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Tis paper introduces a novel and comprehensive model for the analysis of dam deformation trends, integrating the variational
mode decomposition (VMD) method, fractal theory, and the whale optimization algorithm (WOA) to refne the deep extreme
learning machine (DELM) model. Tis integration allows for a meticulous denoising process through VMD, efectively isolating
pertinent signal characteristics from noise and measurement interference. Following this, fractal theory is utilized to conduct an
in-depth qualitative analysis of the denoised data, capturing intricate patterns within the deformation trends. Te model further
evolves with the application of WOA to optimize the DELM model, thereby facilitating an integrated approach that merges
qualitative insights with quantitative analysis. Te efcacy of this advanced model is demonstrated through a case study,
highlighting its capability to deliver accurate and reliable predictions that are in harmony with practical engineering scenarios.
Tis research not only ofers a robust framework for analyzing dam deformation trends but also sets a new standard in the feld,
providing a new solution for assessing structural integrity in hydrological engineering.

1. Introduction

Concrete dams are indispensable for efective water re-
source management and contribute signifcantly to na-
tional economic growth. Ensuring their operational safety
demands accurate monitoring and forecasting of de-
formation trends [1–3]. Te primary challenge in this
process is the presence of noise in deformation data, which
complicates the analysis. In addition, the intrinsic non-
linear characteristics of dam deformations present further
difculties in accurately estimating and predicting these
trends [4, 5]. Consequently, the development of a mathe-
matical model that correlates the deformation of dams with
its infuencing factors is essential for predicting trends and
ensuring the structural integrity of these vital in-
frastructures [6, 7].

Contemporary methods for monitoring dam de-
formation are primarily categorized into statistical [8], de-
terministic [9], and hybrid models [10, 11]. While statistical
models are prevalent due to their simplicity and ease of
implementation, the evolution of computational technolo-
gies and intelligent algorithms, such as support vector
machines [12] and neural networks, has led to their wide-
spread adoption in this feld. Addressing these complexities,
researchers globally have proposed various models for dam
deformation trend analysis and prediction [13, 14]. Recent
advancements in computational methods such as machine
learning have opened new avenues for dam deformation
analysis, ofering more precise and reliable predictions. For
instance, Deng et al. [15] utilized the Kalman fltering
method in conjunction with fractal theory and the R/S
analysis method for qualitative assessment, further
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developing a long short-term memory (LSTM)-based
quantitative model. In addition, Hao et al. [16] employed the
R/S analysis method to discern dam deformation trends and
utilized an optimized extreme learning machine combined
with chaos theory for efective prediction. Bui et al. [17]
introduced a novel approach with the coronavirus optimi-
zation algorithm and LSTM for dam deformation prediction
in hydropower plants. However, these models often focus on
specifc aspects of dam deformation, with limitations in
handling data disturbances, employing time-dependent
monitoring data, parameter determination, constructing
intricate mathematical models, and predicting long-term
trends. Tis underscores the need for a multifaceted ap-
proach, incorporating advanced theoretical methods to
enhance the reliability and scope of dam deformation trend
analysis.

Recognizing the complexities in dam deformation data
analysis, variational mode decomposition (VMD) emerges
as a pivotal method. Its efcacy in processing dam de-
formation data, retaining and accentuating the trend
characteristics, and enhancing the authenticity and stability
of information representation is well documented [18–20].
Tis approach is notably advanced in the model proposed
by Chen et al. [21], which integrates VMD with LSTM
neural networks.Teir model leverages VMD for denoising
dam monitoring data, followed by employing LSTM neural
networks for predictive analysis, thereby signifcantly
improving dam deformation prediction accuracy. In order
to improve the prediction accuracy of nonstationary
nonlinear monthly runof series, Wang et al. [22] in-
troduced the whale optimization algorithm (WOA) to
optimize the VMD and combined it with the gated re-
current unit (GRU) and constructed the runof prediction
model of WOA-VMD-GRU. Te model efectively im-
proves the efectiveness and accuracy of monthly runof
sequence preprocessing. Xu et al. [23] proposed a coupled
prediction model for improving runof prediction, which
decomposes the original runof sequence by an improved
fully ensemble empirical modal decomposition (EMD)
combined with wavelet decomposition (WD) and then
predicts the monthly runof using a support vector machine
(SVM) optimized by the seagull optimization algorithm
(SOA). Te model efectively improves the prediction ac-
curacy of runof.

