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Te safety of inclined cables is fundamental to the integrity of cable-stayed bridges. Te vibrational frequencies of these cables
form the foundation for assessing the cable force. Traditional contact measurement methods necessitate the installation of sensors
on each cable, incurring substantial costs. In scenarios where camera placement adjacent to an inclined cable is impractical,
noncontact approaches such as video capture via unmanned aerial vehicles prove efective. However, unmanned aerial vehicle-
captured videos present a challenge due to their complex background, impeding cable feature recognition. In our study, we
initially utilized the Region Growing algorithm for background subtraction. To enhance this method, we integrated it with the
unique structural characteristics of cables, leading to the creation of the RGv2 algorithm. Tis novel algorithm ofers increased
processing speed and improved accuracy. Furthermore, we combined our method with empirical mode decomposition for
efective detection of cable frequency characteristics. We also implemented a hybrid method, combining the K-Means and line
segment detector algorithms with empirical mode decomposition. Compared to deep learning techniques for background
subtraction, our proposed method demonstrates superior computational efciency and promising potential for measuring
vibrational frequencies of inclined cables.

1. Introduction

Inclined cables constitute integral elements within the load-
bearing structures of cable-stayed bridges. Te precise
measurement of the vibration frequency of these inclined
cables holds great signifcance [1, 2] for cable force assess-
ment [3]. Currently, methods for measuring the vibration of
inclined cables can be categorized into two primary domains
[4]: contact measurement methods and noncontact mea-
surement methods.

Most contact measurement methods rely on the utili-
zation of accelerometers for monitoring purposes [5, 6].
Nevertheless, structural health monitoring systems
employing contact monitoring methods necessitate

a substantial number of connection wires due to the ex-
tended distances and numerous inclined cables involved,
resulting in elevated costs [7]. Wireless sensors [8] ofer
a notable reduction in the number of needed connection
wires but introduce the challenge of potential wireless
data loss.

Alternatively, noncontact measurement methods,
such as laser Doppler techniques [9] and microwave re-
mote sensing [10], can achieve high-precision measure-
ments. However, the equipment associated with these
methods is relatively costly and demands specialized
operational expertise [11]. In contrast, noncontact mea-
surement methods founded on computer vision algo-
rithms ofer a more cost-efective and user-friendly
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approach [11]. As early as 1998, Gehle and Masri [12]
employed a video camera to capture footage for measuring
the vibration frequency of cables. Subsequently, Guo et al.
[13] integrated deep learning methods with traditional
optical fow techniques to assess the vibration frequency
of an inclined cable. Kim et al. [14] conducted a com-
parative study evaluating accelerometers and various
smart devices under diverse weather conditions, afrming
the measurement accuracy of computer vision algorithms.
Zhao et al. [15] employed a smartphone to record vi-
brations in an inclined cable and utilized a computer
vision algorithm to determine the vibration frequency.

Noncontact measurements using smartphones or in-
dustrial cameras ofer increased efciency and cost savings in
comparison to contact measurements [4]. However, when
applying these methods to photograph large civil engineering
structures, challenges may arise in camera setup and the
identifcation of suitable angles for video capture [16]. Te
advent of unmanned aerial vehicles (UAVs) has presented
a novel solution. UAVs, capable of swiftly capturing video
footage of sizable structures, fnd myriad applications in civil
engineering, including 3D reconstruction of buildings, dams,
and bridges [17–19], assessment of seismic damage in
buildings [20], long-term monitoring of slope displacements
[21], and detection of structural cracks [22–24].

Moreover, UAVs have been harnessed for measuring
structural vibrations. Tese methodologies concentrate on
tracking alterations in natural features or artifcial markers on
a structure to derive structural displacement. For instance,
Weng et al. [25] combined the optical fow method with
perspective transformation to identify the displacement of
a supertall building from video footage captured by a UAV.
Hoskere et al. [26] employed an optical fowmethod to discern
the vibrations of a pedestrian suspension bridge from UAV-
captured video. Khadka et al. [27] utilized a UAV to capture
video footage of a wind turbine model and applied a digital
image correlation method to evaluate the structural integrity of
the turbine blades. Tian et al. [16], utilizing a UAV to record
video of an inclined cable, employed a line segment detector
(LSD) to determine the vibration frequency of the cable.

However, when a UAV captures video footage of an
inclined cable, it invariably records images of the sur-
rounding landscape, including mountains, rivers, and urban
structures situated behind the inclined cable.Te presence of
complex background imagery can introduce interference in
the images of inclined cable [16], potentially leading to
inaccuracies in the analysis results of computer vision al-
gorithms. In the domain of computer vision, methods for
distinguishing between foreground targets and background
images can be categorized into traditional algorithms and
deep learning algorithms.

Traditional algorithms typically employ videos acquired
through stationary cameras and analyze multiframe images to
distinguish static backgrounds from moving foreground
objects. To eliminate static backgrounds, a common approach
involves applying flters to the results [28], such as median
fltering [29] and Frame Diference [30]. However, these
methods exhibit limited efectiveness when dealing with
dynamic backgrounds. Te proposed method, which entails

using a UAV to capture cable videos, introduces a dynami-
cally shifting background, albeit with relatively minor
movements compared to the displacement of the cables.

In recent years, an increasing number of researchers
have recognized the signifcance of background removal and
have undertaken relevant investigations. For instance, Wei
and Peng [31] proposed a block Frame Diference method
and conducted experiments in various scenarios. Tis al-
gorithm succeeded in removing most dynamic backgrounds
of sailing ships but occasionally misclassifed certain areas of
the sea surface as foreground. Additionally, other back-
ground modeling techniques, such as the hybrid Gaussian
model [32] and Vibe’s algorithm [33], calculate the video’s
background by tracking pixel intensity changes from frame
to frame, achieving the extraction of moving objects.
Nevertheless, these methods encounter difculties in elim-
inating the complex backgrounds encountered in cable
videos captured by UAVs. Among these approaches, Vibe
and Frame Diference yield results with numerous erratic
straight lines, as observed in Figures 1 and 2.

