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Bridge expansion joints (BEJs) in service are susceptible to damage from various factors such as fatigue, impact, and envi-
ronmental conditions. While visual inspection is the most common approach for inspecting BEJs, it is subjective and labor-
intensive. In this paper, we propose a novel methodology for detecting the fault status of BEJs, inspired by voiceprint recognition
(VPR) based on audio signals. We establish an Artifcial Neural Network to flter nonevent segments from low signal-to-noise
ratio signals, achieving an AuC value of 0.981. We design and improve ConFormer VPR models with a multifeature aggregation
strategy and cascade them to realize fault detection of BEJs. For three successive tasks in classifying environment sound types,
vehicle impact types, and faults, the ConFormer VPR models achieve AuC values of 0.975, 0.925, and 0.886, respectively,
demonstrating the feasibility of our methods for unmanned inspection of BEJs. In future research, the introduction of multiple
types of damage and the implementation of benchmarking tests are planned to further enhance the capabilities of the system.

1. Introduction

Bridge expansion joints (BEJs) are structural components
that allow bridges to accommodate thermal movements and
vibrations caused by trafc loads, wind forces, and seismic
events. However, BEJs are also vulnerable to deterioration
and damage due to various factors, such as fatigue, corro-
sion, impact, and environmental conditions [1, 2]. Damaged
expansion joints can compromise the structural integrity of
the bridge, create noise and vibration problems, and pose
a hazard to trafc [3, 4]. Terefore, inspecting BEJs is es-
sential for ensuring the safety and functionality of the bridge,
as well as preventing costly and disruptive repairs in the
future.

Currently, the inspection of BEJs primarily relies on two
methods: manual visual inspection and nondestructive
testing (NDT) techniques [5, 6]. Trained professionals
conduct visual inspections, employing methods such as

hammer testing for bolt looseness, magnifying glasses or
microscopes for crack detection, and micrometers to assess
beam gap distances [7]. Despite its simplicity and efciency,
manual visual inspection is inherently subjective, contingent
upon the inspector’s expertise, skill, and fatigue. Further-
more, this approach has limitations, as it may overlook
concealed defects beneath the surface or within the joint.

Consequently, NDT methods are being explored for
a more objective and precise inspection of BEJs. Acceler-
ometers or displacement gauges are installed to capture the
dynamic response of BEJs. Tis allows for the extraction of
vibration characteristics induced by moving vehicles,
changes which are detected for fault identifcation in
damaged BEJ steel fngers [8]. A wireless installation, based
on Internet-of-Tings technology, has also been proposed to
enhance the fexibility of this approach [9, 10]. Ultrasonic
testing, proposed for inspecting steel conditions [11–13], can
be employed to pinpoint the damaged areas of steel
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components in BEJs. X-ray Computed Tomography (X-ray
CT) is being investigated to inspect the corrosion zones of
BEJ steel specimens in a laboratory setting [14]. Corrosion
products are observed in X-ray CT scanning images across
diferent vertical sections. Electromagnetic testing, a novel
NDT technique for detecting defects in steel components
[15], can be utilized to inspect support bars in BEJs.
However, these methods necessitate expensive specialized
equipment and trained personnel. Some methods also re-
quire lane closures and trafc control, thereby escalating the
cost and duration of the inspection process.

Previous research has investigated the sound produced
by vehicle impact on BEJs, with a focus on understanding its
generation [16] and devising methods to mitigate it for
environmental conservation [17, 18]. Findings suggest that
the audio response of BEJs contains information about their
operational status, as corroborated by experienced in-
spectors who have leveraged these sounds to pinpoint
anomalous BEJs [19]. Consequently, sound signals elicited
by vehicle impact hold the potential for detecting BEJ
damage. However, there is a paucity of studies on BEJ fault
inspection that utilize audio signals.

In recent decades, sound signals have been increasingly
utilized for detecting damage or anomalies in infrastructures
that are in service. To acquire these sound signals, a mi-
crophone or an array of microphones is required. Research
on auditory perception has shown that most of the in-
formation conveyed by sound signals is below 10 kHz [20].
As a result, a sampling rate of 16 kHz is commonly used in
most scenarios [21]. However, for applications that prioritize
efciency and are based on audio, a sampling rate of 8 kHz
can also be practical [22, 23].Ten, the original audio signals
are processed using digital signal processing (DSP) tech-
niques, such as Fourier Transform, to extract high-level
features. Given the unique characteristics of audio signals,
specifc features have also been defned, including Mel
frequency, Fbank [24], Gammatone [25], and so on.

After signal preprocessing, machine learning methods
can be used to detect faults in these infrastructures. In the
early stages, Hidden Markov Models (HMMs) are used to
classify audio signals by obtainingMel cepstrum coefcients,
resulting in a 58% accuracy rate for 18 types of sounds
[26, 27]. For more generalized usage, statistical learning
models are applied in fault detection. Te Support Vector
Machine (SVM) is widely used for detecting damage to
structures or equipment, such as bolt loosening [28],
pipeline cracking [29, 30], bearing faults [31], ratchet faults
[32], and turbine blade damage [33]. A decision tree is
designed to classify damage events of wind turbine rotor
blades using airborne sound, and the results show the high
precision of the algorithm [34]. Artifcial Neural Network
(ANN) model is selected to analyze in-pipe leak detection
and bearing fault inspection, resulting in high precision [35].
In recent years, deep learning models have been introduced
into fault detection [36, 37] as they can obtain deeper fea-
tures of signals with greater efciency. One-Dimensional
Convolution Neural Network (1D-CNN) is frst applied to
audio signal classifcation [38, 39]. To exploit the features of
time-series signals, a recurrent module is added to the

1D-CNN model, improving its classifcation accuracy [40].
Additionally, a Long Short-Term Memory model is utilized
for fault detection in additive manufacturing in industrial
applications [41]. By applyingWaveNet [42], the accuracy of
fault detection is improved compared to the LSTM model
[43]. For special occasions with few fault data, unsupervised
methods are proposed to monitor the operation state of
machines [44–47]. Tese approaches are available in non-
interrupting surroundings where only the sounds of mon-
itored devices are acquired.