Fractal theory, known for its ability to capture the self-
similarity and scale characteristics in dam deformation data
[24–26], provides an additional layer of analysis. In this vein,
Xie et al. [27] utilized multifractal theory to dissect the
multifractal characteristics of dam displacement time series,
examining the amplitude, trend fuctuations, and their re-
lationship with environmental variables. Te application of
fractal prediction principles for ftting and predicting the
dam displacement time series further exemplifes the
theory’s utility. In addition, the whale optimization algo-
rithm (WOA), acknowledged for its diverse search strategies
and high efciency, plays a crucial role [28–30]. When
applied to optimize the deep limit learning machine model

[31, 32], it signifcantly bolsters themodel’s performance and
convergence speed, ofering an efective solution for high-
dimensional nonlinear problems.

Tus, this article introduces an integrated model com-
bining the VMD noise reduction method, fractal theory, and
WOA-DELM. It starts with decomposing the collected
monitoring data using VMD, followed by analyzing the
resulting intrinsic mode functions (IMFs) through fractal
theory to identify the deformation trends of the dam.
Building on this analysis, the deep extreme learning machine
(DELM) model is selected as the foundational model. Op-
timizing this model with the WOA leads to the construction
of the WOA-DELM dam deformation prediction model.
Tis model’s predictions are then juxtaposed with the an-
alytical and judgment results derived from fractal theory for
validation. Tis methodology not only accurately forecasts
the future deformation trends of the dam but also provides
a comprehensive understanding of its dynamic
characteristics.

2. Theory and Methodology

2.1. Decomposition Using VMD. VMD is an advanced signal
decomposition technique that separates an original signal
into IMFs with distinct frequencies, amplitudes, and phases.
Tis separation is achieved through a combination of reg-
ularization constraints and iterative solutions, leading to
more stable and manageable decomposition outcomes [33].
In contrast to empirical modal decomposition (EMD), VMD
is underpinned by a more comprehensive and robust
mathematical framework, enabling it to provide more ac-
curate decomposition results. Not only are these results
more reliable and easier to control, but they are also attained
with greater computational efciency. Han et al. [34] showed
that the VMD showed superior noise fltering ability under
drastic fuctuations of water level in dam reservoirs as
compared to EMD.

In the VMD process, the input signal undergoes modal
separation, resulting in a set of IMF components through
successive iterations. Tese IMFs denoted as uk  � u1,

u2, · · · , uk}, k � 1, 2, · · · , K, are then processed through the
following steps:

① For each IMF component, the associated signal is
calculated using the Hilbert–Huang transform as

δ(t) +
j

πt
  × uk(t). (1)

② Te spectrum of each mode uk is shifted to its
baseband by adding an exponential term e−jωt,
aligning with the mode’s central frequency:

δ(t) +
j

πt
  × uk(t) e

−jωt
. (2)

③ Te demodulated signal is estimated by applying H1
Gaussian smoothing to the signal’s bandwidth. Tis
step formulates the variational constraint problem,
leading to a set of defning equations:
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In the VMD framework, the original signal is denoted
as f, and the central frequencies of each IMF com-
ponent uk are represented by ωk  � ω1, ω2, · · · ,ωk}

for. k � 1, 2, · · · , K. Te notation zt denotes the
partial derivative and δ(t) is the Dirac function.

Addressing the variational problem, the incorporation of
the Lagrange multiplier λ(t) and the quadratic penalty factor
α transforms the original constrained variational problem
into an unconstrained one. Tis transformation is expressed
as follows:

L uk , ω{ }, λ  � α
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+ λ(t), f(t) − 
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uk(t)⎛⎝ ⎞⎠. (4)

To solve the minimum of this problem, the alternating
direction method of multipliers is utilized, involving iter-
ative updates of un+1

k , ωn+1
k , and λn+1. Te formulas for these

updates are structured to ensure convergence toward the
solution, taking into account the contributions of each IMF
component and the corresponding noise level τ:

u
n+1
k (ω) �

f(ω) − 
k−1
i�1 u

n+1
1 (ω) − 

K
i�k+1 u

n
1(ω) + λ(ω)/2

1 + 2α ω − ωn
k( 

2 ,

ωn+1
k �


∞
0 ω u

n+1
k (ω)



2
dω


∞
0 u

n+1
k (ω)



2
dω

,

λn+1
(ω) � λn

(ω) + τ f(ω) − 
k

u
n+1
k (ω)⎡⎣ ⎤⎦,

(5)

where τ is the noise.
Te specifc decomposition process in VMD commences

with initializing u1
k , ω1

k , λ1, and setting n � 0. Te pro-
cedure involves an outer loop where n is incremented, and for
each k (starting from 0 and incrementing to K), both the frst
and second inner loops are executed. During these loops, uk

and ωk are updated according to equation (5), and λ is also
updated accordingly. Te process is iterative, and the con-
dition for terminating the loop iteration is defned as follows:
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where ε is the convergence tolerance limit. Upon meeting
this convergence criterion, the process yields K modal
components; if not, the steps are repeated.

