstructure ac-
celeration. (b) Superstructure velocity. (c) Isolation layer displacement. (d) Pivot displacement.
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displacement and velocity than did the GA-fuzzy control.
Tus, both the GA-LSTM system and FPEEA can select
better control parameters than the GA-fuzzy control (Fig-
ures 15 and 16). Moreover, the control parameters identifed
by the GA-LSTM system through the sensitivity analysis for
far-feld earthquakes were better-tailored compared with
those identifed using previous control laws.

6. Shaking Table Experiment

To experimentally verify the feasibility of the proposed
GA-LSTM system, a shaking table test following the system
identifcation procedure in Section 4.1 was conducted in
accordance with the fowchart in Figure 17, and the prop-
erties of the shaking table and specimen are listed in Table 7.
Te test setup of the LSCIS experiment is displayed in
Figure 18. Te LSCIS comprises the superstructure and the
isolation layer, which were both equipped with sensors in the
experiment (Figure 19). Te input ground velocity and

acceleration from the database and the measured responses
of the specimen were recorded at a sampling frequency of
100Hz through USB-6218 and recorded by the LabVIEW
controller. On the basis of these signals, the GA-LSTM
control law was implemented, and the optimal stifness
increment ∆kr,opt[n] and pivot position xp[n] for the LSCIS
were determined in real time.

As the shaking table used in this research has a limited
stroke of 25 cm, the near-fault earthquake adopted in the
numerical simulation cannot be executed. Terefore, in
the shaking table experiment, two earthquakes with rel-
atively small stroke were chosen to make sure the ex-
periment is conducted in safe condition. Te control
results for the GA-LSTM system were compared with the
results for other control laws. Te two selected ground
motions include a near-fault earthquake and a far-feld
earthquake as follows.

(1) Chi-Chi Earthquake (1999): Station, TCU078;
magnitude, 7.62; peak acceleration, 3.0103m/s2
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Figure 14: Comparison between the responses of GA-fuzzy and GA-LSTM (near-fault Christchurch earthquake). (a) Superstructure
acceleration. (b) Superstructure velocity. (c) Isolation layer displacement, (d) Pivot displacement.
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(0.307 g); PEER Database Sequence #1512-2 (near-
fault)

(2) Cape Mendocino Earthquake (1992): Station, South
Bay Union School; magnitude, 7.01; peak accelera-
tion, 1.9570m/s2 (0.200 g); PEER Database Sequence
#3751-2 (far-feld)

6.1. Comparison between Experimental and Numerical
Results. In order to make sure that the earthquakes used in
the numerical simulation can be regenerated in the shaking
table experiment, the results of the shaking table experiment
and the numerical simulation obtained for the LSCIS with
the GA-LSTM system under the near-fault Chi-Chi
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Figure 15: Comparison between the responses of FPEEA and GA-LSTM (far-feld Coalinga earthquake). (a) Superstructure acceleration.
(b) Superstructure velocity. (c) Isolation layer displacement. (d) Pivot displacement.
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Figure 16: Comparison between the responses of GA-fuzzy and GA-LSTM (far-feld Coalinga earthquake). (a) Superstructure acceleration.
(b) Superstructure velocity. (c) Isolation layer displacement. (d) Pivot displacement.
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Figure 17: Experiment fowchart of shaking table test.
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earthquake (TCU078) were compared to prove that the
performance of the proposed control law can be reliably
verifed. As shown in Figure 20, both the superstructure
acceleration and isolation displacement had similar peak
values and waveforms in the experiment and numerical
simulation, further confrming the validity of the analysis
model and the proposed control law.

Tese two earthquakes are thus be chosen for shaking
table experiment in this study, and for each earthquake, the
ground motion characteristics of the frst 3 s seismic ac-
celeration were frst identifed using the LSTM module,
which classifed it as a near-fault earthquake (label 0.9999).

Te far-feld Cape Mendocino earthquake was also correctly
classifed (label 0.0729). Te two earthquakes were repro-
duced using the shaking table test, and various control laws
were applied to the LSCIS. Te tested control laws were
passive control, FPEEA, GA-fuzzy control, and GA-LSTM
control.