In conclusion, existing research suggests that manual
visual inspection remains the most prevalent method for
inspecting in-service BEJs. Techniques such as accelerom-
eters, ultrasonic sensors, and electromagnetic sensors have
been explored for detecting BEJ faults, aiming to inspect the
BEJs in an NDT manner. However, these techniques are
labor-intensive and cost-intensive and necessitate pro-
fessional training or practical analysis. Given its profciency
in anomaly detection tasks and the application of cutting-
edge deep learning techniques for audio analysis, the audio
signal-based approach shows promise as a more cost-
efective and automated method for detecting faults in in-
service BEJs. For BEJs that are in service, the environment is
noisier and more complex than in a factory or laboratory. As
a result, more robust and feasible event segmentation
methods and fault detection models are required. Recent
advancements in speech recognition and voiceprint recog-
nition (VPR) for human voices can be utilized for im-
provement, especially VPR which also focuses on the audio
signal classifcation problem.

In this study, we propose a novel framework for fault
detection of in-service BEJs based on VPR. First, micro-
phones are deployed under the BEJs to acquire audio data.
Ten, an Artifcial Neural Network (ANN) classifcation
model is established to flter nonevent segments from low
SNR audio signals in the BEJ environment. Subsequently,
the ConFormer VPR model is designed and improved for
general audio event classifcation. Finally, a cascading ap-
proach is proposed, consisting of three successive Con-
Former VPR models, to separate vehicle impact audio,
distinguish the detailed type of vehicle, and ultimately detect
fault status. Te main contributions of this work are four-
fold. (1) Acoustic sensors and VPR algorithms are in-
troduced for the frst time in the fault detection of BEJs. (2) A
machine learning model is applied for audio signal event
segmentation, achieving an AuC of 0.981. (3) Te original
ConFormer is modifed for VPR and improved with
a multifeature aggregation strategy. (4) A cascading ap-
proach is proposed by combining ConFormer models for
fault detection of BEJs.

Te remainder of this work is organized as follows.
Section “Overview of our methodology” presents our
methodology for fault detection of BEJs based on the VPR
technique. In Section “Audio event segmentation based on
Fbank-ANN model,” the Fbank feature and ANN model for
audio signal event segmentation are introduced. Section
“Fault detection of BEJs by cascading ConFormer VPR
models” proposes the ConFormer structure for VPR and
a cascading approach consisting of ConFormer models for
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complete fault detection. Furthermore, a case study is
conducted and the results are discussed in Section “Case
study.” Finally, conclusions are drawn in Section
“Conclusions.”

2. Overview of Our Methodology

In this paper, we propose a framework for fault detection of
in-service BEJs based on audio processing techniques. As
shown in Figure 1, the methodology consists of four
major parts.

First, a microphone is deployed under the BEJ to acquire
audio data. Additionally, some auxiliary sensors are nec-
essary for annotation purposes, such as cameras to annotate
actual passing vehicles for sound collection. Te audio data
are then preprocessed using the Fbank approach, which
includes preemphasis, framing and windowing, Short-Term
Fourier Transform (STFT), and Mel flters. Te resulting
Fbank feature maps are used to train an ANN classifcation
model for audio event segmentation in actual applications.
Finally, fault detection can be achieved by cascading Con-
Former VPR models. Te frst ConFormer is applied for
environment VPR to separate vehicle impact audio signals.
Te second ConFormer is used to distinguish the detailed
type of vehicle impact. Te last ConFormer serves for the
fnal fault detection under the same vehicle impact type.

3. Audio Event Segmentation Based on Fbank-
ANN Model

Exposed to the outdoor environment, BEJs are surrounded
by multiple types of sounds caused by four factors, as listed
in Table 1.

Nonevent segments in audio signals represent mean-
ingless information and should be eliminated. Treshold-
based methods, such as Short-Term Energy (STE) and
Short-Term Cross-Zero Rate (STCZR), are popular ap-
proaches for audio event segmentation. However, in low
signal-to-noise ratio (SNR) environments such as BEJs, these
methods may not perform well for event segmentation
[48, 49].

In this paper, we apply a machine learning (ML) ap-
proach to event segmentation of audio signals by treating it
as a classifcation problem. Firstly, Fbank feature extraction
is used for audio preprocessing, with event and nonevent
samples manually annotated. Ten, an ANN model can be
trained to distinguish event features from nonevent features.

3.1. Fbank Feature. Te audio signal data have ultra-high
frequency and rich semantics, making its feature extraction
approach more complex than other signal data in the bridge
monitoring system. By investigating the theory of auditory
perception, the Fbank feature descriptor has been proposed
and realized through four calculation procedures [24].

Step 1. Preemphasis. Te high-frequency components of
audio signals are signifcant in VPR. However, the uniform
discretization process of signal sampling can cause attenu-
ation of energy in high-frequency regions. Terefore,
a preemphasis procedure is required to boost energy and
highlight resonant peaks in these regions. Specifcally, a frst-
order digital flter can be used to achieve this compensation,
as follows:

xp(n) � x(n) − αx(n − 1), (1)

where n is discrete time coordinate, xp(∗) and x(∗) are
audio signals after and before the preemphasis procedure,
respectively, and α is the factor of emphasis.