2.2. FractalTeory in SignalAnalysis. Fractal theory explores
the intricate patterns in complex and irregular structures
using simple, repetitive rules. A fractal is essentially a spatial
pattern or structure, remarkable for its high self-similarity,
that replicates itself consistently. Within this theoretical
framework, the Katz function and the box-pin method stand
out as pivotal concepts, though they are applied diferently in
terms of computational and practical contexts. Te study by

Pei et al. [35]. indicated that fractal theory has good results in
dam displacement analysis and prediction.

Te Katz function assesses the importance of a node in
a network by measuring its relative distance from adjacent
nodes [36]. Tis function calculates the centrality of a node
as a cumulative weight of paths linking it to other nodes in
the network, weighted by the alpha parameter. Te mag-
nitude of alpha plays a crucial role in determining the impact
of distant paths on the node’s importance, enabling
adaptability to various network structures. Te Katz func-
tion is typically represented as

Katz(v) � alpha∗ sum beati × A
i

 , (7)

where v is the target node, alpha and beat represent specifc
parameters, A is the adjacency matrix, i is the path length,
and Ai represents the i-th power of the adjacency matrix.

Another widely utilized technique in fractal analysis is
the wavelet transform method.Tis time–frequency analysis
approach decomposes and reconstructs a signal across
various scales. Specifcally, wavelet packet decomposition
(WPD), a derivative of the wavelet transform, enables the
decomposition of a signal into frequency-specifc segments,
yielding corresponding wavelet packet coefcients [37].

Te WPD process begins with the selection of a suitable
wavelet basis function, commonly the Daubechies wavelet
basis (db4), denoted as φ(t). Te signal x(t) is then
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decomposed into layers of wavelet packet coefcients, each
representing a diferent frequency content of the signal. Te
wavelet packet coefcients for the j-th layer, denoted as
Cj(k), where k indicates the subband index within the range
of [0, 2j−1], are computed as follows:

Cj(k) �  x(t)∗φjk(t) dt, (8)

where ∗ indicates the convolution and φjk(t) represents the
translation and scale transformation of the wavelet basis
function.

Te analysis extends further by processing the wavelet
packet coefcients of each layer to calculate local Hurst
indices. Te process involves determining the signal length
N and the number of subsegments M, along with the scale
range Kq. For each scale within the range Kq and based on
the number of subsegments M, delta values are computed
and applied to segment the wavelet packet subbands. Sub-
sequently, local Hurst indices for each wavelet packet
subband are calculated independently for each layer. Te
fnal step involves computing a weighted average of the local
Hurst indices for each layer, thus providing a comprehensive
fractal analysis of the signal.

2.3. Optimization Techniques with WOA. Te WOA draws
inspiration from the fascinating natural phenomena ob-
served in whale behaviors [28]. Tis optimization algorithm
is designed to mimic the hunting tactics of whales, including
their search, encirclement, and predation strategies. Each
whale within the algorithm is conceptualized as a search
agent, and collectively, they form a dynamic search space.
Te whales navigate this space, constantly adjusting their
positions to converge on the most favorable solution, akin to
a whale pursuing its prey. WOA’s simplicity, ease of un-
derstanding, and adaptability make it suitable for a wide
array of optimization problems. WOA has shown signifcant
efciency in optimizing the parameters of dam deformation
prediction models, as evidenced by the study of Wang et al.
[38]. Te specifc whale algorithm is shown schematically in
Figure 1. Its operational mechanics are outlined as
follows [39].

Te WOA consists of several key aspects which are as
follows:

(1) Bracketing phase
Tis phase involves calculating the distance D be-
tween the current position X(t) and the optimal
position XP(t), which represents the whale’s en-
circlement of its target. Te distance is defned as
follows:

D � C · XP(t) − X(t)


, (9)

where XP(t) is the optimal position, X(t) is the
current position, t is the iteration count, C is the
perturbation factor, and D is the updating step
during the encirclement phase.