In contrast, deep learning methods discern the fore-
ground from the background in images through the training
of convolutional neural networks [34–36]. However, the
accuracy of background removal using deep learning
methods relies on the chosen deep learning models and
image datasets [37–39]. Aside from selecting an appropriate
deep learning model, the quality of the image dataset sig-
nifcantly impacts recognition. Consequently, the collection
of an extensive image dataset, comprising a minimum of
1000 images, becomes crucial. When applied to cable region
recognition in this study, the necessity arises to capture and
annotate a substantial number of cable images. It is worth
noting that labeling data entail substantial manual efort
[38]. In cases where the image dataset lacks comprehen-
siveness, the model trained with images from a specifc
bridge may exhibit limited generalization, potentially
resulting in inaccuracies in cable background removal if the
cable features difer.

Te Region Growing algorithm [40] represents a region-
based image segmentation technique capable of gradually
expanding and merging small regions based on predefned
rules. It has found applications in various domains. For
instance, Wei et al. [30] applied the Region Growing al-
gorithm to identify road cracks, while Shao et al. [41] used it
to segment roofs from UAV-captured images. Lin [42]
employed a modifed Region Growing algorithm for auto-
matic detection of remote sensing images, and Lu et al. [43]
utilized it for segmenting abdominal CT images.

However, when evaluating the suitability of the Region
Growing algorithm for displacement detection in cable
structure analysis, several challenges come to the forefront.
Te algorithm inherently lacks robust edge detection ca-
pabilities, a critical requirement for precise delineation in
such analyses. Furthermore, when combined with algo-
rithms such as LSD, it results in noticeably extended pro-
cessing times. Additionally, during motion, cables often
overlap with backgrounds having similar grayscale values,
leading to segmentation errors when relying solely on
grayscale values of neighboring pixels. To address these
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challenges, this study introduces RGv2, an enhanced iter-
ation of the Region Growing algorithm rigorously optimized
for structural cable system analysis. RGv2 not only exhibits
markedly improved accuracy in segmenting cable structures
compared to its conventional counterpart but also excels in
directly extracting displacement information from cables
during the segmentation process. In terms of efciency,
RGv2 accomplishes its objectives with only one-third of the
processing time needed by the traditional combination of
the Region Growing algorithm and LSD, representing
a substantial advancement in processing speed. Further-
more, RGv2 adopts a more comprehensive growth ap-
proach, enhancing its accuracy in managing cable structure
scenarios. A detailed exposition of RGv2’s mechanism is
provided in Section 2.1.2 of this paper.

If a substantial color disparity exists between foreground
and background images, the removal of the background can
be achieved through the application of a clustering algorithm
such as K-Means [44]. It has found applications in various
domains. For instance, Ding [45] utilized K-Means to extract
dominant colors from an image, while Zhang et al. [46]
adapted K-Means for hyperspectral image classifcation. In
this study, RGv2, the Region Growing algorithm, and K-
Means are employed based on the unique image charac-
teristics of inclined cables to discern cables from complex
backgrounds.

Unlike capturing video with a stationary camera, UAVs
are adept at recording video footage of inclined cables.
Nevertheless, videos captured by UAVs inherently contain
relative displacements of both the tested structure and the
UAV itself. Te absolute displacement of the cable can be
defned as the discrepancy between the displacement
recorded during UAV hover shooting and the UAV’s ab-
solute displacement, as illustrated in Figure 3.

Presently, signifcant research attention is directed to-
wards addressing this issue, and methods for mitigating or
eliminating UAV motion can be categorized into three
principal approaches:

(1) Utilizing Inertial Measurement Devices [47–49]. Tis
methodology entails measuring the UAV’s motion
using either the UAV’s fight data or additional
devices such as gyroscopes, GPS, and accelerometers.
Mathematical models are then constructed using
these supplementary data to compensate for the
UAV’s movement. However, this method necessi-
tates the incorporation of additional devices along-
side a consumer-grade UAV, leading to an increase
in monitoring costs.

(2) Employing Stationary Objects as References
[25, 50, 51]. UAV motion is determined by tracking
feature points within stationary backgrounds or
through a template matching algorithm [51]. Sub-
sequently, UAV motion can be nullifed through
photogrammetry techniques. Nevertheless, the suc-
cess of this method relies on high-quality back-
grounds, as it may yield errors in cases where
background quality is compromised.
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Figure 1: Te efects of diferent background removal algorithms.
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removal.
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(3) Leveraging Frequency Characteristics. some literature
[26, 52] mentions the use of high-pass flters to
eliminate low-frequency components of UAV mo-
tion from raw data. Nevertheless, this approach
necessitates the defnition of a cutof frequency and
can be relatively complex. Conversely, empirical
mode decomposition (EMD) [53] represents an
adaptive decomposition technique that simplifes the
process and breaks down the original data into
multiple intrinsic mode functions (IMFs). EMD
efectively removes the low-frequency components,
leaving behind the high-frequency aspects of the
data. EMD and its extended algorithms have already
been applied in a variety of felds. For instance, these
applications span across medical [54], engineering
[36, 55, 56], and mechanical [57–60] felds. In this
paper, EMD is employed to decompose displacement
data collected by a UAV.

Te primary focus of this paper is to utilize the proposed
RGv2 algorithm for the purposes of background removal
and cable tension detection. Additionally, a series of algo-
rithms based on Region Growing and K-Means have also
been employed to achieve these objectives. In analyzing the
dynamic characteristics of the inclined cable, this paper
employs EMD to reduce the infuence of the UAV’s own
vibration. Te paper is organized as follows, as shown in
Figure 4. Section 2 introduces the computer vision algo-
rithms used for background removal and displacement
extraction. Additionally, this section describes the experi-
ment conditions at the Chaijiaxia Yellow River Bridge and
experimental equipment used. Section 3 presents the efects
of the background removal algorithms on time and fre-
quency domains. Additionally, this section analyzes the
efect of EMD and estimates the cable force of the inclined
cable.Te results show that the processing method proposed
in this paper can accurately identify vibration frequencies of
the inclined cable.

2. Proposed Approach

A video of an inclined cable’s vibration captured by a UAV
may have complex background images, which will afect the
recognition of the cable edge features. Te misidentifcation
of cable edge could seriously afect the accuracy of dis-
placement time history. In this paper, according to the image

characteristics of the inclined cable, three algorithms are
used to remove the inclined cable’s background,
respectively.

Te proposed method is structured into two distinct
segments. Te initial segment involves the processing of
video footage capturing the vibrations of an inclined cable
recorded by a UAV. Te subsequent segment focuses on
converting the obtained displacement time history, derived
from the frst segment, into the frequency domain for
comprehensive analysis. A schematic representation of the
proposed method is shown in Figure 5.

