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Contemporary multiscale construction object detection algorithms rely predominantly on fully-supervised deep learning, re-
quiring arduous and time-consuming labeling process.Tis paper presents a novel semisupervisedmultiscale construction objects
detection (SS-MCOD) by harnessing nearly infnite unlabeled images along with limited labels, achieving more accurate and
robust detection results. SS-MCOD uses a deformable convolutional network (DCN)-based teacher-student joint learning
framework. DCN uses deformable advantages to extract and fuse multiscale construction object features. Te teacher module
generates pseudolabels for construction objects in unlabeled images, while the student module learns the location and classi-
fcation of construction objects in both labeled images and unlabeled images with pseudolabels. Experimental validation using
commonly used construction datasets demonstrates the accuracy and generalization performance of SS-MCOD.Tis research can
provide insights for other detection tasks with limited labels in the construction domain.

1. Introduction

Construction site monitoring methods are very important in
construction site safety management and productivity
analysis. As one of the important basic tasks of intelligent
construction, vision-based multiscale construction object
detection (MCOD), which aims to accurately localize and
recognize various objects with diferent sizes, can provide
important data support for subsequent collision risk
warning and construction process optimization [1, 2]. Te
earlier MCOD algorithms used traditional image processing
technology to manually design features and make simple
judgments. With the development of machine learning,
designing automatic classifcation algorithms using hand-
crafted features to conduct MCOD has gradually become the
mainstream.

Machine learning-based methods have improved
MCOD accuracy to a certain extent, but they are not
efective in the case of complex background interference.
Deep learning methods have achieved convincing de-
tection accuracy in general object detection feld, which

greatly improves the detection accuracy of construction
objects. Most of these methods have used fully-supervised
deep learning approaches and used large numbers of
labeled construction image datasets to train detection
models [3, 4]. Te construction object detection accuracy
depends largely on the labeled dataset’s quality and
quantity.

Building high-quality large-scale MCOD datasets is very
challenging and requires lots of time and labor costs.
Meanwhile, there are diferences in the data distribution
between diferent datasets, and the performance of a MCOD
model that performs well on a certain dataset would decrease
when tested directly on other datasets [5–7]. Terefore,
developing a MCOD model that does not rely heavily on
large-scale labeled datasets is of great signifcance for re-
ducing training costs, expanding data utilization, and im-
proving model generalization capabilities. To achieve this
goal, this paper develops a novel semisupervised deep
learning-basedMCOD approach. As shown in Figure 1, only
limited number of labeled images (i.e., small amount) and
nearly infnite number of unlabeled images (i.e., large
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amount) are needed to achieve better detection accuracy
than fully-supervised deep learning (for intradataset and
across-dataset).

Te research of this paper mainly includes the following
two contributions. Firstly, this paper proposes a novel
semisupervised MCOD framework, which achieves more
accurate and robust detection of construction objects.
Secondly, aiming at the multiscale detection problem caused
by the large size diference, the presented SS-MCOD uses
DCN instead of conventional convolutional network to
further improve detection precision. Tis paper’s remaining
sections are organized as follows: Section 2 examines the
research advancement in vision-based construction object
detection; Section 3 introduces the detailed architecture of
the proposed SS-MCOD method; Section 4 illustrates the
specifcs of the implementation; Section 5 exhibits the
outcomes of the training and evaluation, as well as the
impact of key factors; and Section 6 provides a summary of
this paper.

2. Related Studies

Before the widespread adoption of deep learning, most of the
vision-based construction object automatic detection
methods have used sliding windows to extract image regions
of interest and then use hand-crafted features to identify the
construction objects contained in the regions. Chi and
Caldas [8] used surveillance camera videos to develop
a construction object detection algorithm. Te background
subtraction and morphological operation were used to
obtain the area of the construction object, two classifers
were trained to identify the object using shape and texture
features. Park et al. [9] conducted a comparative analysis of
various manual feature extraction techniques to assess their
impact on object recognition accuracy. Azar et al. [10]
developed Haar-HOG-based and Blob-HOG-based con-
struction truck detectors, and a part-based excavator rec-
ognition method in videos using HOG features. Yuan et al.
[11] uses hybrid kinematics shape and key node features to
develop an excavator detection algorithm.Tese approaches,
which relied on manually designed features, achieved
a partial abstraction of construction objects and led to en-
hanced processing efciency and precision in construction
object detection.

In the deep learning period, convolutional neural
network-based object detection methods have gained wide
popularity in construction object detection domain. Tese
deep learning-based methods can be categorized into two-
stage anchor-based, single-stage anchor-based, and anchor-
free techniques. In the case of two-stage anchor-based
techniques, researchers predominantly used Faster
R-CNN and its variants for construction object detection.
Fang et al. [12] introduced an innovative approach called
IFaster R-CNN, specifcally designed to detect construction
workers and heavy construction equipment. Tey demon-
strated the superiority of their proposed method over the
hand-crafted feature-based detection approach. Kim et al.
[13] presented the use of transfer learning to address the
scarcity problem of training data within the R-CNN series

for the construction domain. To detect construction workers
in complex backgrounds and changing postures more ac-
curately, Son et al. [14] integrated the deep residual network
(152 layers) into Faster R-CNN. Lu et al. [15] implemented
fll factor estimation and bucket detection using Faster
R-CNN with the feature integration of region proposal
network. In the case of single-stage anchor-based tech-
niques, Guo et al. [3] devised an enhanced version of SSD
model to ensure accurate detection of dense construction
vehicles. Roberts and Golparvar-Fard [16] used RetinaNet
with ResNeXt-101 backbone as earthmoving equipment
detection module for activity analysis. To accelerate the
detection speed, Arabi et al. [17] developed lightweight
construction object detection networks using SSD network
with MobileNet as backbone. You only look once (YOLO)-
v3 is an excellent general object detection framework. Xiao
et al. [18] used YOLO-v3 for construction machinery de-
tection in nighttime environment, construction personnel
safety device detection, and construction equipment de-
tection in large-scale scenes. In the case of anchor-free
techniques, Guo et al. [19] developed an anchor-free
method for detecting construction vehicles with arbitrary
orientations to realize precise localization of construction
vehicles in any orientations.