Te process of updating individual positions within
theWOA ismethodically formulated.Te position at
the next iteration, X(t + 1), is determined by the
following equation:

X(t + 1) � XP(t) − A · D. (10)

Te above equation captures the dynamic adjust-
ment of each whale’s position in the search space.
Key to this process are the variables A and C, which
are defned as

A � 2a × r − a,

C � 2r,
(11)

where r represents a random number ranging be-
tween 0 and 1, and a linearly decreases from 2 to
0 over the course of the algorithm’s iterations. Te
gradual decrease in a infuences the scope of the
search behavior, where t denotes the total number of
iterations. Te variable A controls the expansion and
bracketing behavior of the algorithm’s search agents:
when the absolute value of A exceeds 1 ( ∣ A ∣ > 1),
the algorithm engages in a global search, exploring
a wide range of the search space. Conversely, when
∣ A ∣ < 1, it conducts a local search, focusing on
a more confned area to refne the solution.

(2) Predation phase (bubble-net attack)
In this phase, two hunting strategies of whales are
simulated. Te frst strategy, the contraction cycle,
gradually reduces the value of a in equation (11)
from 2 to 0, mirroring the whale’s encircling
movement towards its prey. Te second strategy, the
spiral reupdate position, models the whale’s spiral
hunting motion. Tis is achieved by computing the
distance D′ as per the following equation:

D′ � XP(t) − X(t)


. (12)

Te new position is then updated using the following
formulation:

X(t + 1) � D′ × e
bl

× cos(2πl) + XP(t), (13)

where b is a constant, this paper takes 1, and l is any
value in the interval [−1, 1]. Te step D′ represents
the update distance during the predation process.

Figure 1: Illustration of the whale optimization algorithm.
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Te whale adopts each strategy with an equal like-
lihood of 50%, as detailed in the following equation:

X(t + 1) �
XP(t) − A · D, P< 0.5,

D′ · e
bl

· cos(2πl) + XP(t), P≥ 0.5.

⎧⎨

⎩

(14)

Tis approach efectively simulates the predatory
behavior of whales, alternating between encircling
and spiraling tactics to optimize the search process.

(3) Search phase
During this phase, the whales engage in a collabo-
rative search across the solution space, randomly
selecting and updating positions to enhance the
algorithm’s diversity and global search capabilities.
Tis strategy helps prevent the algorithm from
converging on the local optima, fostering more ef-
fective global optimization. Te search process is
detailed as follows:

D″ � C · Xrand(t) − X(t)


, (15)

where Xrand(t) represents a randomly selected
solution.

2.4. Advancements in Neural Networks with DELM. Te
extreme learning machine (ELM) is a single hidden layer
feedforward neural network algorithm characterized by the
selection of random weights and thresholds. Te unique
aspect of ELM lies in its method of initializing these pa-
rameters randomly between the input layer and the hidden
layer, and within the threshold matrix of the hidden layer.
Tis approach efectively addresses the common issues in
traditional backpropagation neural networks, where in-
appropriate initial weights and thresholds often lead to
suboptimal local solutions [40]. Compared with traditional
neural networks, DELM has shown a 5–10% higher accuracy
in predicting structural deformations in concrete dams. Te
basic structure of ELM is shown in Figure 2.

Te ELMmodel comprises three primary components: the
input layer, the hidden (implicit) layer, and the output layer.
Te fundamental principle of ELM operates as follows: Let X �

xi|1≤ i≤N  represent the input data sample set, and Y �

yi|1≤ i≤N  denote the output data sample set, where N is the
total number of samples, xi is the i-th input sample, and yi is
the i-th output sample. In this setup, the hidden layer consists
of Jneurons, andH � hi|1≤ i≤ J  is the set of output vectors of
the hidden layer, with hi being the feature vector corresponding
to the i-th input sample. Te output of the hidden layer is
calculated by using the following equation:

H � G(αX + B), (16)

where G represents the activation function (which can be
sigmoid, sin, and hardlim), α is the input weight matrix
connecting each node in the input layer to each node in the
hidden layer, and B is the threshold matrix for each node in
the hidden layer.