Step 2. Framing andWindowing.Te process of audio signal
generation has inertia, indicating that the audio signal is
stationary in a short time period and exhibits short-time
stationarity. Terefore, the original high-frequency signal
needs to be segmented into multiple short-duration audio
segments called speech frames. Frame-length and frame-
shift should be determined in the process. Te former refers
to the duration of the audio frame, while the latter defnes
the overlap between adjacent frames. Since framing is
a truncation of signals that can cause spectral leakage, audio
frames need to be windowed to reduce edge weighting and
avoid the Gibbs phenomenon. A commonly used window
function for audio signals is the Hamming window:

w(n) � 0.54 − 0.46 cos
2πn

N − 1
, (2)

where w(∗) is the window function and N is the sample
number of the audio frame.

Step 3. STFT. Te audio frames are processed by K-point
STFT to obtain the frequency-domain responses of audio
frames, as shown in equation (3). Here xt(n) represents the
n-th signal of the t-th frame. Ten, the power spectrum of
audio frames can be further calculated using equation (4).

Xt(k) � 
K−1

n�0
xt(n) exp −j

2πnk

K
 , k � 0, 1, . . . , K − 1,

(3)

Pt(k) �
|Xt(k)|

2

K
, k � 1, 2, . . . ,

K

2
+ 1. (4)

Step 4. Mel Filter. Te frequency-domain responses of audio
frames are further processed by Mel flters. Mel flters are
mathematically triangular bandpass flters, set one by one
according to linear intervals of Mel frequency. Te center
frequency interval between adjacent triangular flters can be
obtained using the following equation:
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Δ �
Mel fmax(  − Mel fmin( 

M + 1
Mel(f)

� 2595 log10 1 +
f

700
 ,

(5)

where M is the number of triangular flters and fmax and
fmin are the maximum and minimum real frequencies,
respectively. Te lower frequency fL(m), center frequency
fmid(m), and higher frequency fH(m) of the m-th tri-
angular flter are defned as follows:
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Figure 1: Overview of our methodology.

Table 1: Sounds in BEJ environment.

Factor Description

Vehicle factors Audio events generated by vehicles passing over BEJs include wheel impact sounds,
vehicle horn sounds, and more

Human factors Audio events, such as the sound of personnel speaking, can occur due to the passage
of inspectors near BEJs

Bird and animal factors Audio events, such as bird sounds, can occur due to birds and animals passing near
the expansion joints

Noise factors Noise can be generated by the aerodynamic factors of the environment in which it is
located, such as urban ambient noise and beach ambient noise
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fL � fmin + (m − 1) × Mel−1Δ,

fH � fmin + (m + 1) × Mel−1Δ

fmid � fmin + m × Mel−1Δ.

(6)

Here m � 1, 2, . . . , M, so the response of the m-th tri-
angular flter in Mel flter bank at frequency c is

Hm(c) �

0, c<fL(m),

c − fmid

fmid − fL

, fL ≤ c≤fmid(m),

fmid − c

fH − fmid
, fmid ≤ c≤fH(m),

0, c>fH(m),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where c is in the range [fmin, fmax]. Figure 2 shows the Mel
flter bank with M � 10. It can be seen that the fltering range
widens at high frequencies. Te upper limit amplitudes of
the flter are the same to simultaneously retain low and high
frequency information of the audio.

Ten, the power spectrum of the audio signal after STFT
is input into the Mel flter bank to extract the Mel power
spectrum of the audio, calculated using the following
equation:

Ct(m) � 
K/2+1

k�1
Pt(k)Hm(ϕ(k)), m � 1, 2, . . . , M,

ϕ(k) � (k − 1) ×
fs

K
, k � 1, 2, . . . ,

K

2
+ 1,

(8)

where t and m are the number of frames and triangular
flters, separately.

Furthermore, the obtained Mel power spectrum is
subjected to a logarithmic operation to obtain the fnal
Fbank feature of the t-th frame along the m-th dimension.

ht(m) � lnCt(m), m � 1, 2, . . . , M. (9)

An illustration of Fbank feature acquisition is shown in
Figure 3. Te 2-second audio signals are processed into 200
frames with a frame-length of 25ms and a frame-shift of
10ms. After STFT, nonevent segments of the audio signals
have low responses, as shown in Figure 3(b). Ten, an 80-
dimensional Mel flter bank is used to obtain Fbank features
of the audio, as shown in Figure 3(c). Te features will be
used for further applications.

3.2. ANN Model for Distinguishing between Events and
Nonevents. Audio signals are preprocessed to obtain Fbank
features. A classifcation model is then required to distin-
guish nonevent features from event features. ANN is a type
of ML model that can learn any nonlinear function. For an
ANN to work, audio signals are annotated into event and
nonevent segments and processed to obtain Fbank features

frame by frame. Te model is then built and trained to
classify Fbank features of event or nonevent frames. Finally,
the model is applied for event frame recognition, which is
the purpose of event segmentation.

An ANN model is composed of an input layer, one or
more hidden layers, and an output layer. Te number of
elements in the input and output layers is determined by the
dimension of the feature vector and the number of pre-
diction categories, respectively. Te number of elements in
the hidden layer(s) is determined through hyperparameter
tuning. Mathematically, each layer consists of two algo-
rithmic steps: linear weighted summation and nonlinear
activation, as represented by the following equation:

m � wx + b,

a � Act(m) � max (0, x),
(10)

where x represents the input vector, w and b are weight
parameter vectors to be learned, Act(∗) represents the ac-
tivation function, which in this case is the ReLU function,
and a is the output result of this layer and serves as the input
vector for the next layer.

An ANN forms a complex nonlinear cascading structure
through its multiple layers, enabling it to ft the mapping
relationship between input and output. Specifcally, the
back-propagation mechanism [50] is used to tune the model
by minimizing the error between the model’s output and the
true result, namely, the loss function L(∗):

L(θ) �
1
n



n

r�1
‖ g xr

; θi(  − yr
‖ , (11)

where θ represents the weighting parameters to be learned, n
is the number of samples, y is the fnal output vector, and
g(∗) represents the entire ANN model.