During the image processing phase, to assess the ef-
fectiveness of various methodologies, we implemented four
distinct approaches. Te frst approach harnessed our newly
developed RGv2 algorithm, which served the dual purposes
of background removal and displacement detection. Te
second method employed the Region Growing algorithm for
background subtraction, followed by the application of LSD
to determine the cable displacement data. In the third ap-
proach, the K-Means algorithm was applied for background
elimination and subsequently integrated with LSD for the
determination of displacement information. Finally, as
a control method, we directly utilized LSD to calculate
displacement information without any prior background
removal, thus providing a baseline for comparative evalu-
ation against the other techniques.

In the subsequent phase involving frequency domain
processing, the displacement data undergo analysis through
EMD, facilitating the extraction of cable vibration fre-
quencies utilizing fast Fourier transform (FFT). It is note-
worthy that all the computational procedures described can
be efciently executed using MATLAB.

2.1.Tree Background Removal Algorithms for Inclined Cable

2.1.1. Region Growing Algorithm. Te exterior surface of an
inclined cable is enveloped with a polyethylene sheathing,
rendering the surface predominantly white in appearance.
Within the video footage captured by a UAV, there is
minimal variation in the image intensity across its surface.
Consequently, the entirety of the inclined cable region can be
efectively outlined using the Region Growing algorithm
[40].Te original Region Growing method includes either 8-
region or 4-region expansion. For instance, considering the
8-connected domain, the algorithm compares the gray

Absolute displacement 
of cable
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displacement of UAV

Displacement
of the cable 
relative to 
the UAV

Figure 3: Demonstration of the relationship between absolute and relative displacement.
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Figure 4: Workfow of this paper.
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threshold of a seed point with that of its eight adjacent
points. Points exhibiting a gray diference below the gray
threshold are earmarked for potential expansion. As
depicted in Figure 6, points highlighted in blue represent
preselected seed points. If the grayscale threshold is set to 30,
the algorithm can ultimately extend to include the points
indicated in green.

After removing the background image, the LSD algo-
rithm [61] is deployed to deduce the straight lines defning
the edges of the inclined cable.

In the growing process of Region Growing, the gray
threshold determines the acceptable tolerable of gray value
diference. As shown in Figure 7, for backgrounds where the
gray values are too similar, if they are too close to each other,
it is difcult to obtain good results even by adjusting the gray
threshold.

2.1.2. RGv2 Algorithm. In pursuit of superior results, taking
into account the cable’s specifc attributes, we have in-
troduced a more efcient growth rule, which concurrently
allows for the direct extraction of linear information per-
taining to the cable’s edges.

Te precise growth rules are outlined as follows:
initially, we segment the images into clusters predicated
on the inclination of the cable. As illustrated in Figure 8,
the cluster where the seed point resides (indicated in
blue) is designated the seed cluster. Subsequently, we
assess the average gray value between the two neigh-
boring clusters. If the value is less than the grayscale
threshold, the growth process is initiated. If it exceeds the
grayscale threshold or the image boundaries, meeting the
termination criteria, the growth is then halted. Ulti-
mately, all segments marked in green can be expanded.
Tis procedural insight is elucidated in Figure 9. Te
linear attributes of the cable’s edge can be discerned
through the positioning of the seed cluster and the fre-
quency of adjacent expansions, obviating the necessity for
cable edge detection. Tis method results in a notable
optimization of the processing time.

In comparison to the previous Region Growing and LSD
algorithms, our proposed RGv2 algorithm demonstrates
swifter processing times and heightened accuracy. A com-
prehensive comparative analysis with additional algorithms
is provided in Section 3 of this paper.

2.1.3. K-Means Algorithm. In instances where the back-
ground image of the inclined cable contains limited white
regions, cluster algorithms such as K-Means can be efec-
tively employed to diferentiate between the inclined cable
and the background image. Te steps involved in K-Means
clustering can be summarized as follows.

In a color image, each individual pixel comprises three
components: red (R), green (G), and blue (B). Te R, G, and
B components of all pixel points collectively form a three-
dimensional sample space. Trough the utilization of K-
Means, pixel points within the image that closely resemble
the color of the inclined cable are grouped into a single
cluster, while other colors are distributed across multiple

clusters. Following the clustering process, only the results of
the initial cluster are retained, leading to the efective re-
moval of the majority of the complex background.

Following the removal of the background, the edge
information pertaining to the cable is computed utilizing the
LSD algorithm, ultimately yielding the displacement data for
the cable. Tis sequence of operations is depicted in
Figure 10.

2.2. EMD. To enhance the precision of identifying vibration
frequencies in inclined cables and reduce the infuence of the
UAV’s motion, this study employs EMD to analyze the
displacement time history. EMD, which can decompose the
time history into multiple empirical modes called IMFs [53],
represents a nonsmooth time-history decomposition
method.

Although the selection of high and low frequencies re-
mains somewhat subjective, this study endeavors to design
a method for the automatic selection of suitable IMFs. Tis
approach draws inspiration from the technique employed by
Zhang and Wei for estimating high-frequency noise
boundaries [62], involving the creation of an evaluation
system for identifying IMFs with distinct frequency peaks.
Furthermore, it is infuenced by the research of Yoon et al.
[63], which asserts that UAV motion predominantly occurs
between 0 and 0.5Hz. Te entire selection process is illus-
trated in Figure 11.

Initially, this method conducts spectral analysis on the
signal and compares the energy within the low-frequency
range (0–0.5Hz) with that in other frequency ranges. During
the initial fltering step, if the proportion of low-frequency
energy is substantial, it indicates that the given IMF pre-
dominantly refects the UAV’s fight motion characteristics.
Consequently, these IMFs are deemed for exclusion. Con-
versely, when the proportion of low-frequency energy is
relatively small, it suggests that interference from the UAV
on the signal is relatively limited, making these IMFs suitable
for further refnement and analysis.