In scenarios where ELM with a single hidden layer
closely approximates the output of N samples with minimal
error, the output matrix of the hidden layer, H, is expressed
as shown in the following equation:

H �

gi α1x1(  · · · gi αJx1 + bJ 

⋮ ⋱ ⋮

gi α1xJ + b1  · · · gi αJxJ + bJ 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (17)

where H is the implied layer output matrix.
Te key advantage of DELM over traditional ELM is the

incorporation of multiple hidden layers, enabling the con-
struction of deep learning models that efectively capture
signifcant features, thus enhancing learning and general-
ization capabilities. DELM is particularly recommended for
data analysis, compensating for the limitations of ELM and
incorporating regularization terms to further enhance the
model’s generalization potential. Te output weight β in
DELM is calculated by using the following equation:

β �
1
C

+ H
Τ
H 

−1
H

T
Y, (18)

where C is the regularization factor.
In the ELM-AE framework, an autoencoder algorithm

based on ELM, the model learns data features through
unsupervised learning. It employs an encoder to map the
input vector to the hidden layer and a decoder to reconstruct
the feature vector back to the input. ELM-AE characteris-
tically generates orthogonal random weights and thresholds:

αΤα � 1,

B
Τ
B � 1.

(19)

To further improve the generalization ability and ro-
bustness of ELM-AE, regularization coefcients are in-
troduced. Te objective function for least squares
optimization is defned as

min JELM �
1
2
‖β‖

2
+

C

2
‖Y − βH‖

2
 , (20)

where C is the regularization parameter. For sparse and
compressed ELM-AE, the output weight β is determined by
solving the equation:

β �
1
C

+ H
Τ
H 

−1
H
Τ
X, (21)

whereH is the output matrix of the hidden layer of ELM-AE,
and X is both the input and output of ELM-AE.
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Figure 2: Schematic diagram of the ELM structure.
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2.5. Deformation Trend Analysis. Te methodology for an-
alyzing dam deformation trends integrates VMD, fractal
theory, and the WOA-DELM model. Te detailed process,
outlined in Figure 3, consists of the following steps:

Step 1: VMD of dam data
Te initial step involves using the VMD method to
decompose dam deformation data. Tis process yields
the modal functions, their frequency spectra, and
central frequencies, laying the foundation for further
analysis. Te specifc initial parameter settings are as
follows: the number of decomposition levels (K) is set
to 7, the penalty factor is 2000, and the initial central
frequency is set to 1.

Step 2: wavelet transform analysis

Upon obtaining the modal functions from VMD, the
wavelet transform method is employed for further
decomposition into wavelet packets. Tis step involves
calculating local Hurst exponents and Katz functions
for each modal function at various scales, providing
a deeper understanding of the fractal characteristics of
data. Te preliminary settings are as follows: the
wavelet decomposition employs the db4 wavelet basis,
and the number of subsegments M is set to 5.

Step 3: construction of the WOA-DELM model
Tis critical phase focuses on constructing the
WOA-DELM dam deformation prediction model us-
ing the VMD-processed data. Te process involves
several substeps:

(I) Normalization of data postnoise reduction.
(II) Setting parameters for the WOA-DELM model.
(III) Defning the ftness function for the model.
(IV) Te WOA algorithm is frst called for optimiza-

tion to obtain the best weights and best ftness
values for the DELM model. Ten, the DELM
model is trained using the best weights.

(V) Te test data are then fed into the system, along
with output weights and the implicit layer of
ELM-AE, to compute predictions and validate the
method.

Te initial settings for the specifc model are as follows:
for the ELM-AE (extreme learning machine-autoen-
coder), the number of hidden layers is set to (60, 60, 60),
with the activation function being “sigmoid.” For the
whale optimization algorithm, the number of whales in
the population is 30, the maximum number of itera-
tions is 20, the upper bound for the weights is 1, and the
lower bound for the weights is −1.
Step 4: comparative analysis and model validation
Te fnal step involves a comprehensive comparison
between the model’s predictions and the results ob-
tained from wavelet transform analysis. By integrating
the analytical results from the wavelet transform
method and Katz function with the predictive out-
comes, the analysis transcends from purely qualitative
to a more robust quantitative evaluation. Tis

improved approach allows for a more comprehensive
and all-encompassing assessment of future dam de-
formation trends.

2.6. Engineering Context and Setup. Tis case study focuses
on a signifcant hydropower project located along the middle
reaches of the Lancang River in Yunnan Province. Te
project encompasses a range of structures, including
a concrete double-curvature arch dam, a plunge pool,
a secondary dam, a food discharge tunnel, and an extensive
underground water diversion and power generation system.
Te arch dam, a central feature of this project, stands at
a height of 294.5meters, maintains a normal water level of
1240meters, and boasts an installed capacity of 4200MW. It
delivers a guaranteed output of 1778MW and has an im-
pressive annual generation capacity of 1.9 million kWh. An
aerial view of the specifc dam is shown in Figure 4.