Te construction object detection methods based on
deep CNN mentioned above are mostly fully-supervised
deep learning, that is, it requires labeled construction
datasets for training. In theory, more labeled data with
more-parameter models will produce better detection re-
sults. To address the challenge of limited labeled data, re-
searchers have dedicated signifcant eforts to curating
benchmark datasets in the feld of construction [20], such as,
ACID (10,000 images) [5], MOCS (41,668 images) [6], and
SODA (19,846 images) [7]. In addition to consuming lots of
time and manpower to obtain and annotate datasets, re-
searchers also have tried to use new techniques to auto-
matically generate construction images and corresponding
annotations. Soltani et al. [21] developed an automated
construction image generation and annotation approach
using 3D equipment models. Bang et al. [22] used generative
adversarial networks to generate more construction images
with various transforms. Hwang et al. [23] investigated to
use web crawling technique to acquire construction images
and use a segmentation model to automatically label con-
struction objects. Te methods using generative approaches
to synthesize simulated construction site images have to
some extent improved the accuracy of construction object
detection. However, these methods still rely on source data
from previous limited construction image dataset. Te
generative models then generate new images that closely
match the distribution of this existing construction image
set, but they are unable to simulate the diversity of real
construction site image distributions. Terefore, the pre-
cision and robustness of detecting construction objects using
such methods are clearly limited.

Te annotation of construction image datasets is
time-consuming and laborious, and a large-scale and
high-quality annotation is more difcult. Widely-used
datasets in general object detection are usually annotated

2 Structural Control and Health Monitoring



at million-image level. However, it undoubtedly takes
a long time to accumulate such numbers of annotations
in construction domain. But it is relatively easy to obtain
only construction images. Indeed, it is crucial to research
more accurate and robust construction object detection
algorithms by using limited labeled images and com-
bining with almost infnite unlabeled images. Kim et al.
[24] introduced few-shot learning into the construction
domain, and successfully realized new construction
object category detection using limited labeled samples,
and became the pioneer work of construction object
detection research under limited labeled samples. Few-
shot learning focuses on discovering new categories that
are not in the training set, while semisupervised learning
is able to efectively use unlabeled data to further enhance
detection models [25]. Te current application of sem-
isupervised learning in the construction domain focuses
on structural damage identifcation and segmentation.
Guo et al. [26] developed a façade defect classifcation
approach with semisupervised learning using a modifed
mean teacher technique which could train labeled and
unlabeled images simultaneously. Wang and Su [27]
proposed a surface crack semantic segmentation model
and used the semisupervised teacher and student
framework with EfcientUNet as the backbone. Zhang
et al. [28] presented automatic defect segmentation
frameworks integrated with GANs and semisupervised
learning to achieve better precision. Unlike object
classifcation and segmentation, semisupervised object
detection needs to consider more factors and is more
difcult to implement. To fll this gap, this paper pro-
poses the SS-MCOD framework using semisupervised
learning technique to realize more precise and
robust MCOD.

3. Methodology

As illustrated in Figure 2, the SS-MCOD method proposed
in this paper is a teacher-student joint learning framework
based on the deformable convolutional network (DCN).Te
teacher-student joint learning structure is designed to enable
semisupervised learning, while the DCN component is
leveraged to resolve multiscale issues, thereby enhancing
accuracy in construction object detection tasks. During
training, labeled construction images are directly input into
the student module, and its output is compared with
manually labeled data to calculate loss. Unlabeled con-
struction images undergo strong augmentation and are
input into the student module to produce pseudolabels (for
classifcation and localization). Additionally, unlabeled
construction images undergo weak augmentation and are
input into the teacher module, with its output compared
with the pseudolabels to calculate loss. Te weights of the
teacher model are transferred from the weights of the stu-
dent model using exponential moving average technique.

3.1. Teacher-Student Joint Learning Framework. Te pro-
posed SS-MCOD approach introduces a teacher-student
joint learning framework for efective semisupervised
learning. Specifcally, SS-MCOD undergoes training utiliz-
ing a combination of labeled and unlabeled data. Both the
teacher module and the student module use the identical
fully-supervised object detection architecture, which serves
as the base construction object detection model. However,
the parameters are diferent between the two models. Te
teacher module’s parameters are transferred through the
application of the exponential moving average technique
from the student module [29]. Tis technique enables
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Figure 1: Comparison of MCOD methods with diferent supervision approaches.
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a smooth and gradual transfer of knowledge, facilitating
enhanced learning and convergence within the semi-
supervised framework.

Te construction image processing pipeline of the
framework is shown in Figure 3. During the training phase
of the proposed SS-MCODmethod, construction images are
divided into labeled and unlabeled data. Te labeled data are
directly input into the student module, while the unlabeled
data undergo strong and weak augmentation, with the
former being input into the student module and the latter
into the teacher module. All outputs are involved in the
calculation of training loss. Additionally, the weights of the
teacher module are transferred from the student module.
During the inference phase, construction images are directly
input into the trained teacher module to obtain bounding
boxes representing the position and category of construction
objects.