Furthermore, during the training process of an ANN,
errors in the loss function with respect to each parameter are
calculated. Te error δ in the output layer is given by
equation (12), while the errors of the parameters in the
hidden and input layers are obtained through back-
propagation using chain rule diferentiation.
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δ �
zL(θ)

zθi

�
zL(θ)

za θi( 

za θi( 

zθi

�
zL(θ)

za θi( 

zAct a θi( ( 

zθi

�
zL(θ)

za θi( 
Act′ θi( . (12)

Finally, the parameters are optimized using the Gradient
Descent algorithm in each iteration. Te coefcient α, de-
fned in the range (0,1], represents the learning rate. Te
parameter optimization process is given by the following
equation:

θ ≔ θ − αδ � θ − α
zL

zθ
. (13)

An ANN for event segmentation is a binary classifcation
model. A confusion matrix, defned in Table 2, is used to
evaluate the performance of the ANN. Te Accuracy, True
Positive Rate (TPR), and False Positive Rate (FPR) of the
model can be calculated via equation (14) by setting diferent

classifcation thresholds. Te Receiver Operating Charac-
teristic (ROC) curve is obtained by plotting FPR on the
horizontal axis and TPR on the vertical axis. Te closer the
ROC curve is to the upper left corner, the greater the model’s
ability to distinguish between diferent types of features,
indicating higher generalization and robustness. Te per-
formance of the model is evaluated using the Area under
Curve (AuC) value, which is a metric calculated from the
ROC curve. Te AuC represents the area enclosed under the
ROC curve and provides a quantitative measure of the
model’s ability to distinguish between diferent classes
[51, 52].

Accuracy �
TP + TN

TP + TN + FP + FN
�
Number of   correct  identifications

Total number of   tests
,

TPR �
TP

TP + FN
�

Number of   true positives
Total number of  positive  samples

,

FPR �
FP

FP + TN
�

Number of   false positives
Total number of  negative  samples

.

(14)

4. Fault Detection of BEJs by Cascading
ConFormer VPR Models

Fault detection of BEJs can be treated as a voiceprint rec-
ognition (VPR) task, where audio signals are inputs and the
normal/faulty status of BEJs are outputs. A VPR model is
required to classify audio signals by BEJs to detect their
status.

4.1. ConFormerModel withMFAModule. Te Convolution-
augmented Transformer network (ConFormer) was frst
proposed by Gulati [53] for speech recognition applications.
Te design idea of ConFormer is to combine the advantages
of Transformer and CNN models. On the one hand, the
encoder-decoder structure of the Transformer makes it ef-
fective at capturing global features based on content. On the
other hand, CNNs excel at local feature extraction through
multiple convolution-pooling operations. Terefore, Con-
Former combines the benefts of both models to achieve
unifed modeling of global and local features in audio data
analysis while minimizing the number of parameters.

In this paper, we modify the structure of ConFormer to
fulfll VPR usage and achieve better performance. Firstly,
after obtaining the speaker embedding, a fully connected
layer is added to reduce the embedding dimensions and
obtain the fnal classifcation results. Secondly, the Multi-
scale Feature Aggregation strategy is introduced for Con-
Former basic blocks to improve its ability to extract features
at diferent depths of layers.

As shown in Figure 4, the ConFormer VPR model is
composed of fve main parts.

4.1.1. Fbank Feature Extraction. As mentioned earlier, the
Fbank can preprocess audio signals to extract their nonlinear
frequency-domain features. For a typical 2-second audio
utterance with a 16 kHz sampling rate, 200 audio frames are
obtained after windowing with a frame-length of 25ms and
a frame-shift of 10ms.Terefore, by setting the dimension of
Mel flters M to 80, a 200 × 80 sized Fbank feature map can
be acquired.

4.1.2. Convolution for Downsampling. As shown in part two
of Figure 4, the two-dimensional Fbank feature map is es-
sentially a digital image. Tus, a two-dimensional con-
volutional layer is frst introduced to perform spatial
downsampling on the audio features to accelerate the in-
ference procedure and achieve higher spatial dimensions.
Ten, a linear layer is connected to unfold the feature map
obtained by the last operation, realizing dimension re-
duction along the depth channel. A dropout layer is then
connected to remove the weights of randomly selected
neurons, intended to avoid model overftting during
training.

4.1.3. ConFormer Block. As depicted in the third part of
Figure 4, the ConFormer block is a core component of
ConFormer VPR, consisting of four modules: a Feed-
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Forward Network (FFN) module, a Multihead Self-
Attention (MHSA) module, a Convolution (Conv) mod-
ule, and a second FFN module at the end. Tese modules
form a macaron structure with the same head and tail.
Figure 5 shows the computation process of the ConFormer
block. Mathematically, for input feature hi−1, the i-th
ConFormer block performs layer-by-layer operations
according to the following equation:

hi � hi−1 +
1
2
FFN hi−1( ,

hi
′ � hi + MHSA hi ,

hi
″ � hi
′ + Conv hi

′( ,

hi � LayerNorm hi
″ +

1
2
FNN hi

″(  .

(15)

4.1.4. MFA Strategy. Concatenating diferent layers of fea-
ture maps can improve the performance of deep learning-
based VPR models [54, 55]. Terefore, we introduce the
MFA strategy to connect the features extracted by L Con-
Former blocks. Specifcally, an attentive statistic pooling
layer is used to provide diferent trainable weights for the
output feature map of each ConFormer block. After batch
normalization and a linear layer, a one-dimensional vector
speaker embedding is acquired, which is usually a 1 × 192
vector in speech recognition tasks.

4.1.5. Fully Connected Layer. As shown in Figure 4, fol-
lowing the speaker embedding vector, a fully connected layer
is constructed according to the fnal outputs. Here, the
speaker embedding vector is dimensionally reduced to the
number of voiceprint types. Te Additive Angular Margin
Softmax (AAMSoftmax) [56] is applied to compute model

Table 2: Confusion matrix of ANN.