To ensure the safety and optimal performance of the
hydropower station, a comprehensive array of monitoring
systems has been implemented. Tis includes an automated
dam safety monitoring system, a global navigation satellite
system-based deformation monitoring system for the dam
crest, a three-dimensional laser measurement system, a dy-
namic monitoring system for seismic responses of the dam
body, and a robust system for monitoring strong earth-
quakes. Tese systems are linked to over 6400 measuring
points, making it China’s most extensive and sophisticated
automated safety monitoring system for high arch dams.
Specifcally, more than 6400 monitoring points include
deformation monitoring, crack monitoring, seepage moni-
toring, temperature monitoring, and satellite monitoring.
Tis paper mainly focuses on deformation monitoring.
Terefore, 53 monitoring sites dedicated to deformation
monitoring are selected in this paper. A detailed layout of
these monitoring instruments is shown in Figure 5.

To assess the efcacy of the model under study, moni-
toring data from two specifc points, C4-A22-PL-02 and C4-
A22-PL-03, located on the arch crown beam of the double-
curvature arch dam, have been selected as sample data.
Figures 6 and 7 depict the displacement monitoring values,
as well as the upstream and downstream water levels and air
temperature readings, ofering a comprehensive view of the
dam’s operational parameters.

3. Result Analysis: Hydropower Station
Deformation Analysis

3.1. Noise Reduction and Signal Enhancement Using VMD.
In this study, VMD is employed as a key method for noise
reduction in the dam’s measured data. Te selection of the
appropriate number of decomposition K values is a pivotal
aspect of this process. Trough various trials, the optimal
value for K is determined to be 7. Alongside this, specifc
parameters are set, as shown in Table 1.

Figures 8 and 9 reveal noticeable fuctuations and out-
liers in themeasured data. However, the application of VMD
for noise reduction and data reconstruction signifcantly
smoothens the displacement change curve, enhancing its
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coherence.Tis underscores the VMD algorithm’s efcacy in
eliminating abnormal noise and correcting data outliers.Te
refned data, devoid of noise and irregularities, facilitate
a more precise analysis of trends and patterns.

Consequently, the utilization of the VMD algorithm in
processing monitoring data proves advantageous, yielding
more reliable and accurate information essential for the
assessment and management of dam operations.

Start

Enter monitoring
data

VMD
decomposition

VMD Noise
Reduction

Reconfguration

Monitoring data
afer noise reduction

Decomposed IMF
fractions

Fractal theory

Wavelet transform
analysis

Wavelet packet
decomposition of each modal
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Localised Hurst exponents
and Katz functions

Comprehensive analysis of
deformation trends

Data set
segmentation

Data
normalisation

Initial whale
location

Randomly
generated whale

locations

Satisfaction
of termination

conditions

Update Location

Whale algorithm to
obtain optimal

solutions

Deep Extreme
Learning Machine

Prediction

Comparative
analysis of results

Combining the results of qualitative and
quantitative analyses, the deformation

trend of the dam is evaluated in a
comprehensive manner

YES

NO

Iterative process

Figure 3: Integrated deformation trend analysis diagram.

(a) (b)

Figure 4: Aerial view of the dam: (a) downstream view and (b) upstream view.
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3.2. Analysis of Dam Deformation Using Fractal Teory.
Tis section presents a detailed analysis of the deformation
trends in a hydroelectric dam, utilizing data from the C4-
A22-PL-02 and C4-A22-PL-03 monitoring points.Te study
employs the VMDmethod coupled with fractal theory tools,
including wavelet transform analysis and the Katz function.

Te monitoring data underwent decomposition into
seven IMFs through VMD. Subsequently, each IMF was
analyzed using WPD with the db4 wavelet basis. Tis ap-
proach facilitated the extraction of detailed information
across various frequency and time domains. Key parameters
such as the local Hurst exponent for each scale component
were calculated, culminating in an overall Hurst exponent

derived through a weighted average. Tis process was in-
strumental in assessing the long-term correlation charac-
teristics of the deformation data. In addition, the Katz
function was calculated for each IMF component, consid-
ering the signal length and the average step length. Te
results are shown in Table 2.

Analysis of Table 2 reveals that the Hurst exponent for
each IMF component slightly varies, predominantly falling
between 0.6 and 0.7. Te overall Hurst exponent stands at
0.638, surpassing 0.5, which is indicative of a consistent
upward trend in dam deformation at the monitored points.
Tis trend is marked by a notable long-term correlation,
regularity, and distinctiveness [41].
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Figure 5: Layout of the pendulum monitoring instruments.
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Figure 6: Displacement monitoring values for measurement points (a) C4-A22-PL-02 and (b) C4-A22-PL-03.
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Furthermore, the Katz function values, ranging from
0.349 to 0.385, denote minimal fuctuations in each signal
component. Te dam deformation monitoring data,
therefore, exhibit a moderate level of long-term correlation
over time. Te overall Katz function value, at 0.403, suggests
minimal variations in the signal within the context of dam
deformation monitoring data, implying a consistent de-
formation trend with a moderate degree of long-term
correlation.