Te labeled data uses the same process as the fully-
supervised object detection, and is sent to the student
module as input, and generates the training loss of the la-
beled data Ll: labeled classifcation loss Lcls

l and labeled
positioning loss Lloc

l , as shown in equation (1). Nl represents
the labeled construction image number, Pk

l is the corre-
sponding predicted value of the student module, Gk

cls rep-
resents the labeled construction object category, and Gk

loc
represents the labeled construction object location.
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Unlabeled construction images go through two diferent
data augmentation approaches to generate strongly and
weakly augmented data. Strongly augmented data is sent

into the student module as input, and the predicted con-
struction object detection bounding boxes of unlabeled
construction images is output. Weakly augmented data is
sent into the teacher module as input with the output of
pseudolabels of unlabeled data. Te diference between the
predicted construction object detection bounding boxes and
the pseudolabel is computed, that is, the training loss of
unlabeled data Lu: unlabeled classifcation loss Lcls

u and
unlabeled location loss Lloc

u , as shown in equation (2). Nu is
the number of unlabeled construction images, Pk

u is the
corresponding predicted construction object detection
bounding boxes of the student module, G

k

cls is the pseu-
docategory label, and G

k

loc is the pseudolocation label.
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Te quality of construction object pseudolabels is crucial
to the training and inference accuracy of SS-MCOD. After
the weakly augmented construction images are input into
the teacher module, multiple construction object detection
bounding boxes will be generated. To eliminate the results of
high repetition rate, nonmaximum suppression is used to
perform preliminary postprocessing on multiple construc-
tion object detection bounding boxes. Referencing to Xu
et al. [30], a high threshold is used to flter these bounding
boxes after preliminary postprocessing. Tese construction
object detection bounding boxes can be divided into fore-
ground boxes (r

fg

k ) and background boxes (r
bg

j ). Te
foreground boxes are used as the pseudolabel of the clas-
sifcation, and the reliability measure (ωj) is used to weight
the loss of each background box to calculate the unlabeled
classifcation loss Lcls

u . As shown in equations (3) and (4),
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Figure 2: Framework of the proposed SS-MCOD.
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N
fg

b and N
bg

b are the number of foreground and background
boxes, lcls represents the cross-entropy loss, and mi is the
reliability score for i-th background box.
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Due to the inconsistency of construction object classi-
fcation and locating tasks, high-quality classifcation
pseudolabels are usually inconsistent with high-quality
positioning pseudolabels. Tis paper uses box jitter
method to select the reliable bounding box location co-
ordinates, that is, the variance is calculated after multiple
jitters of the foreground box as the reliability measure, and
fnally the box with high enough reliability (r

fg

k ) is used as
the location pseudolabel, where lcls represents the L1 loss.
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Te total loss L of SS-MCOD is composed of labeled loss
and unlabeled loss, where λ is the adjustment coefcient.

L � Ll + λLu. (6)

3.2. DCN-Based StudentModule. Conventional convolution
layers use a consistent convolution operation across various
feature maps, with fxed pixel sampling positions (shown in
Figure 4(a)). Tis approach results in the inclusion of nu-
merous background features within the extracted in-
formation. Consequently, conventional convolution-based
construction object detection networks possess uniform
receptive felds for multiscale objects.Tis limitation hinders
the accurate detection of multiscale construction objects.

Te deformable convolution is proposed to replace the
conventional convolution [31], that is, by adding an ofset at
the position of the original convolution sampling, as shown
in equation (7). X and Y represent input and output con-
volutional feature maps, ω is the weight function, R is the

convolution kernel, u0 is the location in Y, uk is the location
in R, and ∆uk is the ofset.

Y u0(  � 
uk∈R

ω uk( X u0 + uk + ∆uk( . (7)

Te receptive feld can be rotated and scaled, which can
efectively cover large construction objects and accurately
concentrate near small construction objects (as shown in
Figure 4(b)). Trough the application of deformable con-
volution operations, disparate features are extracted
according to the size and shape of the construction object.
Tis approach minimizes the extraction of extraneous
background information, contributing to more accurate
object detection.

In the SS-MCOD framework, the base construction
object detection model for both the teacher and student
modules is derived from the Faster R-CNN-DCN (i.e.,
FRCD). Te backbone of the FRCD architecture is ResNet-
50, featuring four convolution stages. Notably, the frst stage
retains conventional convolutions, while the subsequent
stages, from the second to the fourth, incorporate de-
formable convolutions.

4. Implementation Details

4.1. Dataset. Te training dataset used in this paper was
sampled from the MOCS dataset [6], which were acquired
from 174 diferent construction sites considering various
weather environments using a variety of equipment. Te
training dataset includes 12 common types of objects in
construction sites.

To implement the training of SS-MCOD, the training
dataset was segregated into labeled data and unlabeled data.
Te overall count of the training dataset image is 3000. To
explore the infuence of diferent proportions of labeled data
and unlabeled data on SS-MCOD, this paper presents to
conduct four training cases, and the proportions of labeled
data are 2%, 5%, 10%, and 50%, respectively.Te numbers of
images and objects of diferent cases are shown in Figure 5.
In this paper, objects with a bounding box area (width
multiplied by height) smaller than 1024 pixels (32× 32) are
classifed as small objects, while those larger than 9216 pixels
(96× 96) are categorized as large objects, and the remaining
fall under the medium object category.
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Module
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No

Yes
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Figure 3: Flowchart of the proposed SS-MCOD.
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To evaluate the accuracy improvement of SS-MCOD, the
MOCS validation dataset (including 4000 images) was used
as the validation dataset I (for intradataset evaluation). To
evaluate the robustness improvement across diferent
datasets, another dataset called ACID basic (2850 images)
[5] was used as the validation dataset II (for across-dataset
evaluation), including excavator, truck, and concrete truck.