Predict: nonevent Predict: event
Truth: nonevent True Negative (TN) False Positive (FP)
Truth: event False Negative (FN) True Positive (TP)
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loss during training, defned in equation (16) Compared to
traditional Softmax, AAMSoftmax can enhance the dis-
criminative power of features and improve the performance
of classifcation tasks. It can also reduce intraclass variance
and increase interclass variance, making the learned features
more compact and separable.

L � − log
e

s cos θyi
+m 

e
s cos θyi

+m 
+ 

N
j�1,j≠yi

e
s cos θj

, (16)

where N is the number of voiceprint types, θj is the angle
between the weight and feature, s is the scale factor used for
normalization, and m is the margin penalty value between
the weight and feature.

4.2. Cascading Approach for BEJ Fault Detection.
Compared with sensing methods such as vision and radar,
audio acquisition requires active excitation sources.
According to research by Nishikawa [19], experienced in-
spectors can determine the fault status of BEJs by the sound
of vehicle impact, indicating that vehicle impact is a reliable
excitation source for audio-based fault detection of BEJs.

Terefore, as shown in Figure 6, a cascading approach is
established using three ConFormer models, each for a dif-
ferent VPR task, to ultimately achieve fault detection of BEJs.
Firstly, environmental event VPR is performed to select
vehicle impact events from all audio events. Secondly, to
explicitly recognize the distinction between fault-free and
faulty status of BEJs, vehicle impact events are fnely clas-
sifed according to diferent vehicle types. Tirdly, for the
same type of vehicle impact audio, fault identifcation of BEJ
component states is performed.

In the application phase, we introduce a decision-
making module that combines all outcomes deduced
from the four ConFormer models to enhance the reliability
of the judgment. For each outcome from the third-level
ConFormer model, both fault-free and faulty detections are
logged, leading to an accumulation of hits for both cate-
gories. Te status of the BEJ is subsequently determined
based on the ratio of faulty hits: if it falls below a pre-
determined threshold, the BEJ is classifed as fault-free,
whereas if it surpasses the threshold, the BEJ is considered
faulty.

4.3. Dataset Creation. Comprehensive datasets are essential
for data-driven VPR applications. As shown in Figure 1,
videos recorded by an in-feld camera can be used to an-
notate specifc vehicle impacts. Besides, sound events such as
vehicle horns, human sounds, and bird sounds are manually
diferentiated and annotated.

Te duration of audio signals in Table 1 may be im-
balanced for practical applications. To supplement the in situ
audio data, Open-Access (OA) datasets can be used.
However, environmental noise can afect the robustness of
the VPR model [57], particularly in low SNR scenarios such
as BEJ environments. Terefore, environmental noise en-
hancement should be applied to the audio segments of OA
datasets based on on-site measured signals, as shown in
equation (17) and Figure 7.

Sa(x) � S(x) + αN(x), (17)

where S(x) and Sa(x) represent the audio signals before and
after noise enhancement, respectively, α is the enhancement
coefcient, set to 1 in this case, and N(x) represents noise
signals, which are randomly obtained from labeled noise
signal segments in the BEJ environment.

Typical audio signal segments in the BEJ environment
are shown in Figure 8. Both fault-free and faulty status
audios are generated by vehicle impact, making it difcult to
directly detect faults in BEJs. Besides, prominent segments of
bird sounds are relatively short and distinct from other types
of audio. However, the remaining types of audio are difcult
to distinguish simply by using thresholds or time-to-peak.
Terefore, a VPR model is necessary to achieve sound
classifcation through its ability to extract high-dimensional
features.

 . Case Study

5.1. Basic Information. An in situ experiment was conducted
on the Jiangyin Bridge, a suspension bridge that contains
two modular BEJs on each side. Te experimental layout is
shown in Figure 9. A microphone was fxed on a tripod
under the main girder to capture audio data surrounding the
BEJ. Above the main girder, a camera was temporarily in-
stalled to annotate moment and type of each vehicle passing
over the BEJ. Te main confgurations of the two experi-
mental sensors are listed in Table 3.
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For data processing andmodel testing, we used a desktop
PC (CPU: Intel® CoreTM i7-6800k; RAM: 32GB; and GPU:
NVIDIA GeForce GTX 1080Ti) with the support of CUDA
v10.2 and cuDNN v8.2. Te PyTorch deep learning
framework was utilized to accomplish model training and
evaluation.

5.2. Damage Types of BEJ Faults. During their service, BEJs
often experience damage and deterioration within a local
range due to the prolonged infuence of various factors such
as load and environmental conditions (including vehicular
trafc, corrosive actions, and temperature), leading to the
failure of specifc components of BEJs. Common forms of
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damage include the following [5, 58]: (1) local congestion,
twisting deformation, or even breakage of the center steel
beams; (2) long-term wear of the sliding bearing resulting in
sliding failure; (3) aging of the sealing rubber, loss of
elasticity in the rubber spring, or even fatigue cracking; (4)
and corrosion and detachment of the welding points in some
parts of the hanger.

Due to the distinct changes in BEJ components caused by
damage, the fault-free state and various damage modes will
manifest diferent acoustic features under the infuence of
vehicular impacts. Terefore, it is logical to categorize dif-
ferent kinds of damage based on impacting audio signals.

In this paper, to fundamentally verify this idea, we se-
lected a fault-free BEJ of Jiangyin Bridge and collected one
hour of audio data. Subsequently, we introduced simulated
faults by using two steel shims to congest two center steel
beams. One hour of vehicle-induced audio signals under this
faulty BEJ was then recorded. Te practical scenario is il-
lustrated in Figure 10.