To select the IMFs capable of refecting the cable’s dy-
namic characteristics, the standard deviation and spectral
area with respect to the x-axis are also utilized to describe the
data. For the spectral data in this research, a smaller standard
deviation implies reduced interference and a more pro-
nounced peak frequency. Additionally, the area enclosed
with x-axis of the frequency spectral serves as another in-
dicative measure. A smaller area corresponds to a more

60 50 60

50 100 60

30 80 120

60 50 60

50 100 60

30 80 120

Figure 6: Traditional Region Growing algorithm principal
demonstration.
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prominent frequency peak and less interference. Notably,
the proportion of low-frequency energy exhibits a similar
trend to the standard deviation and the area enclosed by the
x-axis. Hence, smaller values for these three indicators

signify that the IMF is better suited for capturing the cable’s
dynamic characteristics. Consequently, there is a need to
formulate an index that can encapsulate these features.

Before constructing the index, data normalization is
a prerequisite. Due to the diverse frequency ranges of the
IMFs decomposed by EMD, the Fourier transformed
spectral diagrams exhibit signifcant variations along the Y-
axis. To enable a uniform comparison across all IMFs, the
frequency domain data of each IMF are initially normalized
using formula (1), where NM denotes the normalization
result.

NM �
IMF − min(IMF)

max(IMF) − min(IMF)
. (1)

Given the disparate distribution ranges of each IMF
within the frequency domain, the analysis is concentrated on
the 0–10Hz range. Taking into account the aforementioned
considerations, the standard deviation, area, and low-
frequency energy ratio of the frequency domain separately
using Xm

n , the subscript “n” represents the IMF number,
while “m” pertains to the three indices: standard deviation,
area, and low-frequency energy ratio.

(a) (b)

Figure 7:Te efect of tuning parameters in the Region Growing algorithm. (a)Te gray threshold is set to 0.25; (b) the gray threshold is set
to 0.20.

The cable region

Figure 8: RGv2 principal demonstration.
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Figure 9: Te process of RGv2.
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Figure 10: Detailed fowchart of the proposed K-Means algorithm.
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Due to the varying scales of the three indices, namely,
standard deviation, area, and low-frequency energy ratio, as
depicted in Figure 11, if Xm

n is used directly to make
judgments, some indices will be decisive, while others will be
dispensable. However, each Xm

n is expected to have the same
weight. Consequently, the maximum value of each index is
set to 1, and the remaining values are scaled accordingly, as
demonstrated in formula (2). Tis adjustment yields a more
balanced evaluation of standard deviation, area, and low-
frequency energy.

A
m
n �

X
m
n

max X
m
n( 􏼁

m � 1, 2, 3. (2)

As the objective is to construct an index that attains
higher values when the standard deviation, area, and low-
frequency energy ratio are minimized, formula (3) is devised
for this purpose.Te fnal score, as denoted in formula (4), is
derived by summing all three Sm

n together. A higher scoring
of the Tn value indicates that the respective IMF exhibits

more pronounced frequency peaks. Tis methodology has
been rigorously validated and successfully applied in Section
3.4 of the study.

S
m
n � 1 − A

m
n m � 1, 2, 3, (3)

Tn � 􏽘
m

1
S

m
n m � 1, 2, 3. (4)

2.3. Experimental Approach of Capturing an InclinedCable by
a UAV. To validate the efcacy of the background removal
techniques presented in this manuscript, we conducted
experiments on an inclined cable situated on a bridge
spanning the Yellow River in Lanzhou. As depicted in
Figure 12(a), our experimental procedure involved artif-
cially exciting one of the inclined cables, followed by cap-
turing video footage using a UAV. Simultaneously, an
accelerometer was afxed to the inclined cable to record
vibration data for comparative analysis.

For our experimentation, we selected the third inclined
cable on the northeastern side of the bridge, counting from
the top (as illustrated in Figure 12(a)). Te primary pa-
rameters of this inclined cable are summarized in Table 1.
Since the bridge had not yet been opened to trafc, we
employed a rope-based artifcial excitationmethod to induce
vibrations in the inclined cable. Once the amplitude reached
a stabilizing point, we ceased the excitation, allowing the
inclined cable’s vibrations to gradually attenuate.
Troughout the experiment, we utilized a DJI Phantom 4
Pro UAV equipped with a 1-inch 20-megapixel image
sensor, and the camera operated at a frame rate of 60 frames
per second.

To expand our dataset for the validation of the meth-
odologies outlined in Section 3.4, we also employed UAVs to
capture data from two other cable-stayed bridges, namely,
the Nongye Road Bridge and Jiefang Road Bridge. Tese
bridges are located in Zhengzhou, China. Te distinguishing
features of the Jiefang Road Bridge include light green cables
and closer alignment of two rows of cables, enabling the
UAV to capture two overlapping cables in a single frame.

3. Results and Discussion

3.1. Analysis of the Tree Proposed Algorithms. Tis section
compares the efect of the three algorithms on background
removal and their respective time consumption. As shown in
Figure 13(a), to make the comparison clearer, the result of
the RGv2 is green and the K-Means is blue, while the result
of the Region Growing algorithm is changed to red, as shown
in Figure 13.

In Figure 13, the area covered by the RGv2 algorithm is
noticeably larger than that of the traditional Region Growing
algorithm. Tis is due to the diferent growth mechanisms
and gray threshold values adopted by the two. In fact, if the
Region Growing algorithm were to use a higher gray
threshold at this point, it would lead to extensive

Is the energy of the IMF 
at 0-0.5 Hz greater than the energy in 

other intervals

Select an IMF

Is it the last IMF

NO

Yes

NO

Afer FFT only the data from 0-10
Hz are intercepted and then
normalized by formula (1)

Te standard deviation was
calculated the scale was

standardized using formula (2)

Calculated area and the scale was
standardized using formula (2)

Calculate the low-frequency
energy ratio and the scale was

standardized using formula (2)

Calculate the S1

using formula (3)

Calculate the S2

using formula (3)

Calculate the S3

using formula (3)

Using formula (4) to
calculate Tn

Figure 11: Te IMF selection process fowchart.
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misjudgment like that shown in Figure 7(a). Terefore, the
Region Growing algorithm can only use a relatively con-
servative gray threshold. In fact, even using a smaller gray
threshold inevitably leads to the growth of an area that does
not belong to the cable. In addition, the outer part of the
cable is wrapped in a PE sheath in a spiral, which results in
many curved lines on the cable surface that difer in gray
value from the cable itself, as shown in Figure 1. Tese

curved lines, which the Region Growing algorithm cannot
grow, will interfere with the subsequent edge detection.
Tese are the reasons for the poor robustness of the Region
Growing algorithm as shown in Figures 14 and 15. In
contrast, the RGv2 algorithm proposed in this study judges
and grows based on the gray values of a straight line, which
can avoid many local minor issues and thus grow a more
complete cable. K-Means also has similar issues.