4.2. Parameter Setting. Batch size, being one of the crucial
parameters of deep learning, wields a signifcant impact on
the training procedure. To keep consistent of diferent ex-
perimental cases, the batch size of all cases was both set to 5.
In each batch, the ratio of labeled data to unlabeled data was
1 : 4. For each experimental case, the training epochs were set
at 45000, while the initial learning rate was confgured to
0.005. Te learning rate alteration strategy used a multistep
approach, involving reductions of 0.3 at the 15000th and
30000th epochs. λ in equation (6) is set as 2.0.Te parameter

settings for the student model or the teacher model are
consistent with those in the original Faster R-CNN [32] and
DCN [31].

Te hardware platform utilized for training and testing
SS-MCOD comprised an Intel Xeon(R) E5-2620 v4 (CPU), an
Nvidia RTX 3090 graphics processing unit (GPU), and 128GB
of memory. At the software level, the algorithm is implemented
using the MMDetection [33] deep object detection framework
based on PyTorch [34]. Te main library versions used are
PyTorch (1.9.0), Torchvision (0.10.0), Cuda (11.1), OpenCV
(4.7.0.72), mmcv (1.3.9), and MMDetection (2.16.0). Te overall
algorithm implementation system runs on Ubuntu 16.04.

5. Results and Discussions

Training and testing results of the proposed SS-MCOD
under four training cases are introduced in this section.
Moreover, the infuence of pretraining on SS-MCOD is
discussed.

(a) (b)

Figure 4: Receptive feld comparison of (a) conventional convolution and (b) DCN.

60 (2%) 362 objects 2940 (98%) 17485 objects

150 (5%) 876 objects 2850 (95%) 16988 objects

300 (10%) 1801 objects 2700 (90%) 16012 objects

1500 (50%) 8985 objects 1500 (50%) 8878 objects

Case 1

Case 2

Case 3

Case 4

Labeled images number
Unlabeled images number

Figure 5: Numbers of images and objects of diferent training cases in training dataset.
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5.1. Training Results. Te proposed SS-MCOD was trained
from scratch by four training cases. Figure 6 illustrates the
training process. Training labeled classifcation loss repre-
sents Lcls

l ; this item is part of the Faster R-CNN loss function.
Figure 6(a) shows that Lcls

l decreases steadily with the in-
crease of training steps. As the ratio of labeled data increases,
so does the value of Lcls

l at the same training step, which is
due to the lack of ftting. Training labeled classifcation loss
represents Lloc

l , Figure 6(b) shows that Lloc
l increases frst and

then decreases, which is due to the characteristics of the two-
stage detection method; the coordinates of bounding boxes
can be regressed only after the candidate regions are
screened. Similarly, as the ratio of labeled data grows, the
loss also increases. Training unlabeled classifcation loss and
location loss represent Lcls

u and Lloc
u , respectively. Figure 6(c)

shows that Lcls
u increases signifcantly frst and then de-

creases. Figure 6(d) shows that Lloc
u also increases signif-

cantly and then decreases slowly. Tis is because the quality
of pseudolabels in the unsupervised learning branch is poor
at the beginning of training. As the number of training steps
increases, the accuracy of pseudolabel classifcation and
regression improves, leading to a reduction in both two
losses. Additionally, with the increase in the ratio of labeled
data, Lcls

u and Lloc
u show a slight decrease, because the re-

duction of the number of unlabeled data reduces the dif-
culty of ftting.

Figure 7 is the curve of SS-MCOD total loss L. Tis loss
initially experiences a sharp decrease followed by a gradual
increase, and eventually transitions into a slow decrease with
advancing training steps. Te initial descent corresponds to
the rapid data ftting by the supervised training branch of SS-
MCOD. Te subsequent ascent represents the evolving
quality of pseudolabels in the unsupervised training branch.
Finally, the subsequent descent refects the improved data
ftting capabilities of both the supervised and unsupervised
training branches.

5.2. Intradataset Evaluation Results. To demonstrate the
efectiveness of the proposed SS-MCOD, the fully-
supervised detection method FRCD and the well-known
semisupervised object detection method Soft teacher (Faster
R-CNN as the student module) were used for evaluation and
comparison. During training, Soft teacher and the proposed
SS-MCOD used the same training data, while FRCD used
only labeled data for training.

Table 1 presents the testing results of three diferent
methods on validation dataset I, using varying training cases.
In Case 1, the mAP achieved by FRCD trained solely with 60
labeled images reached 5.3. Demonstrating the benefts of
semisupervised learning, the other two methods exhibit
signifcant enhancements in mAP, highlighting the con-
siderable advantage of the semisupervised detection
framework for construction objects when labeled data is
scarce. Notably, the proposed SS-MCOD outperforms Soft
teacher in terms of evaluation accuracy. Similar trends are
observed in Cases 2, 3, and 4. Relative to the fully-supervised
FRCD, SS-MCOD yields substantial improvements in
evaluation accuracy, with mAP increases of 10.8, 11.4, 10.4,

and 13.8 in the respective cases. Tese improvements rep-
resent percentage increases of 204%, 107%, 58%, and 63%,
respectively. Tis underscores the notion that SS-MCOD
achieves more pronounced accuracy enhancements as the
proportion of labeled data decreases, as well as improve-
ments in recall. In contrast, this relationship is inverted
when comparing Soft teacher to SS-MCOD. Tis phe-
nomenon can be interpreted as follows: Leveraging un-
labeled data, the semisupervised COD framework can
efectively yield a more precise COD model compared to its
fully-supervised counterpart.