6.2. Comparison of Control Performance for Various Control
Laws

6.2.1. Control Performance for the near-Fault Chi-Chi
Earthquake (1999). As presented in Table 8, for the near-

Table 7: Shaking table and specimen properties.

Shaking table
Size (mm) 2500×1200
Steel countertop weight (kg) 800
Maximum load (kg) 1000
Maximum bending moment (kg·m) 1000
Maximum stroke (mm) 250
Maximum acceleration (gal) 800
Experimental specimen
Size (mm) 400× 400× 476
Specimen weight (kg) 22.01
Natural frequency (Hz) 1.98
Damping ratio (%) 1.5

Figure 18: Test setup for the LSCIS.
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Figure 19: Te instrumentation of the test.
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fault Chi-Chi earthquake, the peak displacement of the
isolation layer observed for both the GA-LSTM system and
GA-fuzzy (both 5.3 cm) was excellent compared with that
observed for the passive control (6.6 cm). Te velocity and
acceleration were also reduced because of the reduction of
the isolation displacement; these results were consistent with
the numerical simulation results.

As presented in Figure 21, the GA-LSTM system out-
performed the FPEEA in controlling near-fault earthquakes.
Terefore, the proposed ground motion characteristic pre-
diction module can rapidly determine the optimal control
parameter for a near-fault earthquake and can efciently

control the isolation displacement. Te pivot displacements
for the GA-LSTM system and the FPEEA are depicted and
compared in Figure 21(c); the GA-LSTM system mainly
relies on the positive stifness increment region to suppress
the pivot displacement response.

A comparison of the responses of the GA-fuzzy control
with those of the GA-LSTM system is presented in Figure 22.
Te responses were noted to be similar because the QEp

values of GA-fuzzy control and the GA-LSTM system were
almost identical (149 and 139); this observation was at-
tributed to both control laws correctly identifying the
ground motion as a near-fault earthquake.
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Figure 20: Comparison of experiment and numerical simulation (near-fault Chi-Chi earthquake). (a) Superstructure acceleration.
(b) Isolation layer displacement.

Table 8: Peak values under near-fault Chi-Chi earthquake.

Control law xs(m) xb(m) _xs(m/s) _xb(m/s) €xs(m/s2) €xb(m/s2)

Passive 0.0822 (1.000) 0.0660 (1.000) 0.3337 (1.000) 0.2796 (1.000) 2.6680 (1.000) 2.2513 (1.000)
FPEEA 0.0614 (0.747) 0.0595 (0.902) 0.2934 (0.879) 0.2052 (0.734) 1.8872 (0.707) 1.4716 (0.654)
GA-fuzzy 0.0567 (0.690) 0.0537 (0.815) 0.3192 (0.957) 0.2270 (0.812) 2.2623 (0.848) 1.3815 (0.614)
GA-LSTM 0.0563 (0.684) 0.0533 (0.809) 0.3168 (0.950) 0.2267 (0.811) 2.2806 (0.855) 1.4398 (0.640)
Note. Te numbers in parentheses represent the ratio to passive control.
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6.2.2. Control Performance under Far-Field Cape Mendocino
Earthquake (1992). As listed in Table 9, for the far-feld
earthquake Cape Mendocino, the peak superstructure ac-
celeration observed for the GA-LSTM system was 1.43m/s2,
substantially lower than that observed for the passive control
technique (1.97m/s2); thus, the GA-LSTM system exhibited
superior performance.

A performance comparison between the GA-LSTM
system and the FPEEA (Figure 23) revealed a nonsignifcant
diference in responses. Nevertheless, the GA-LSTM system
still exhibited superior performance, and the control

parameters selected by the GA-LSTM system were efective
in reducing superstructure acceleration.