Cable to be measured

(a)

UAV

AccelerometerRope

Excitiation position

(b)

Laptops

Data acquisition
instrument

(c)

Figure 12: Te Yellow River bridge in Lanzhou: (a) location of the inclined cable to be measured; (b) deployment of the accelerometer and
the UAV; (c) data acquisition instrument.

Table 1: Main parameters of the measured inclined cable.

Length (m) Outer diameter (m) Unit mass (kg/m)
165.2430 0.1330 68.6000

(a)

Region Growing
RGv2

(b)

K-Means
RGv2

(c)

Figure 13: Comparison of background removal results.
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We employ MATLAB’s integral “profle” command to
determine the execution times associated with RGv2, Region
Growing, and K-Means. To facilitate a precise comparison of
the durations for each method, we conducted processing on
a personal computer, specifcally focusing on the time
expended in tasks such as image retrieval, background re-
moval, displacement computation, and the output of dis-
placement data. As outlined in Table 2, the “Other
Processing” category includes time allocation for activities
such as image retrieval and displacement data output, while
the “Total Time” category represents the cumulative time
necessary to process 100 frames.

Table 2 provides a clear depiction of the superior time
efciency of the RGv2-based method, requiring only one-
third of the time compared to the Region Growing-based
approach.

3.2. Analysis of the Results of Diferent Background Removal
Algorithms. To quantitatively assess the efcacy of various
background removal algorithms, we employ the mean in-
tersection over union (MIOU) and Dice coefcient (Dice)
metrics to evaluate the accuracy and consistency of image
segmentation methods. Both MIOU and Dice yield values
within the range of 0 to 1, where a value closer to 1 indicates
a higher degree of overlap between the segmentation result
and the ground truth, signifying superior performance
[64, 65].

In this section, in addition to employing RGv2, Region
Growing, and K-Means algorithms, we introduce deep
learning, Vibe [33], and Frame Diference algorithms for
comparative analysis. Among these, the Vibe algorithm
initially models the backgrounds and subsequently removes
them, while the Frame Diference method relies on pixel
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Figure 14: Calculation results for the short-time condition: (a) displacement time history; (b) frequency domain.
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Figure 15: Calculation results of the long-time conditions: (a) displacement time history; (b) frequency domain.
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diferences between frames to eliminate backgrounds. Te
efect of these diverse methods on background removal in
varying environments is illustrated in Figure 1, accompanied
by the corresponding evaluation indices presented in
Table 3.

Upon analyzing the evaluation metrics and Figure 1, it
becomes evident that the Frame Diference method exhibits
suboptimal performance. Tis approach operates under the
assumption that moving objects display signifcant pixel
value disparities compared to the background. However, in
UAV-captured videos, both the pixel values between the
cable and the background may exhibit substantial variations,
and some background areas might undergo pixel value
changes across consecutive frames. Consequently, the Frame
Diference method struggles to deliver satisfactory results
under these conditions. Moreover, while the Vibe algorithm
demonstrates a degree of adaptability to dynamic back-
grounds, it faces challenges in accurately segmentingmoving
cables and is hindered by extended computation times. In
contrast, RGv2 proves efective when a pronounced color
contrast exists between the cables and the background.
However, when the cable and background colors closely
resemble each other, as observed in the case of the Jiefang
Road Bridge, the results tend to be less favorable. Our
proposed RGv2 algorithm, which places greater emphasis on
overall grayscale diferences and avoids signifcant local
issues, yields higher scores in image segmentation.

Furthermore, RGv2, along with the Region Growing and
K-Means algorithms, exhibits certain lighting dependencies.
For instance, in the scenario of the Nongye Road Bridge with
the sun directly above the cable, UAV photographs of the
cables display noticeable light-dark transitions. Tis may
lead to inaccurate recognition of the darker portions of the
cables during image segmentation. Nevertheless, back-
ground removal in the upper section remains efective,
allowing for cable displacement determination through
tracking the straight line of their upper edge.

Te deep learning results in Figure 1 were chosen from
a selection of images that exhibited relatively good per-
formance for comparison with other algorithms. In reality,
the efcacy of deep learning methods is contingent upon
the size of their datasets. If applied to a diferent bridge,
there would likely be a substantial decrease in accuracy, as
illustrated in Figure 16. In fact, even when examining the
same bridge, variations in the shooting angle or lighting
conditions can result in reduced accuracy, as illustrated in
Figure 17. While it is capable of identifying the cable re-
gion, this method falls short in diferentiating between

multiple cables in scenarios such as cable-stay bridges with
overlapping cables. Tis shortcoming results in errors in
cable edge recognition, as evidenced in Figures 1, 16, and
17. In contrast, our proposed RGv2 algorithm is adept at
exclusively recognizing the specifed cables, a capability
clearly illustrated in Figure 17. Furthermore, when two
cables are in close proximity, it becomes impractical to
employ the region of interest (ROI) approach to analyze
a single cable independently. Te edge information from
multiple independently moving cables can signifcantly
interfere with the subsequent calculation of cable
displacement.

In fact, besides RGv2, the results of the line segment
detection after background removal by other algorithms
should also be evaluated. Tis is because the cable edge
detection results are related to the displacement recognition
accuracy directly. Te straight lines of cable edges can be
obtained by algorithms such as Hough transform and LSD.
As Hough transform’s computational efciency is relatively
low when the picture is complicated, the LSD algorithm was
used to track the cable edge (Figure 2). To demonstrate the
clarity of the edge information obtained by RGv2, the results
of the line segment detection after background removal by
RGv2 are also presented. However, in reality, RGv2 can
determine the information of edge straight lines through the
location of seed points and the number of times it grows
around, without the need for external edge detection
algorithms.

It can be observed that inefective background removal
leads to cluttered and numerous straight lines. Tis signif-
icantly disrupts the subsequent process of calculating cable
displacement, particularly using the Vibe and Frame Dif-
ference method. In contrast, the Region Growing and K-
Means algorithms demonstrate more consistent perfor-
mance in detecting cable edges, notwithstanding some spiral
lines on the cable’s surface. Tis may impact the calculation
of cable vibrations. Moreover, although these two algorithms
have removed most of the background, some remnants still
detected by the LSD could potentially interfere with sub-
sequent calculations. Meanwhile, the RGv2 algorithm yields
more concise and clear edge detection results.