Temultiscale characteristic of construction objects is an
important feature. APl, APm, and APs represent the accuracy
of multiscale COD. Compared with FRCD, APl, APm, and
APs of SS-MCOD increased by 148%/300%/471%, 85%/
117%/116%, 44%/57%/27%, and 47%/58%/56%, re-
spectively. Compared with Soft teacher, APl, APm, and APs

of SS-MCOD increased by 10%/14%/11%, 0%/3%/2%, 10%/
5%/1%, and 10%/1%/5%, respectively. Tese results dem-
onstrate that the proposed SS-MCOD achieves signifcantly
higher multiscale detection accuracy compared to FRCD
and exhibits improvement in comparison to Soft teacher.
Tis can be explained as follows: SS-MCOD with DCN
structure can better extract multilevel features of multiscale
construction objects to achieve more accurate detection
results.

Te ability to identify construction objects across mul-
tiple scales is a pivotal feature. In this context, APl, APm, and
APs denote the accuracy of MCOD. When juxtaposed with
FRCD, the SS-MCOD display increases in APl, APm, and
APs by 148%/300%/471%, 85%/117%/116%, 44%/57%/27%,
and 47%/58%/56%, in sequential order. In contrast with Soft
teacher, the SS-MCOD sees improvements in APl, APm, and
APs by 10%/14%/11%, 0%/3%/2%, 10%/5%/1%, and 10%/
1%/5%, respectively. Tis comparison underscores the su-
perior multiscale detection accuracy of the proposed
SS-MCOD when set against FRCD and its evident ad-
vancement over Soft teacher. Te observed enhancement
can be rationalized as follows: SS-MCOD, equipped with
a DCN structure, adeptly extracts multilevel features from
construction objects of varying scales, culminating in more
precise detection outcomes.

Figure 8 qualitatively shows the example detection re-
sults of SS-MCOD (solid line) and Soft teacher (dotted line)
in Case 4. Soft teacher failed to detect the two tower cranes
positioned in the middle of the upper left image, the pump
truck situated on the left side of the upper middle image, the
construction worker located in the lower right of the middle
left image, the three construction workers positioned on the
right side of the lower left image, as well as the construction
vehicle situated in the middle of the lower middle image. In
contrast, SS-MCOD successfully detected all of these objects.
Tis indicates that the proposed SS-MCOD can achieve
more accurate detection when there are construction objects
with large-scale diferences in the same image.

Figure 8 provides a qualitative depiction of example
detection results for SS-MCOD (represented by a solid line)
and Soft teacher (represented by a dotted line) within Case
4. Notably, in the upper left image, two tower cranes
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positioned centrally were successfully detected by SS-
MCOD, while eluding detection by Soft Teacher. Similarly,
the pump truck situated on the left side of the upper middle
image, the construction worker located in the lower right of
the middle left image, the three construction workers
positioned on the right side of the lower left image, and the
construction vehicle at the center of the lower middle
image, all went unnoticed by Soft teacher, yet were accu-
rately identifed by SS-MCOD.Tese results underscore the
capability of the proposed SS-MCOD to achieve heightened
detection accuracy, particularly in scenarios involving
construction objects with signifcant scale variations within
a single image.

5.3. Across-Dataset Evaluation Results. To ascertain the
generalization capabilities across-datasets, a novel dataset
(validation dataset II) was used to evaluate the proposed SS-
MCOD.Te evaluation results on Validation Dataset II, with
various training cases, are illustrated in Table 2.

Similar to the intradataset evaluation, the fully-
supervised framework (FRCD) exhibits noticeably lower
detection accuracy compared to the semisupervised
frameworks. Distinct from the intradataset fndings, the
performance of the SS-MCOD against Soft Teacher sees
substantial enhancement. Specifcally, across the four
training cases, SS-MCOD demonstrates improvements of
12.6 (49%), 6.4 (17%), 6.2 (16%), and 8.1 (19%) in mAP,
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Figure 6: Loss curves of four loss subitems.
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Figure 7: Total training loss curve of SS-MCOD.
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respectively. Furthermore, SS-MCOD’s AP0.5 and AP0.75
outperforms Soft Teacher by 43%/52% and 4%/39%, re-
spectively, alongside a 4%/34% increase in AP0.5 and a 3%/
40% boost in AP0.75. Tese fndings signify that SS-MCOD’s
accuracy augmentation, when using minimal labeled data
(Case 1), arises from enhancements in both low-confdence
and high-confdence detection outcomes. In cases with

higher proportions of labeled data, accuracy gains primarily
stem from improvements in high-confdence detections.

In terms of MCOD accuracy, SS-MCOD displays in-
creased performance compared to Soft teacher. Specifcally,
SS-MCOD demonstrates growth in APl, APm, and APs by
51%/11%/9%, 18%/3%/2%, 10%/−1%/−12%, and 19%/4%/
−2%, respectively. Tis analysis highlights SS-MCOD’s

Table 1: Evaluation results on validation dataset I with diferent training cases.