5.3. Event Segmentation of Audio Data. To train the ANN
classifcation model for event segmentation, we annotated
audio signals using Praat software [59]. A total of 2010.438s
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Figure 7: Noise enhancement of OA dataset. (a) Original signal (IUSD dataset). (b) Noise signal (in situ BEJ feld). (c) Signal after noise
enhancement.
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of signals were obtained, including 1035.562s of event sig-
nals and 974.876s of nonevent signals, as shown in Table 4.
Te dataset was split into training and test sets at a ratio of
80% and 20%, respectively.

Te proposed ANN and other comparison models for
audio event segmentation were applied, including the ML
model Support Vector Machine (SVM) and threshold-based

models STE and STCZR. Te performance of diferent
models was evaluated using accuracy as the metric.
Hyperparameter optimization of the diferent models was
frst conducted to determine their sensitivity and stability in
event segmentation. Te results are shown in Figure 11.

It can be seen that ML methods have higher accuracy
than threshold-based methods. Among them, the ANN and
SVM models are insensitive to their hyperparameters and
achieve accuracies of 93.5% ∼ 93.7% and 93.0% ∼ 93.1%,
respectively. Te STE model is sensitive to the predefned
threshold and achieves an accuracy of 79.1% ∼ 90.0%, so
a precise threshold setting is required. Te STCZR model is
insensitive to the threshold, but its accuracy is only slightly
above 50%, indicating little disparity between event and
nonevent audio signals in STCZR under the BEJ
environment.

An 8-second audio data sample was selected to apply the
event segmentation procedures using the four models
mentioned above. As shown in Figure 12, the ANN, SVM,
and STE models can accurately segment event signals, with
only about 0.05s of misidentifcation locally at the beginning

Above
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Capture

Capture

Above

Under

Girder

Camera

Microphone

Expansion joint Girder

Zoom

Figure 9: Te experimental layout.

Table 3: Main confgurations of the devices.

Device Parameter Unit Value

Microphone

Size mm 78.5 × 39.7×18.4
Sampling rate Hz 32,000
Bit depth bit 16

Data format — WAV

Camera

Size mm 87 × 82.8×169.9
Image size px 1,920 × 1,080

Image resolution px 2,073,600
Frame per second — 25

Data format — MP4

Local congestion
of center beam

Figure 10: Fault condition setting: local congestion of center
steel beams.
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and end of events.Teir main errors involve identifying low-
amplitude event signals as nonevent, which has little impact
on subsequent VPR applications. Compared to the SVM and
STE models, false predictions occur less frequently for the
ANNmodel, indicating its stronger adaptability and reduced
need for postprocessing. Consistent with previous conclu-
sions, the STCZR model almost misidentifes all nonevent
segments as event segments, so it cannot segment
event audio.

Additionally, for the ML methods of the ANN and SVM
models, the ROC curves under optimal hyperparameters are
plotted as shown in Figure 13. Te ROC curves show a good
“Γ” shape, indicating that the models have good general-
ization performance, with AuC values of 0.981 and 0.964,
respectively. As listed in Table 5, in terms of model training
time and inference processing efciency, the threshold-

based method does not require data training. Since the
SVM model is based on matrix operations for tuning,
training time can be very long for large sample sizes. Te
ANN model has clear advantages in both training and in-
ference efciency, exceeding other algorithms by 20 times in
terms of segmentation and recognition efciency of the
original audio. It only takes 10.5ms to segment and infer 1 s
of original audio data, making it suitable for preprocessing
BEJ environment audio.

5.4. Fault Detection of BEJs

5.4.1. Dataset Preparation. In this work, in addition to the
in-feld audio data, we used the DCASE [60], ESC [61], and
IUSD [62] OA datasets for dataset expansion. A total of 2103
audio segments were divided into training and test sets at

Table 4: Self-annotated dataset for audio event segmentation.

Class Duration
of signals (s) No. of frames/total No.

of frames/for training
No.

of frames/for test
Event 1035.562 82845 66276 16569
Nonevent 974.876 77990 62392 15598
Total 2010.438 160835 128668 32167
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Figure 11: Hyperparameter optimization of each event segmentation model. (a) ANN (hyperparam: size of hidden layer). (b) SVM
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Figure 12: Continued.
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a ratio of 0.8 : 0.2, resulting in a benchmark dataset for BEJ
fault detection, with details listed in Table 6. Specifcally, for
fne-grained recognition of vehicle impact events, four ve-
hicle classes—Car, Bus, Van, and Truck—were labeled based
on defnitions in bridge standards [63]. A total of 4123 audio
segments were obtained, as shown in Table 7.

5.4.2. Cascading ConFormer Model Training and Evaluation
for BEJ Fault Detection. Based on the proposed cascading
approach shown in Figure 6, three types of ConFormer
models were established: environment VPR, vehicle type

VPR, and fault detection VPR. A length restriction of
2 seconds was applied to regularize all audio segments to
balance efciency and precision [64]. Terefore, random
cropping or zero-padding operations were applied to seg-
ments shorter or longer than 2 seconds, respectively.

Te training parameters in this work are listed as follows.
For Fbank feature extraction, the number of Mel banks M

was set to 80. Te initial learning rate was set to 0.01 and
reduced to 97% of its original value at the end of each epoch
to achieve optimal model performance. Considering
memory limitations, the batch size for a training epoch was
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Figure 12: Result comparison of event segmentation models. (a) Ground truth. (b) Segmentation results by ANN. (c) Segmentation results
by SVM. (d) Segmentation results by STE. (e) Segmentation results by STCZ.
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Figure 13: ROC curves of ML models for event segmentation. (a) ANN model. (b) SVM model.

Table 5: Performance comparison of event segmentation models.

