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A photogrammetric displacement measurement method based on machine learning was proposed to improve the robustness to
environmental disturbances. (1) To reduce the target positioning error caused by environmental vibration especially atmospheric
turbulence, a machine learning-based weighted location algorithm combined with an adaptive window selection strategy was
developed. In an outdoor displacement table experiment, the proposed method’s root mean squared error (RMSE) is 0.04mm
when the distance is 50m, showing better accuracy and stability. (2) To complement/correct the missing or anomalous data caused
by adverse external conditions, such as severe occlusion or camera shaking, a fast data self-diagnosis using a correlation vector
machine was performed to make full use of the full-feld measurement results obtained from the images. Te applicability of the
proposed method in extreme cases was demonstrated in designed experiments and an actual displacement measurement task of
a long-span bridge subjected to vortex-induced vibration.

1. Introduction

Te structural properties of bridges continuously deteriorate
under the action of environmental erosion, material aging,
and vehicle overload. Defection monitoring, as a key part of
bridge structural health monitoring, can help clarify the
working state of the bridge and identify abnormal changes
promptly, thereby facilitating the prevention of sudden
disasters. Photogrammetry-based defection measurement
methods can enable multipoint synchronization, real-time
dynamic or static monitoring, and fne target positioning
and have thus been widely used in structure displacement
monitoring [1–3].

However, photogrammetry is susceptible to complex
external factors such as environmental vibrations [4–6],
illumination changes [7, 8], rain and fog [9], occlusion
[10, 11], temperature changes [12, 13], and atmospheric
disturbances [14, 15], which can lead to inaccurate image
displacement extraction. Atmospheric disturbances

decrease the accuracy of precision optical measurement
results such as morphology, displacement, and velocity
[16]. Image restoration techniques are typically applied
for precision optical measurement [17, 18]. Notably, the
correction efect of signal fltering [19, 20] on the dis-
placement results is limited as it does not involve optical
principles. Moreover, correction methods based on the
design of camera systems [20] cannot be applied to single-
camera-based measurement. Turbulent image processing
methods [21], widely used in the military feld, are aimed
at target detection and cannot be directly applied for
displacement measurement. In this context, the precise
tracking of the target displacement must be realized to
increase the displacement measurement accuracy based
on the use of a single camera in scenarios involving at-
mospheric disturbances. In summary, the most efective
strategy for single-camera-based displacement measure-
ment is to enhance the subpixel accuracy of target
tracking.
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Center positioning algorithms such as the centroid
method, ftting method, and least-squares ftting method
[22] are widely used in real bridge applications. Te basic
principle is to perform statistical analysis or ftting of
grayscale images in the efective calculation window (ECW).
Te existing studies on enhancing the center detection ac-
curacy [23, 24] have focused on human-made targets with
uniform gray levels, and the problem of atmospheric dis-
turbances has not been extensively considered. Mahrt et al.
[25] highlighted that atmospheric disturbances may lead to
blurring and distortion of the target image, resulting in
target center positioning errors. Te key problems can be
summarized as follows: (1) Imaging blurring and distortion
lead to inaccurate determination of the ECW. When
selecting the target area window, the appropriate window
size must be determined, and the pixels in the ECW directly
participate in the central calculation. Te traditional
threshold-based window determination method is suscep-
tible to environmental interferences. To measure the in-
frared target radiation intensity, Yang et al. [26] proposed an
adaptive ECW determination method and a real imaging
region identifcation method [27, 28] based on the principle
of normal distribution. Notably, these methods are suitable
only for light targets with regular shapes, and any possible
imaging distortion is ignored. Consequently, this paper
proposes an adaptive ECW selection method based on
energy accumulation to alleviate the infuence of environ-
mental noise. (2) Imaging blurring and distortion, especially
imaging distortion, make it difcult to guarantee the posi-
tioning precision based on a single algorithm [26]. To solve
this problem, several scholars have proposed weighted
positioning methods [29, 30]. However, the determination
of weights is challenging. In general, the internal mechanism
associated with the distortion of the target center by at-
mospheric disturbances and its features is complex.
Terefore, Wang et al. [31] attempted to determine the
weights through a back propagation neural network
(BPNN). However, BPNNs operate based on the empirical
risk minimization criterion, which is prone to overftting
and getting trapped in local optima. In comparison, the
least-squares support vector machine (LS-SVM) [28] has
a higher training speed and prediction accuracy. Notably,
the ECW determination in the study of Wang et al. [31] was
based on a fxed threshold value. Considering this research
background, in this study, an adaptive ECW selection
strategy based on energy accumulation is used to establish
a weighted center location method using LS-SVM.