Case Method mAP AP0.5 AP0.75 APl APm APs AR0.5:0.95

Case 1
FRCD 5.3 16.5 3.3 8.6 3.2 0.7 9.6

Soft teacher 15.5 34.2 11.7 19.4 11.2 3.6 29.5
SS-MCOD 16.1  4.7 12.9 21.4 12.8 4.0  0.1

Case 2
FRCD 10.6 31.9 8.8 15.5 6.9 2.5 22.7

Soft teacher 21.4 45.2 16.4 28.7 14.5 5.3 35.2
SS-MCOD 22.0 46.1 19.0 28.7 15.0 5.4  6.6

Case 3
FRCD 17.7 36.8 13.5 25.5 12.7 4.8 32.6

Soft teacher 25.4 50.9 22.5 33.2 19.0 6.0 39.8
SS-MCOD 28.1 61. 26.9  6.8 20.0 6.1 41.8

Case 4
FRCD 21.6 45.7 17.1 30.3 16.6 5.7 36.1

Soft teacher 32.6 59.7 31.7 40.7 24.9 8.5 47.6
SS-MCOD  5.4 61.  6.2 44.7 25.1 8.9 49.1

Best evaluation results among three methods.

SS-MCOD
Soft teacher

Figure 8: Example detection results of two semisupervised methods in Case 4.
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Table 2: Evaluation results on validation dataset II with diferent training cases.

Case Method mAP AP0.5 AP0.75 APl APm APs AR0.5:0.95

Case 1
FRCD 10.7 29.7 8.0 13.6 7.3 0.0 19.6

Soft teacher 25.6 52.2 22.4 26.7 16.5 5.5 41.7
SS-MCOD  8.2 75.4  4.2 40. 18. 6.0 50.9

Case 2
FRCD 25.3 51.6 20.5 25.8 16.1 0.0 40.4

Soft teacher 36.3 75.2 30.1 37.9 21.2 5.5 51.7
SS-MCOD 42.7 78.4 42.1 44.7 22.5 7.1 56.0

Case 3
FRCD 28.7 57.5 24.9 29.1 17.2 3.0 44.0

Soft teacher 38.7 75.2 35.6 40.3 25.9 9.8 54.0
SS-MCOD 44.9 78. 47.7 47.1 25.5 8.6 58.5

Case 4
FRCD 31.6 60.2 28.6 32.3 20.8 3.0 47.7

Soft teacher 42.1 79.8 40.2 43.6 27.7 12. 58.1
SS-MCOD 50.2 82.7 56.5 52.2 29.0 12.0 62.6

Best evaluation results among three methods.
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Figure 9: Loss curves of four loss subitems with pretraining.
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primary enhancement in detecting large-scale construction
objects and accentuates the noticeable disparity in accuracy
among objects of varied scales. Tis discrepancy can be
attributed to the unique proportion of scales in validation
dataset II, where it stands at 86%:13%:1%. It is worth noting
that this proportion varies to 39% : 36% : 25% in validation
dataset I.

5.4. Infuence of Pretraining on SS-MCOD. Te efectiveness
of pretraining in object detection models, which allows for
the extraction of more generalized features, has been widely
recognized and established. To ensure both representa-
tiveness and accessibility of object detection datasets, this
study used the training set from the COCO dataset [35] to
train the student module of SS-MCOD.Te training process
spanned 180,000 epochs, after which the trained weight
parameters were adopted as the initial weights for SS-
MCOD’s continued training or fne-tuning.

Illustrated in Figures 9 and 10 are the training loss curves
with pretraining. A notable reduction in loss is observed for
SS-MCOD with pretraining in comparison to SS-MCOD
without pretraining, evident in both partial loss and total
loss. Tis reduction signifes an enhanced capacity of the
model to conform to the dataset. Specifcally, the trends and
patterns of partial losses, Lcls

l and Lloc
l , within the labeled

branches mirror those of SS-MCOD without pretraining,
albeit with over 30% reduction in loss values. However,
signifcant changes are noted in the unlabeled training
partial losses when compared to SS-MCOD without pre-
training. Te initial surge in Lucls is considerably mitigated,
and the ascending phase of Lloc

u is notably abbreviated,
followed by a pronounced reduction. Tese observations
underscore the impact of the unlabeled training branch in
expediting pseudolabel generation, thus substantially aug-
menting the model’s ftting capability.

Table 3 presents the evaluation results of SS-MCOD on
two validation datasets with pretraining. In the context of
intradataset evaluation, SS-MCOD’s mAP with pretraining

exhibited substantial improvements, registering increments
of 37%, 51%, 41%, and 30%, respectively, when compared to
SS-MCOD without pretraining. In terms of across-dataset
evaluation, SS-MCOD’s mAP with pretraining saw notice-
able enhancements, with increases of 33%, 31%, 31%, and
19%, respectively, relative to SS-MCODwithout pretraining.
Tese fndings underscore the signifcant efcacy of the
pretraining strategy in augmenting the performance of
SS-MCOD trained on datasets characterized by varying
proportions of labeled data.

In addition to pretraining, the choice of backbone for the
student or teacher modules in this paper’s Faster R-CNN is
also a signifcant factor afecting detection accuracy. Te use
of a more powerful feature extractor can further improve
detection accuracy, but at the same time, the algorithm’s
processing speed will decrease. Furthermore, by statistically
analyzing the size characteristics of construction objects and
then determining the size and quantity of anchors in Faster
R-CNN, detection accuracy can be further enhanced.