Item Unit
ML models Treshold models

ANN SVM STE STCZ
Optimized hyperparameter — 35 0.5 8 6
Accuracy % 93.8 93.1 90.0 51.8
AuC — 0.981 0.964 — —
Time of training s 36.7 3613.9 0 0
Time of inference ms/s 10.5 242.9 208.1 250.5
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set to 100. Te scale factor s of the AAMSoftmax loss
function (equation (16)) was set to 30 and themargin penalty
m was set to 0.2. Te total number of training epochs was set
to 100.

First, the ConFormer VPRmodel with MFAmodule was
trained and evaluated, as shown in Figure 14. As indicated by
the loss and accuracy curves in Figure 14(a), the model’s
performance gradually improved and quickly stabilized at
around 30 epochs, where the loss was close to 0 and accuracy
was close to 100%. In subsequent rounds, the model’s loss
and accuracy only oscillated slightly, indicating that the
training process was complete. As seen from the ROC curves
in Figure 14(b), the model performed well for all four types
of audio, achieving a mean average AuC (maAuC) of 0.975.
Among them, AuCs for bird sounds and vehicle horn sounds
almost reached 1.0. Meanwhile, AuCs for human sounds and
vehicle impact sounds were 0.966 and 0.939, respectively.
Temodel’s performance can be further improved by adding
more working conditions for more data.

Te model shown in Figure 14 was obtained after
hyperparameter tuning, shown in Figure 15. Tree hyper-
parameters were used for comparison: (1) L—the number of
Transformer layers in the ConFormer block; (2) Den—the
encoder dimension of the ConFormer block; and (3)
Dem—the voiceprint embedding dimension after the MFA
module.

From Figure 15, it can be seen that L has a signifcant
impact on both accuracy in the training set and maAuC in
the test set. When L> 3, classifcation performance decreases
signifcantly and brings a large amount of computation, so
the optimal value for L should be 3. Meanwhile, Den andDem
have no obvious impact on the model’s accuracy and
maAuC. Terefore, considering a balance between com-
putational efciency and classifcation performance, the two
hyperparameters are set to 128 and 64, respectively.

Afterward, a second ConFormer model was trained to
classify the types of vehicle impact events, with results
plotted in Figure 16. From the curves in Figure 16(a), after 80
epochs, the model’s loss and accuracy were close to 0 and 1,

respectively. Tis indicates that the training was complete
and the model was stable, achieving high classifcation ac-
curacy under reasonable thresholds. Additionally,
Figure 16(b) shows the ROC curve for each vehicle type, with
an overall performance maAuC value of 0.925, slightly lower
than the performance of the previous model.

Specifcally, the model has an AuC value of nearly 1.0 for
Car and Truck, indicating that it can perfectly distinguish
between these two types of vehicle impact sounds. However,
for Bus, the AuC value is 0.764, indicating medium classi-
fcation accuracy based on the defnition of the ROC curve
[51]. According to Table 7 measurements, the number of Bus
is much lower than the other three types of vehicle impacts.
Terefore, the model’s classifcation accuracy for Bus could
be improved by increasing the number of Bus samples.

A ConFormer model is cascaded to complete the fault
detection of BEJs. As shown in Figure 6, a specifc Con-
Formermodel can be applied for each vehicle impact type. In
this work, we use Car and Van as two examples for the fault-
free and faulty status classifcation of BEJs, with results
shown in Figures 17 and 18. Both models have great clas-
sifcation performance for fault detection, with AuC values
of 0.886 and 0.910 respectively. Compared to light passenger
cars, vans provide greater diferences for the status judgment
of BEJs, indicating that stronger wheel impact serves as
a better criterion for fault detection of BEJs.

5.4.3. VPR Model Comparison. To verify the performance
advantages of our model, we conducted a comparison study
with other mainstream deep learning-based VPR models,
including the Transformer model [65], the ECAPA-TDNN
model [54], and the ResNet18 and ResNet34 models [66]. All
models were trained on the environment VPR dataset shown
in Table 6. Te performance of the models in terms of both
precision and efciency was compared, with results shown in
Table 8 and Figure 19.

All models achieved accuracy close to 100%, indicating
that they have high classifcation ability under appropriate
thresholds. However, for maAuC evaluation, our

Table 6: Benchmark dataset for BEJ fault detection.

Audio type Training set Test set Total
Vehicle impact (faulty/fault-free) 229/527 58/132 287/659
Human sound 73 19 92
Bird sound 459 115 574
Vehicle horn 392 99 491
Total 1680 423 2103

Table 7: Fine-grained vehicle types of impact events.

Vehicle impact
audio type Training set Test set Total Signal statistics

(mean) (ms)

Signal statistics
(standard deviation)

(ms)
Car 2412 603 3015 276.0 56.1
Bus 118 29 147 449.2 100.4
Van 442 111 553 375.6 63.9
Truck 326 82 408 721.3 333.7
Total 3298 825 4123 390.9 260.6
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ConFormer VPR models had a signifcant performance
advantage over other models, indicating that they have the
best classifcation reliability and robustness. Te MFA
module further improved the maAuC by 0.01. Due to the
introduction of self-attention mechanisms, the Transformer
and ECAPA-TDNN models achieved the second-best
maAuC values of 0.929 and 0.900, respectively. In con-
trast, the two ResNet models, which only have basic con-
volution and residual operations, achieved maAuC values of
only 0.771 and 0.758.Tus, the self-attentionmechanism has
been proven to be an important component for improving
the performance of BEJ VPR applications.

In terms of inference speed, as shown in Table 8, using
a GPU can signifcantly accelerate the process. Te Con-
Former VPRmodel is the slowest, requiring 16.9ms on GPU
hardware to infer 2s of audio data, while ResNet18, which
primarily employs convolution operations, only requires
4.5ms for inference. On the other hand, considering that
embedded CPU devices are cheaper and lighter than

GPU-based equipment, we also conducted benchmark tests
for these models using a CPU. As listed in Table 8, the
ConFormer VPR model has medium-level efciency. Te
ECAPA-TDNN model, due to parameter pruning optimi-
zation, has the highest inference speed with a CPU, requiring
only 32.8ms to classify a 2-second utterance. Terefore, this
model can be applied to edge computing scenarios with
lower accuracy requirements.