It is noteworthy that the deep learning method may
struggle with cable edge detection. Tis limitation arises
from the difculty in completely separating the cable from
the background, as evident in the zoomed image in Fig-
ure 18. Te deep learning method would leave a narrow
background, which could also cause interference in LSD
detection as shown in Figure 2.

Table 2: Te statistics of algorithm time (unit: s).

Background removal and
displacement calculation Other processing Total time

Method based on K-Means 24.578 1.710 26.288
Method based on Region Growing 16.100 1.963 18.063
Method based on RGv2 4.087 1.811 5.898
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3.3. Analysis of the Inclined Cable’s Vibration Frequency.
To test the reliability of the above two background removal
methods, a short-time condition of 40 seconds and a long-
time condition of 300 seconds were collected by the UAV for
displacement time history identifcation. Afterwards, the
frequency domain diagram is obtained by FFT for
comparison.

3.3.1. Result of the Short-Time Condition. Figure 14(a)
presents the displacement time history results for the
short-time condition. Notably, the results obtained without
employing background removal exhibit numerous abrupt
value changes. Tis phenomenon arises due to the presence
of interference lines in the background when background
removal is not applied. In contrast, the results obtained using

Table 3: MIOU and Dice of diferent methods.

Chaijiaxia Yellow River
Bridge Nongye Road Bridge Jiefang Road Bridge

MIOU Dice MIOU Dice MIOU Dice
Region Growing 0.9075 0.9515 0.7130 0.8324 0.6722 0.8040
K-Means 0.5127 0.6778 0.6168 0.7630 0.3544 0.5233
RGv2 0.9368 0.9673 0.7229 0.8392 0.7870 0.8808
Deep Learning 0.7383 0.8495 0.9716 0.9856 0.5915 0.7433
Vibe 0.1986 0.3314 0.1625 0.3215 0.3465 0.5652
Frame Diference 0.0068 0.0135 0.4923 0.6598 0.1436 0.2512

Figure 16: Application of deep learning methods to other bridge scenarios.

Figure 17: Results for the Jiefang Road Bridge with changes in lighting or shooting angle.

(a) (b) (c)

Figure 18: Partial details of the results of deep learning methods. (a) Detailed view of Chaijiaxia Yellow River Bridge; (b) detailed view of
Nongye Road Bridge; (c) detailed view of Jiefang Road Bridge.
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the three background removal algorithms display closer
proximity, characterized by improved continuity and ro-
bustness in the detection results. Furthermore, no abrupt
changes occur in the monitoring results. Te slight dis-
crepancies among the results obtained with the three
background removal algorithms can be attributed to vari-
ations in the identifcation of inclined cable edges, as
depicted in Figure 13(b).

Figure 14(b) exhibits the FFT results of the data pre-
sented in Figure 14(a). To facilitate comparison with the
accelerometer data and account for the low energy of the
low-order modes recorded by the accelerometer, the results
obtained with background removal algorithms have been
attenuated in the frequency domain, as demonstrated in
Figure 14(b).

In summary, a substantial disparity is observed between
the results obtained with and without background removal.
Te results lacking background removal exhibit complex
and multifaceted frequency patterns. Conversely, the results
obtained with background removal clearly manifest 3–5
discernible peaks when the frequency surpasses 1Hz. Te
frequency diferences among these peaks align with the
vibration characteristics of the inclined cable. Tis un-
derscores the crucial nature of processing the original video
using background removal methods prior to edge detection
of the inclined cable.

3.3.2. Result of the Long-Time Condition. Figure 15(a)
presents the displacement time history and frequency do-
main analysis for an extended period of 300 s. Remarkably,
most of the observations made under the long-time con-
dition align with those from the short-time condition. Te
long-time condition also yields favorable detection results
when compared to the short-time condition, underscoring
the robustness of the proposed method.

In Figure 15(b), the displacement time history obtained
from UAV video captures exhibits higher energy at low
frequencies, gradually diminishing as frequencies increase.
In contrast, the accelerometer data exhibit the inverse trend,
with energy increasing as the frequency rises. Notably, the
Region Growing and K-Means algorithms can detect three
vibration frequencies, while RGv2 can detect fve vibration
frequencies. Tis highlights the superior performance of
RGv2 in frequency domain analysis.

However, it is important to note that both short-time
and long-time conditions feature complex frequency pat-
terns with elevated energy in the low-frequency range, which
can complicate the automatic detection of vibration fre-
quencies. To address this challenge, we employ EMD to
analyze the obtained displacement time history in
subsequent steps.

3.3.3. Comparison with the Accelerometer. Te instability
inherent to a hovering UAV during video capture introduces
an additional infuence on measurement results. Notably,
the primary energy source related to the UAV’s motion
consists primarily of a low-frequency component [66],
resulting in elevated and complex energy levels below 1Hz

in the frequency domain (as depicted in Figure 15(b)).
Consequently, the proposed method is unable to measure
the frst vibration frequency of the inclined cable. However,
this limitation does not hinder the manual identifcation of
higher-order vibration frequencies.

As indicated in Table 4, three background removal
methods are capable of observing 3–5 frequencies, closely
aligning with the accelerometer’s results. Notably, the
proposed methods exhibit consistency with the acceler-
ometer results in measuring modes 2, 3, and 4 of the inclined
cable, as shown in Table 4. Furthermore, Table 5 provides
a comparison of the frequency diferences obtained by the
three methods relative to the accelerometer.

Table 5 reveals that the RGv2 method demonstrates
mean relative errors of 0.89% and 0.71% across the two
working conditions. In contrast, the Region Growing
method exhibits mean relative errors of 1.83% and 1.03% for
the same conditions, while the K-Means method presents
mean relative errors of 3.43% and 0.71%. Consequently, the
RGv2 method stands out by delivering superior results in
terms of accuracy and consistency.