6. Conclusions

In this paper, a novel semisupervised multiscale construc-
tion object detection method, SS-MCOD, is introduced.Tis
approach takes advantage of a limited number of labeled
samples along with a vast amount of unlabeled construction
images for training. As a result, SS-MCOD achieves im-
proved accuracy and robustness in object detection. Te
following conclusions can be drawn: (1) Superior perfor-
mance over fully-supervised methods: When contrasted
with fully-supervised methods, SS-MCOD achieves sub-
stantial improvements in both intradataset and across-
dataset evaluations. Notably, for the four cases, the im-
provements of 204%, 107%, 58%, and 63% in intradataset
evaluation and 357%, 168%, 156%, and 158% in across-
dataset evaluation have been achieved. Tese outcomes
underscore SS-MCOD’s elevated accuracy and its adeptness
in generalizing across diverse datasets. (2) Multiscale ca-
pability: By harnessing the potent multiscale feature

Table 3: Evaluation results of SS-MCOD on two validation datasets with pretraining.

Validation
dataset Case mAP AP0.5 AP0.75 APl APm APs AR0.5:0.95

Dataset I

Case
1 22.2 35.9 24.2 30.2 14.9 4.3 34.2

Case
2 33.3 52.2 35.2 44.9 21.0 8.6 46.3

Case
3 39.7 59.6 43.6 52.5 27.1 8.2 51.5

Case
4 46.1 68.1 50.8 58.2 33.2 14.9 59.1

Dataset II

Case
1 51.0 77.6 57.8 53.7 24.8 0.1 62.8

Case
2 56.2 81.0 64.9 59.1 25.1 0.2 66.7

Case
3 59.1 83.8 68.5 61.8 30.1 0.8 69.5

Case
4 59.8 84.8 68.7 62.4 31.7 2.4 70.9
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extraction capabilities inherent in the DCN architecture,
SS-MCOD demonstrates pronounced advancements in
multiscale COD accuracy compared to the widely recog-
nized semisupervised object detection method, Soft teacher.
(3) Impact of pretraining:Te incorporation of a pretraining
strategy yields a signifcant enhancement in the accuracy and
generalization capabilities of SS-MCOD. Model pretraining
using COCO dataset results in an average mAP increase of
40% for intradataset evaluation and 28% for across-dataset
evaluation.

Te proposed semisupervised framework efectively
enhances detection accuracy and robustness, making it
applicable for the efcient and cost-efective detection of
various valuable objects in civil engineering contexts.
However, this study still has the following limitations: the
SS-MCOD framework proposed uses Faster R-CNN as the
detector, which is a classic two-stage anchor-based detection
framework with relatively high detection accuracy but slow
running speed. Future research eforts can focus on adopting
single-stage anchor-based or anchor-free detectors with
higher detection efciency, ensuring a signifcant reduction
in algorithm runtime while improving detection accuracy.

Data Availability

Te data used in this study are available on request from the
corresponding author.

Conflicts of Interest

Te authors declare that they have no conficts of interest
with respect to the research, authorship, and/or publication
of this article.

Acknowledgments

Financial support for this study was provided by NSFC
(Grant nos. U22A20230 and 52278299) and Fundamental
Research Funds for the Central Universities (Grant no.
FRFCU5710051018).

References

[1] J. Yang, M.-W. Park, P. A. Vela, and M. Golparvar-Fard,
“Construction performance monitoring via still images, time-
lapse photos, and video streams: now, tomorrow, and the
future,” Advanced Engineering Informatics, vol. 29, no. 2,
pp. 211–224, 2015.

[2] W. Fang, L. Ding, P. E. D. Love et al., “Computer vision
applications in construction safety assurance,” Automation in
Construction, vol. 110, Article ID 103013, 2020.

[3] Y. Guo, Y. Xu, and S. Li, “Dense construction vehicle de-
tection based on orientation-aware feature fusion convolu-
tional neural network,” Automation in Construction, vol. 112,
Article ID 103124, 2020.

[4] B. Ekanayake, J. K. W. Wong, A. A. F. Fini, and P. Smith,
“Computer vision-based interior construction progress
monitoring: a literature review and future research di-
rections,” Automation in Construction, vol. 127, Article ID
103705, 2021.

[5] B. Xiao and S.-C. Kang, “Development of an image data set of
construction machines for deep learning object detection,”
Journal of Computing in Civil Engineering, vol. 35, no. 2,
Article ID 05020005, 2021.

[6] A. Xuehui, Z. Li, L. Zuguang, W. Chengzhi, L. Pengfei, and
L. Zhiwei, “Dataset and benchmark for detecting moving
objects in construction sites,” Automation in Construction,
vol. 122, Article ID 103482, 2021.

[7] R. Duan, H. Deng, M. Tian, Y. Deng, and J. Lin, “SODA:
a large-scale open site object detection dataset for deep
learning in construction,” Automation in Construction,
vol. 142, Article ID 104499, 2022.

[8] S. Chi and C. H. Caldas, “Automated object identifcation
using optical video cameras on construction sites,” Computer-
Aided Civil and Infrastructure Engineering, vol. 26, no. 5,
pp. 368–380, 2011.

[9] M.-W. Park and I. Brilakis, “Construction worker detection in
video frames for initializing vision trackers,” Automation in
Construction, vol. 28, pp. 15–25, 2012.

[10] E. Rezazadeh Azar, B. McCabe, and B. McCabe, “Part based
model and spatial–temporal reasoning to recognize hydraulic
excavators in construction images and videos,” Automation in
Construction, vol. 24, pp. 194–202, 2012.

[11] C. Yuan, S. Li, and H. Cai, “Vision-based excavator detection
and tracking using hybrid kinematic shapes and key nodes,”
Journal of Computing in Civil Engineering, vol. 31, no. 1,
Article ID 04016038, 2017.