Te abovementioned environmental infuences can be
corrected by image preprocessing. However, traditional
image processing methods may be inefective in cases in-
volving extreme interference problems such as dramatic
illumination changes, shadows, occlusion, or unexpected
camera shaking. Recently, deep learning (DL) techniques
have been used to address these complex phenomena [32].
For example, Xu et al. proposed a novel distraction-free
target tracking approach by integrating a DL-based Siamese
tracker [33] with traditional correlation-based template
matching. However, DL methods are also inefective for
extreme cases, for instance, those involving severe occlusion.

In addition, bridge structures typically have few surface
features and measurement points cannot always be
substituted over the measured section, resulting in data loss.

Other data anomalies such as omission and loss, jump
points, drifting, and trend mutation are also commonly
encountered in structure health monitoring (SHM). To solve
these issues, machine learning algorithms have been applied
in the feld of intelligent diagnosis, especially to identify
abnormal data and structural damage [34–36]. Among the
existing machine learning algorithms, relevance vector
machine (RVM) can minimize the regression error and
exhibits a high generalization and antinoise disturbance
abilities. Moreover, the RVM can adapt to the characteristics
of nonlinear time sequences of bridge health monitoring
system data and exploit the correlation between the data and
selected training samples to predict the missing data or
correct the abnormal data [37]. Optical methods can be used
to synchronously monitor multiple measurement points and
provide data support for the model training of RVM.
Terefore, in this study, such methods are used to address
extreme interference problems.

Te remaining paper is organized as follows: Section 2
introduces the basic principles and the validation tests of the
proposed method, including the center location algorithm
considering the atmospheric disturbance and the data self-
diagnosis based on the RVM for adverse scenarios. Section 3
describes the feld-monitoring test performed over a long--
span cable-stayed bridge. Section 4 presents the concluding
remarks.

2. Methodology

Figure 1 shows the framework of the proposed single-
camera-based structural displacement measurement
method, which includes target tracking, displacement
conversion, and data correction. A center detection algo-
rithm is used to locate the target regions in the image plane.
Next, the extracted pixel displacement is converted to the
physical displacement through the ftted object distance
using an existing method [36]. Although several variants of
target tracking methods are available, their performance is
inefective in a feld-monitoring campaign involving envi-
ronmental variations or other nondetectable obstructions.
To overcome this limitation, a novel target tracking ap-
proach is developed in this study by integrating the
distraction-free center localization algorithm and machine
learning-based data diagnosis technology.Te key principles
are introduced in Sections 2.1 and 2.2.

2.1. Target LocationMethod against Atmospheric Disturbance

2.1.1. Te Principles of Weighted Center Detection Algorithm
Based on Machine Learning. Te center location algorithm
is optimized considering the efects of atmospheric turbu-
lence on the target imaging. In general, turbulence leads to
the blurring of the target boundary in the image, thereby
changing the ECW. To address this problem, an adaptive
window selection strategy based on energy accumulation is
proposed. Furthermore, the deterioration of the image
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quality, especially the distortion, decreases the center lo-
cation accuracy of a single algorithm. To address this
problem, a weighted center location method based on two
typical centroid algorithms is developed. Te weight values
are predicted through LS-SVM.Te details of these methods
are presented in the following text:

First, a rough calculation window sized M × N pixels is
determined in the initial reference image, and the energy E
of the region is calculated using the following equation:

E � 
M/2

x�−M/2
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2
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Figure 1: Framework of structure displacement measurement method for scenarios involving severe environmental interference.