5.4.4. Discussion of Fault Judgment. As outlined in the
“Dataset Preparation” section, the audio data collected over
a two-hour period, which include one-hour audio signals
each for fault-free and faulty BEJs, are utilized for the dis-
cussion of fault judgment using the combined approach
proposed in Figure 6. Te audio signal is segmented into 12
parts for analysis, with each segment lasting for 5minutes.

Te outcomes for each audio segment are illustrated in
Figure 20. For an individual audio segment, the classif-
cation of vehicle impact is accomplished by the second-
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Figure 14: Training and evaluation of ConFormer VPR model for environmental sound classifcation. (a) Loss curve and accuracy curve.
(b) ROC curve and AuC value.
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Figure 15: Hyperparameter tuning of ConFormer VPR model.
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level ConFormer model, with the results displayed in
Figure 20(a). Subsequently, for each vehicle audio utter-
ance, a fault is inferred by its corresponding type-specifc
third-level ConFormer model, resulting in a detection of

either fault-free or faulty. Ultimately, the proportion of
faulty detections is computed for this audio segment.
Figure 20(b) plots the proportion of faulty detections for
each audio segment.

Loss
Accuracy

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Lo

ss

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

20 40 60 80 1000
Epoch

(a)

Car (AuC = 0.997)
Bus (AuC = 0.764)
Van (AuC = 0.930)
Truck (AuC = 0.998)
Mean (maAuC = 0.925)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e (
TP

R)

0.2 0.4 0.6 0.8 1.00.0
False Positive Rate (FPR)

(b)

Figure 16: Training and evaluation of ConFormer VPR model for vehicle impact sound classifcation. (a) Loss curve and accuracy curve.
(b) ROC curve and AuC value.
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Figure 17: Training and evaluation of ConFormer VPRmodel for BEJ fault detection (based on car type). (a) Loss curve and accuracy curve.
(b) ROC curve and AuC value.
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Figure 18: Training and evaluation of ConFormer VPRmodel for BEJ fault detection (based on van type). (a) Loss curve and accuracy curve.
(b) ROC curve and AuC value.

Table 8: Performance comparison of VPR models.

Model Accuracy (%) maAuC Inference time with GPU
(ms)

Inference time with CPU
(ms)

ConFormer VPR (w/MFA) 99.58 0.975 16.9 127.4
ConFormer VPR (w/o MFA) 98.55 0.965 16.8 115.1
Transformer 98.79 0.929 10.1 70.8
ECAPA-TDNN 99.70 0.900 11.2 32.8
ResNet18 97.15 0.771 4.5 196.9
ResNet34 98.67 0.758 7.2 139.6

ConFormer (w/MFA) maAuC = 0.975
ConFormer (w/o MFA) maAuC = 0.965
Transformer maAuC = 0.929
ECAPA-TDNN maAuC = 0.900
ResNet-18 maAuC = 0.771
ResNet-34 maAuC=0.758
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Figure 19: Deep learning-based VPR model comparison.

Structural Control and Health Monitoring 19



Te results in Figure 20(b) demonstrate that the pro-
portions under the fault-free condition are low, while those
under the faulty condition are high. Tis is a reasonable
outcome and signifes the practicality of the proposed
method’s application. Furthermore, both the upper and
lower margins are set at 0.1 to establish the separation
threshold for fault judgment. In this study, the fnal optional
threshold can be chosen from a range of 0.187 to 0.814.

6. Conclusions

Efective inspection and monitoring of BEJs are crucial for
bridge maintenance and management. Tis paper presents
a novel methodology for detecting faults of in-service BEJs
through VPR. Microphones are placed beneath the BEJs to
capture audio data. An ANN model is then employed to
segregate nonevent audio utterances from the original sig-
nals. Subsequently, the ConFormer VPR model is enhanced
for general audio event classifcation. Finally, a cascading
approach is proposed, involving three successive Con-
Former VPR models, aiming to discern vehicle impact
audio, identify specifc vehicle types, and ultimately detect
fault status. Additionally, a case study on an in situ bridge
has been conducted to verify the proposed method. Con-
clusions are drawn as follows:

(1) Te proposed methodology is a new endeavor to
broaden the spectrum of inspectionmethods for BEJs.
Te use of a consumer-grade microphone sensor in
this study proves to be a cost-efective alternative
when compared to more sophisticated NDT sensors
such as accelerometers [8], ultrasonic sensors [11],
and electromagnetic sensors [15] used in prior re-
search. From a long-term perspective, the audio-based
method ofers a more economical solution than
manual inspections conducted by inspectors.

(2) An ANN classifcation model is devised and trained
for audio event segmentation, achieving an AuC of
0.981. Te ANN model exhibits superior accuracy
and stability in event segmentation when compared
to threshold-based methods.

(3) Te original ConFormer model is adapted for VPR
and fortifed with an MFA strategy. In response to
the intricate sound factors associated with BEJs, we
adopt a cascading approach using consecutive
ConFormer models for classifying environmental
sound types, vehicle impact types, and faults. Te
trained models achieve AuCs of 0.975, 0.925, and
0.886, respectively, demonstrating the feasibility of
detecting faults in BEJs based on audio signals.
Notably, the enhanced ConFormer VPR models
surpass other VPR models such as Transformer and
CNN-based models in terms of performance.

In future research, we aim to further advance this novel
feld and build upon this foundational work. Our plans
include the continuous expansion of the audio signal
dataset to encompass multiple types of BEJ faults, as well as
faults in other bridge components. Additionally, we intend
to conduct benchmarking tests to achieve a more detailed
localization and classifcation of damage based on audio
signals.
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