[12] W. Fang, L. Ding, B. Zhong, P. E. Love, and H. Luo, “Au-
tomated detection of workers and heavy equipment on
construction sites: a convolutional neural network approach,”
Advanced Engineering Informatics, vol. 37, pp. 139–149, 2018.

[13] H. Kim, H. Kim, Y. W. Hong, and H. Byun, “Detecting
construction equipment using a region-based fully con-
volutional network and transfer learning,” Journal of Com-
puting in Civil Engineering, vol. 32, no. 2, Article ID 04017082,
2018.

[14] H. Son, H. Choi, H. Seong, and C. Kim, “Detection of con-
struction workers under varying poses and changing back-
ground in image sequences via very deep residual networks,”
Automation in Construction, vol. 99, pp. 27–38, 2019.

[15] J. Lu, Z. Yao, Q. Bi, and X. Li, “A neural network–based
approach for fll factor estimation and bucket detection on
construction vehicles,” Computer-Aided Civil and In-
frastructure Engineering, vol. 36, no. 12, pp. 1600–1618, 2021.

[16] D. Roberts and M. Golparvar-Fard, “End-to-end vision-based
detection, tracking and activity analysis of earthmoving
equipment flmed at ground level,” Automation in Con-
struction, vol. 105, Article ID 102811, 2019.

[17] S. Arabi, A. Haghighat, and A. Sharma, “A deep-learning-
based computer vision solution for construction vehicle de-
tection,” Computer-Aided Civil and Infrastructure Engineer-
ing, vol. 35, no. 7, pp. 753–767, 2020.

[18] B. Xiao, Q. Lin, and Y. Chen, “A vision-based method for
automatic tracking of construction machines at nighttime
based on deep learning illumination enhancement,” Auto-
mation in Construction, vol. 127, Article ID 103721, 2021.

[19] Y. Guo, Y. Xu, J. Niu, and S. Li, “Anchor-free arbitrary-oriented
construction vehicle detection with orientation-aware Gaussian
heatmap,” Computer-Aided Civil and Infrastructure Engineer-
ing, vol. 38, no. 7, pp. 907–919, 2023.

[20] H. Tajeen and Z. Zhu, “Image dataset development for
measuring construction equipment recognition perfor-
mance,” Automation in Construction, vol. 48, pp. 1–10, 2014.

12 Structural Control and Health Monitoring



[21] M. M. Soltani, Z. Zhu, and A. Hammad, “Automated an-
notation for visual recognition of construction resources
using synthetic images,” Automation in Construction, vol. 62,
pp. 14–23, 2016.

[22] S. Bang, F. Baek, S. Park, W. Kim, and H. Kim, “Image
augmentation to improve construction resource detection
using generative adversarial networks, cut-and-paste, and
image transformation techniques,” Automation in Con-
struction, vol. 115, Article ID 103198, 2020.

[23] J. Hwang, J. Kim, S. Chi, and J. O. Seo, “Development of
training image database using web crawling for vision-based
site monitoring,” Automation in Construction, vol. 135, Ar-
ticle ID 104141, 2022.

[24] J. Kim and S. Chi, “A few-shot learning approach for
database-free vision-based monitoring on construction sites,”
Automation in Construction, vol. 124, Article ID 103566, 2021.

[25] E. Karaaslan, U. Bagci, and F. N. Catbas, “Attention-guided
analysis of infrastructure damage with semi-supervised deep
learning,” Automation in Construction, vol. 125, Article ID
103634, 2021.

[26] J. Guo, Q. Wang, and Y. Li, “Semi-supervised learning based
on convolutional neural network and uncertainty flter for
façade defects classifcation,” Computer-Aided Civil and In-
frastructure Engineering, vol. 36, no. 3, pp. 302–317, 2021.

[27] W.Wang and C. Su, “Semi-supervised semantic segmentation
network for surface crack detection,” Automation in Con-
struction, vol. 128, Article ID 103786, 2021.

[28] G. Zhang, Y. Pan, and L. Zhang, “Semi-supervised learning
with GAN for automatic defect detection from images,”
Automation in Construction, vol. 128, Article ID 103764, 2021.

[29] D. Haynes, S. Corns, and G. Kumar Venayagamoorthy, “An
exponential moving average algorithm,” in Proceedings of the
2012 IEEE Congress on Evolutionary Computation, Brisbane,
Australia, June 2012.

[30] M. Xu, Z. Zhang, H. Han et al., “End-to-End semi-supervised
object detection with Soft teacher,” 2021, https://arxiv.org/
abs/2106.09018.

[31] J. Dai, H. Qi, Y. Xiong et al., “Deformable convolutional
networks,” in Proceedings of the 2017 IEEE International
Conference on Computer Vision (ICCV), pp. 22–29, New York,
NY, USA, October 2017.

[32] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: towards
real-time object detection with region proposal networks,”
IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 39, no. 6, pp. 1137–1149, 2017.

[33] K. Chen, J. Wang, J. Pang et al., “MMDetection: openMMLab
detection toolbox and benchmark,” 2019, https://arxiv.org/
abs/1906.07155.

[34] A. Paszke, S. Gross, F. Massa et al., “PyTorch: an imperative
style, high-performance deep learning library,” 2019, https://
arxiv.org/abs/1912.01703.

[35] T.-Y. Lin, M. Maire, S. Belongie et al., “Microsoft coco:
common objects in context,” in Proceedings of the Computer
Vision–ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 2014.

Structural Control and Health Monitoring 13

https://arxiv.org/abs/2106.09018
https://arxiv.org/abs/2106.09018
https://arxiv.org/abs/1906.07155
https://arxiv.org/abs/1906.07155
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703