3.4.VibrationFrequencyAnalysis afterEMD. To enhance the
accuracy of detecting the vibration frequency of the inclined
cable while mitigating the infuence of the UAV’s inherent
vibration, EMD is employed to analyze the displacement
time history under both short-time and long-time condi-
tions.Te decomposition process of the long-term condition
using the RGv2 algorithm is illustrated in Figure 19(a). In
this process, the original data are decomposed into 8 IMFs
and one residual, with the IMFs organized in descending
order of frequency. As demonstrated in Figures 14(b) and
15(b), the UAV’s motion exhibits relatively low frequencies,
resulting in frequency overlap between the UAV’s motion
and the inclined cable’s motion in the low-frequency range.

To evaluate the EMD data of the three cables on the three
diferent bridges, the evaluation metrics discussed in Section
2.2 are employed and the results are presented in Table 6.
Tis table facilitates the identifcation and selection of the
most suitable IMFs. For instance, the highest scores among
the three datasets correspond to IMF2, IMF1, and IMF2,
respectively. As illustrated in Figure 19, it becomes evident
that IMF2, IMF1, and IMF2 yield the most favorable results
for the three cases, confrming the accuracy of the method
proposed in this paper. Te optimal IMF is visually repre-
sented in Figure 20.

Te optimal IMF is selected for both the long-term and
short-term conditions of the Chaijiaxia Yellow River Bridge
using this approach. Comparing the calculated results with
accelerometer data (Figure 21), it is apparent that the fre-
quency peaks become more distinct and prominent with the
application of this processing method.

Te frequencies obtained after implementing the pro-
posed approach are summarized in Tables 7 and 8. In
comparison to Table 5, this approach notably reduces the
relative error in frequency disparities for all three methods.
Furthermore, it aids K-Means in identifying a greater
number of frequency peaks in the short working conditions.
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Table 4: Detected vibration frequencies (unit: Hz).

Condition Method Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

Short-time condition

Accelerometer — 1.4553 2.1662 2.8966 3.6242 4.3518
K-Means — 1.4486 2.1479 2.8472 — —

Region Growing — 1.4467 2.1452 2.8685 — —
RGv2 1.4480 2.1470 2.8709 3.5949 4.3189

Long-time condition

Accelerometer — 1.4570 2.1680 2.8952 3.6250 4.3522
K-Means — 1.4326 2.1599 2.8684 3.5863 4.3073

Region Growing — 1.4326 2.1537 2.8653 — —
RGv2 1.4318 2.1477 2.8664 3.5878 4.3064

Table 5: Te detected frequency diferences.

Condition Method 1-2 (Hz) 2-3 (Hz) 3-4 (Hz) 4-5 (Hz) 5-6 (Hz) Mean relative error

Short-time condition

Accelerometer — 0.7109 0.7305 0.7276 0.7276 —
K-Means — 0.6993 0.6993 — — 3.43%

Region Growing — 0.6985 0.7233 — — 1.83%
RGv2 0.6990 0.7239 0.7240 0.7240 0.89%

Long-time condition

Accelerometer — 0.7110 0.7272 0.7298 0.7272 —
K-Means — 0.7273 0.7085 0.7179 0.7210 0.71%

Region Growing — 0.7211 0.7116 — — 1.03%
RGv2 0.7159 0.7187 0.7214 0.7186 0.71%
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In summary, EMD, which is well suited for handling data
fuctuations induced by a UAV’s own vibrations, proves to
be a superior method for accurately extracting the vibration
frequencies of inclined cables.

To better illustrate the efectiveness of the proposed
UAV motion fltering method, this article compares some
fltering methods similar to EMD. Based on the EMD al-
gorithm, scholars have proposed various improved
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Figure 19: Decomposition results of EMD. (a) Data of Chaijiaxia Yellow River Bridge; (b) data of Nongye Road Bridge; (c) data of Jiefang
Road Bridge.
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algorithms, such as the ensemble empirical mode de-
composition (EEMD) [67] algorithm and the variational
mode decomposition (VMD) algorithm. EEMD is an im-
proved method where white noise is added to the original
signal before each EMD iteration, but it also has the
limitation of large computational complexity and

interference. As shown in Figure 22, the frequency peak
after decomposition is unclear and will cause interference
to the frequency diference calculation. Besides, VMD
determines the frequency center and bandwidth of each
IMF by iteratively searching for the optimal solution of the
variational model. Tus, VMD could achieve signal

Table 6: Calculated Tn using the proposed method.

IMF1 IMF2 IMF3
Chaijiaxia Yellow River Bridge 0.7849 2.1580 1.5629
Nongye Road Bridge 1.3023 0.2718 —
Jiefang Road Bridge 0.9255 1.3712 —
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Figure 20: Te superimposed results of the highest rated IMFs using EMD.
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Figure 21: Comparison before and after EMD for the long-time condition: (a) before using the proposed method; (b) after using the
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Table 7: Vibration frequencies after the proposed method (unit: Hz).

Condition Method Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

Short-time condition

Accelerometer — 1.4553 2.1662 2.8966 3.6242 4.3518
K-Means — 1.4253 2.1625 2.8751 3.5878 4.3004

Region Growing — 1.4241 2.1486 2.8731 — —
RGv2 — 1.4241 2.1486 2.8731 3.5976 4.3221

Long-time condition

Accelerometer — 1.4570 2.1680 2.8952 3.6250 4.3522
K-Means — 1.4331 2.1450 2.8662 3.5875 4.3087

Region Growing — 1.4331 2.1481 2.8662 — —
RGv2 — 1.4331 2.1481 2.8662 3.5875 4.3087

Table 8: Frequency diferences after the proposed method.

Condition Method 1-2 (Hz) 2-3 (Hz) 3-4 (Hz) 4-5 (Hz) 5-6 (Hz) Mean relative error

Short-time condition

Accelerometer — 0.7109 0.7304 0.7276 0.7276 —
K-Means — 0.7372 0.7126 0.7127 0.7126 0.11%

Region Growing — 0.7245 0.7245 — — 0.05%
RGv2 — 0.7245 0.7245 0.7245 0.7245 0.05%

Long-time condition

Accelerometer — 0.7110 0.7272 0.7298 0.7272 —
K-Means — 0.7119 0.7212 0.7213 0.7212 0.68%

Region Growing — 0.7150 0.7181 — — 1.00%
RGv2 — 0.7150 0.7181 0.7213 0.7212 0.68%
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Figure 22: Continued.
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frequency domain division and efective separation of each
IMF, as shown in Figure 23. In the decomposition of
relative motion of cables, the frequency peaks obtained are
the same as those obtained by EMD. However, VMD’s
decomposition number K lacks unifed theoretical guid-
ance and needs to be determined artifcially [68]. Tey
currently have numerous applications [69–72].