Terefore, the analysis based on the Hurst exponent and
Katz function values points towards a consistent and pro-
gressive upward trend in dam deformation at these moni-
toring points. Te trend is characterized by stability and
regularity, underlining the efcacy of this method in fore-
casting future deformation patterns. Our analysis aligns with
Lin et al.’s [42] fndings on deformation trends in arch dams,
confrming the validity of our approach.

3.3. Evaluating the WOA-DELM Predictive Model. Te
WOA-DELM model’s efcacy in predicting dam de-
formation trends is explored using a dataset comprising C4-
A22-PL-02 and C4-A22-PL-03 monitoring data. In the
monitoring dataset, time, upstream and downstream water
levels, and temperature are used as input variables, and

displacement is used as the output variable. Te specifc
parameters of the WOA-DELM model are set as shown in
Table 3.

To demonstrate the model’s superiority in predicting
dam deformation, a comparative analysis is conducted using
DELM and LSTM models. Tis comparison, focusing on
dam monitoring data post-VMD denoising, helps validate
the WOA-DELMmodel’s advantages. Te prediction curves
of each model are shown in Figure 10, and the residuals of
the prediction model are shown in Figure 11.

Te model’s performance and accuracy are assessed
using fve metrics: goodness-of-ft (R2), root mean square
error (RMSE), mean absolute error (MAE), mean absolute
percentage error (MAPE), and mean bias error (MBE). Te
specifc model predictions are shown in Table 4.

4. Discussion

Tis study focuses on evaluating the long-term predictive
capacity of the WOA-DELM model. For this purpose, the
displacement data from measurement points C4-A22-PL-02
and C4-A22-PL-03 were used. Four distinct predictive
models, WOA-DELM, WOA-LSTM, DELM, and LSTM,
were developed after the VMD reconstruction of the
monitoring data. Te detailed reconstruction curves are
depicted in Figure 9, prediction curves in Figure 10, residual
box line diagrams in Figure 11, and the evaluation indices in
Figures 12 and 13 and Table 4.

Observations from Figure 9 reveal the VMD process’s
efectiveness in enhancing data quality. Te VMD approach
not only smoothens the signals but also retains crucial edge
information, thus preserving the integrity and characteristics
of the original dataset. Tis leads to a more authentic
representation of the dam’s deformation patterns.
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Figure 7: Dam upstream and downstream water levels and air temperature monitoring values.

Table 1: VMD setup parameters.

Parameter Value
Number of decomposition levels (K) 7
Penalty factor 2000
Noise tolerance level 0
Direct current component None
Initial center frequency 1
Convergence standard tolerance 0.0000001
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Figure 8: VMD decomposition of IMF components: (a) C4-A22-PL-02 and (b) C4-A22-PL-03.
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Figure 9: Monitoring values post-VMD processing for measurement points (a) C4-A22-PL-02 and (b) C4-A22-PL-03.

Table 2: Results from fractal theory analysis.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF overall
Hurst index 0.642 0.644 0.643 0.641 0.636 0.626 0.628 0.638
Katz dimension 0.349 0.385 0.372 0.367 0.371 0.384 0.385 0.403
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Table 3: Parameter settings for the WOA-DELM model.

Parameter Value
ELM-AE hidden layer (60, 60, 60)
Activation function “Sig”
C Inf
Population size 30
Maximum number of iterations 20
Lower bound −1
Upper bound 1
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Figure 10: Comparative prediction results for (a) C4-A22-PL-02 and (b) C4-A22-PL-03.
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Figure 11: Residual box line diagrams for prediction models at (a) C4-A22-PL-02 and (b) C4-A22-PL-03.
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Table 4: Prediction results of the models.

RMSE MAE MAPE MBE

C4-A22-PL-02

WOA-DELM 0.421 0.319 0.037 0.253
WOA-LSTM 0.925 0.711 0.054 0.648

DELM 3.407 2.434 0.186 2.011
LSTM 1.45 1.027 0.07 0.649

C4-A22-PL-03

WOA-DELM 0.028 0.019 0.024 0.023
WOA-LSTM 0.033 0.024 0.031 0.031

DELM 0.098 0.073 0.091 0.057
LSTM 0.044 0.026 0.038 0.036
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Figure 12: Model performance indicators for (a) C4-A22-PL-02 and (b) C4-A22-PL-03.
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Figure 13: Model goodness-of-ft for (a) C4-A22-PL-02 and (b) C4-A22-PL-03.