As illustrated in Figure 24, the GA-LSTM system out-
performed the GA-fuzzy control under the far-feld earth-
quake, consistent with the numerical simulation results. For
the GA-fuzzy control, an amplifcation phenomenon was
noted at 7–10 s after the main shock (Figure 24(a)).
Moreover, the pivot displacements observed for the
GA-LSTM system (Figure 24(c)) were signifcantly lower
than those observed for the GA-fuzzy control, indicating
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Figure 21: Comparison between FPEEA and GA-LSTM (near-fault Chi-Chi earthquake). (a) Superstructure acceleration. (b) Super-
structure velocity. (c) Isolation layer displacement. (d) Pivot displacement.
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Figure 22: Comparison between GA-fuzzy and GA-LSTM (near-fault Chi-Chi earthquake). (a) Superstructure acceleration. (b) Super-
structure velocity. (c) Isolation layer displacement. (d) Pivot displacement.

Table 9: Peak values of the far-feld earthquake Cape Mendocino.

Control law xs(m) xb(m) _xs(m/s) _xb(m/s) €xs(m/s2) €xb(m/s2)

Passive 0.0619 (1.000) 0.0523 (1.000) 0.3022 (1.000) 0.2436 (1.000) 1.9766 (1.000) 1.2342 (1.000)
FPEEA 0.0423 (0.683) 0.0376 (0.719) 0.2522 (0.835) 0.1895 (0.778) 1.4857 (0.752) 1.0343 (0.838)
GA-fuzzy 0.0497 (0.803) 0.0407 (0.778) 0.2706 (0.895) 0.2123 (0.872) 1.7617 (0.891) 1.2448 (1.009)
GA-LSTM 0.0414 (0.668) 0.0396 (0.756) 0.2469 (0.817) 0.1883 (0.773) 1.4315 (0.724) 1.0547 (0.855)
Note. Te numbers in parentheses represent the ratio to passive control.
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Figure 23: Comparison between FPEEA and GA-LSTM (far-feld earthquake Cape Mendocino). (a) Superstructure acceleration. (b)
Superstructure velocity. (c) Isolation layer displacement. (d) Pivot displacement.
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that the GA-LSTM system is more suitable for controlling
the LSCIS during far-feld earthquakes.

7. Summary and Conclusion

Ground motion characteristics substantially afect optimal
semiactive control techniques. As near-fault and far-feld
earthquakes were slightly mixed in the controlling process of
the previously developed GA-fuzzy controller, the optimal
control parameters for various ground motion character-
istics may still be misjudged by the fuzzy surface. Moreover,
because of the insufciency of earthquake data, the GA-fuzzy
controller is sensitive to outlier cases. To overcome these
shortcomings, a new controller based on LSTM (denoted the
GA–LSTM system) was proposed in this study. Te LSTM
prediction model was frst trained using data for over 1000
earthquakes and could classify near-fault and far-feld
earthquakes with high accuracy. An analysis of earth-
quake sensitivity for the optimal control parameters of the
proposed GA-LSTM system further enabled a continuous

function to determine the appropriate potential energy
weighting for near-fault earthquakes whereas a constant
value was adopted for far-feld earthquakes. Numerical
simulations and shaking table tests were performed to verify
the performance of the GA-LSTM system. Te results reveal
that the GA-LSTM system successfully alleviated both su-
perstructure acceleration and isolation layer displacement.
Moreover, the pivot displacement did not have large high-
frequency oscillations in the experiments, implying that the
GA-LSTM system had high control stability. Both isolation
layer displacement due to near-fault earthquakes and su-
perstructure acceleration due to far-feld earthquakes could
be suppressed efciently. Last, this study proposed a LSTM-
based intelligent isolation system mainly follows the
performance-based control strategy. It is more likely to be
applied on precious vibration-sensitive devices such as
cabinets in high-tech factories or precision instruments in
hospital. Moreover, as these vibration-sensitive devices
occupy huge economic contribution, the cost of the pro-
posed isolation system may not be the major concern, and
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Figure 24: Comparison between GA-fuzzy and GA-LSTM (far-feld earthquake Cape Mendocino). (a) Superstructure acceleration. (b)
Superstructure velocity. (c) Isolation layer displacement. (d) Pivot displacement.
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the control efciency and the functionality are focused more
in this study. From the results, the proposed intelligent
control system has superior performance to other control
methods for all ground motion characteristics and could
thus be used in practical applications.
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