At the same time, in order to compare with EEMD and
VMD, this study uses the average of Kullback–Leibler di-
vergence (KLD) of all IMFs to evaluate the decomposition
efect of each decomposition method. KLD calculates the
relative entropy between two random signals from a prob-
abilistic perspective and efectively quantifes their difer-
ences. Te calculation results are shown in Table 9.
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Figure 22: Decomposition results of EEMD. (a) Data of Chaijiaxia Yellow River Bridge; (b) data of Nongye Road Bridge; (c) data of Jiefang
Road Bridge.
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Figure 23: Continued.
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It can be found that the average KLD of EMD is generally
smaller, which indicates that the decomposed distribution,
in terms of shape or probability mass allocation, is relatively
similar to the original distribution.

Te IMF selection method proposed in Section 2.2 is also
used in this section to the decomposition results of EEMD
and VMD, and the highest rated IMFs are shown in Fig-
ures 24 and 25, respectively. However, due to the charac-
teristics of EEMD decomposition, it has difculties to clearly
distinguish frequency peaks. Terefore, the IMF selection
method cannot be efectively used in conjunction with
EEMD. In contrast, VMD can clearly decompose modes into
diferent IMFs. However, the highest-scoring IMF often only
contains one frequency peak, making it impossible to obtain
frequency diferences. For this reason, the IMF selection
method is also difcult to use in conjunction with VMD.
Among them, the Tn scores of the results computed by EMD,
EEMD, and VMD are shown in Tables 6, 10, and 11, re-
spectively. Due to the fact that the frequency diference can
be obtained solely based on the IMF with the highest Tn

score, the proposed selecting IMFmethod is more applicable

when used in conjunction with EMD. Te above analyses
refect the applicability of the IMF selection method and can
be used to select the ideal IMFs automatically.

3.5. Cable Force Estimation. In this section, we utilize the
average frequency diferences obtained from various algo-
rithms to compute the cable force using the following
formula [16]:

T � 4mL2
Δfrs

s − r
􏼠 􏼡

2

, (5)

where m is the unit mass of the cable, L is the length of the
cable, r and s are the modal orders of the correspondingly
identifed frequencies, and Δfrs is the diference between the
rth and sth frequencies. Te results of this calculation are
presented in Figure 26 and Table 12. It becomes evident that
the cable force computed using the proposed method aligns
closely with the values obtained via the accelerometer. Tis
underscores the smaller error margin associated with the
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Figure 23: Decomposition results of VMD. (a) Data of Chaijiaxia Yellow River Bridge; (b) data of Nongye Road Bridge; (c) data of Jiefang
Road Bridge.

Table 9: KLD of diferent decomposition methods.

Chaijiaxia Yellow River
Bridge Nongye Road Bridge Jiefang Road Bridge

EMD 11.1903 3.4869 3.6537
EEMD 5.8947 3.8947 3.5865
VMD 17.8596 2.6892 6.1890
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Figure 24: Te superimposed results of the highest rated IMFs using EEMD.
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Figure 25: Te superimposed results of the highest rated IMFs using VMD.
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RGv2 method proposed in this study during the fnal cable
force computation.

4. Conclusion

Tis study utilizes UAV technology to record the vibrational
motion of an inclined cable, capturing these data in video
format. To extract the vibrational time history of the inclined
cable, complex backgrounds within the video were elimi-
nated using both a Region Growing algorithm and a K-
Means algorithm. Due to various limitations in the Region
Growing algorithm, an enhanced version named RGv2 was
developed and applied for image segmentation and dis-
placement calculation. Subsequently, the displacement time
history was analyzed using EMD. Te fnal step involved

employing the derived frequency diferences to compute the
cable force. Te principal fndings are as follows:

(1) In the context of background removal and dis-
placement calculation, the RGv2 algorithm dem-
onstrates a higher accuracy and shorter processing
time compared to the methods based on K-Means
and Region Growing. In addition, the RGv2 algo-
rithm achieves higher MIOU and Dice scores in
background removal.

(2) All three background removal algorithms success-
fully identify the 2nd–5th cable vibration frequen-
cies, demonstrating an average relative error of less
than 3.43%. However, RGv2 outperforms the others
by maintaining the error below 0.89% and

Table 10: Calculated Tn of EEMD using the proposed method.

IMF1 IMF2 IMF3 IMF4 IMF5
Chaijiaxia Yellow River Bridge 0.7590 1.4296 1.3657 1.6206 1.0072
Nongye Road Bridge 0.3153 0.8222 1.0745 0.8824 —
Jiefang Road Bridge 1.3348 0.9375 1.6146 2.0456 1.5103

Table 11: Calculated Tn of VMD using the proposed method.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6
Chaijiaxia Yellow River Bridge 1.1621 1.1071 0.6932 1.2952 1.9930 1.7255
Nongye Road Bridge 0.7022 1.6458 1.5318 2.3726 1.1972 0.5315
Jiefang Road Bridge 0.3444 0.7410 1.3593 1.0046 1.7656 1.6641
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Figure 26: Diagram of the cable force comparison.

Table 12: Comparison of cable force estimation.

Condition Method Cable force (KN) Absolute error (KN) Mean relative error

Short-time condition

Accelerometer 3928.7766 0 0
Region Growing 3937.1907 8.4141 0.21%

K-Means 3932.8468 4.0702 0.10%
RGv2 3932.8468 4.0702 0.10%

Long-time condition

Accelerometer 3925.2508 0 0
Region Growing 3872.2841 52.9666 1.35%

K-Means 3847.0094 78.2413 2.00%
RGv2 3872.2841 52.9666 1.35%
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consistently identifying fve frequency peaks in both
long and short working conditions.

(3) Utilizing EMD, the study introduces a method for
automatically selecting IMFs containing clearer peak
frequency information and obtaining the frequency
diference of the stay cable vibration. Tis approach
enhances the accuracy of vibration frequency
identifcation.

(4) Cable force computation: by utilizing the frequency
diferences derived from the background removal
methods and EMD, the relative error in estimating
the cable force is limited to below 2%. Specifcally,
the cable force error calculated from the frequency
diferences detected by RGv2 remains within 1.35%.
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