12 Structural Control and Health Monitoring



A closer examination of Figures 10–13 and Table 4 il-
lustrates the superior performance of the WOA-DELM
model. Te model demonstrates the highest R2 and the
smallest values in RMSE, MAE, MAPE, and MBE across
diferent measurement points, where R2 is used to measure
how well the model fts the data. RMSEmeasures the average
diference between the predicted and true values of the
model. MAE is the mean of the absolute values of the
prediction errors. MAPE is the mean of the prediction errors
expressed as a percentage. MBEmeasures the systematic bias
of the predicted values of the model. Tis comparison
highlights the model’s robustness and precision in pre-
dicting dam deformations.

Furthermore, Figure 11 indicates minimal fuctuations
in the WOA-DELM model’s residual values, typically
ranging between 0 and 0.05. Tis is notably lower compared
to the residual values observed in the WOA-LSTM, DELM,
and LSTM models, thereby underscoring the WOA-DELM
model’s consistency and reliability.

Correlating the model predictions with the actual de-
formation trend, as shown in Figure 10, reveals a steady
negative growth pattern in the dam’s displacement over
approximately 90 days. Tis trend is consistent with the
deformation analysis using VMD and fractal theory, as
outlined in Table 1. Te convergence of fndings from both
predictive and analytical approaches afrms a sustained
negative growth in dam deformation, aligning with real-
world engineering observations.

Tis comprehensive analysis not only confrms the ef-
fectiveness of fractal theory in qualitative assessments but
also validates the reliability of the WOA-DELM model in
predictive scenarios. Te integration of fractal theory with
the WOA-DELMmodel for dam deformation trend analysis
exemplifes a robust and efective approach for predicting
and understanding dam dynamics.

5. Conclusion

Tis research has developed a comprehensive analytical
framework aimed at an in-depth analysis of dam de-
formation trends. Te framework integrates VMD for noise
reduction, fractal theory analysis, and the WOA-DELM
models. Te VMD technique plays a pivotal role in elimi-
nating noise from actual measured data, while the wavelet
transform analysis method and Katz function from fractal
theory are utilized for an in-depth qualitative analysis of the
modal components derived from VMD. Tis approach,
which combines both qualitative and quantitative analyses,
signifcantly enhances the precision in identifying dam
deformation trends.

Based on this, the deep extreme learning machine
(DELM) is selected as the base model, which is then opti-
mized using the whale optimization algorithm (WOA) to
form the efcient WOA-DELM model. Tis model plays
a crucial role in characterizing dam deformation trends, and
its predictive outcomes are meticulously compared and
analyzed against the results of fractal theory to verify their
accuracy.

Te proposed comprehensive model signifcantly pre-
serves the original form and characteristics of the data
during the noise reduction process. By applying fractal
theory to analyze the VMD modal components, the model
can more accurately identify the deformation trends of the
dam. Te introduction of the WOA-DELM model not only
validates these trends but also provides an innovative
methodology for analyzing dam deformation trends.

Despite the model’s signifcant contributions, it also has
limitations that point to future research directions. Te
dependency on high-precision data acquisition highlights
the importance of advanced equipment for capturing de-
tailed and accurate data. While the VMDmethod is efective,
it faces challenges when dealing with complex signals, in-
dicating a need for further refnement. In addition, a more
rigorous method is required to verify the consistency of the
model’s predictive results with the fndings from fractal
theory analysis, ensuring the consistency and reliability of
the results.

Future research will focus on enhancing monitoring data
processing technology by exploring new intelligent algo-
rithms to better analyze the intrinsic characteristics of dam
monitoring data. At the same time, innovative data acqui-
sition techniques will be developed to collect higher quality
and more comprehensive monitoring data, thereby en-
hancing the ability of monitoring data processing technol-
ogy to handle complex signals. In addition, the use of fractal
theory to construct corresponding models will allow for
a more accurate description and prediction of dam de-
formation behavior. Continuous optimization of the
WOA-DELM model will further improve monitoring ef-
ciency. Tese research eforts will provide more accurate,
reliable, and applicable solutions for analyzing dam de-
formation trends, thereby strengthening the safety and
operational integrity of dams.
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