Structural Control and Health Monitoring 3



where g (x, y) represents the gray level at pixel coordinate (x,
y). Because the edge may be fuzzy owing to the environment
vibration, the pixels in this rough window cannot be directly
used to calculate the center coordinates. An energy con-
centration area that satisfes equations (2) and (3) is de-
termined as the ECW.

g1(x, y) �
1, g(x, y)≥gT,

0, g(x, y)<gT,
 (2)



M/2

x�−M/2


N/2

y�−N/2
g1(x, y)

2 ≥ ηE. (3)

Specifcally, when the gray level g (x, y) is larger than the
threshold gT, the energy of the energy concentration area
must be larger than η times the total energy, where η
(η� 85%) characterizes the energy concentration of the
target. Otherwise, the value must be adjusted until both
conditions are satisfed. Tis step must be implemented only
at the initial moment. In the subsequent moments, only the
threshold must be slightly adjusted, assuming that the
concentrated energy of the target imaging remains nearly
unchanged. Subsequently, the central coordinates are cal-
culated using the gray information of this ECW. When
calculating the centroid using equation (4), the gray value is
the binarized gray g1(x, y).
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(5)

Diferent from equation (4), to determine the squared-
gray-based centroid location using equation (5), the original
gray value is needed. Similarly, to reduce the infuence of
calculation area selection on central extraction results, this
study only allows the pixels in ECW to participate in the
calculation. However, the gray values of pixels in ECW
cannot be directly used. Because the light intensity of both
the active target and the external environment is not stable,
this can also lead to fuctuations in positioning results. To
alleviate this infuence, this study proposes to optimize the
grayscale using the threshold value gT. Terefore, the ex-
pression is shown as follows:

g2(x, y) � g(x, y) − gT, g(x, y)≥gT,

g2(x, y) � 0, g(x, y)<gT.
 (6)

Te weighted relationship between the centroid (x1, y1),
squared gray centroid (x2, y2), and real center (xW, yW) can
be expressed as

xW � λ1x1 + λ2x2,

yW � λ1y1 + λ2y2.
 (7)

Te determination of weight ηi is critical. However,
owing to the complexity of atmospheric disturbances, the
internal mechanism between the disturbed detection result
and the real center position cannot be determined in-
tuitively. In this study, the ftting function of the LS-SVM
algorithm is used to address this problem. Te nonlinear
regression model of LS-SVM can be expressed as

f(x) � 
l

i�1
αiφ

T xi( φ(x) + b � 
l

i�1
αiK xi, x(  + b, (8)

where αi is the Lagrange multiplier constituting a vector α �

[α1, α2, · · · , αl]
T and b is the amount of deviation and

K(xi, x) is the kernel function. Te radial basis kernel
function with high data antinoising ability is used in this
study equation as follows:

K xi, x(  � exp −
x − xi

����
����
2

2σ2
⎛⎝ ⎞⎠, (9)

F i, λ1, λ2(  � 
n

i�0
xwi − xw0( 

2
+ ywi − yw0( 

2
 . (10)

In practical applications, λ1 and λ2 can be learned from
a static experiment. Te experimental environment here
should be consistent with the real test environment. Tere is
no relative displacement between the target and the camera,
but camera noise, environmental noise and algorithm errors
lead to the displacement of the tracked target. So to obtain
the displacement of higher precision, the end condition of
model training is that the displacement (noise) variance
equation (10) in the time domain is less than the threshold.
Tese weights can be further used for the following practical
measurement tasks.

In general, indoor or close measurement conditions
easily provide sufcient conditions for the above process.
However, for remote outdoor measurement, such as bridge
displacement measurement concerned in this study, the
piers or bearings are ideal stable points for static experi-
ments. Although these reference points are not completely
stable, this is not inconsistent with the end conditions
equation (10). But there is a new problem that the measuring
point of bridge displacement, such as the mid-span point, is
not close to the stable reference point, which means that the
measuring environment of the static experiment and the
displacement test are not the same. However, the turbulence
characteristics within the scope of the engineering site are
uniform and will not change signifcantly in a short time. So
in the case of long-term monitoring, the camera must be
adjusted to ensure that both the reference point and mea-
surement points are being captured.
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2.1.2. Outdoor Static Validation Test. To evaluate the anti-
atmospheric disturbance performance of the proposed
center detection algorithm, an outdoor test was performed
(Figure 2(a)) in the summer. Te test site is near the river.
High temperatures and air humidity create conditions for
atmospheric fow on the ground. To reduce the efects of
daytime light, the experiment began in the evening. An
infrared LED lamp (wavelength of 850 nm) controlled by
a high-precision electric displacement table was used as the
target (Figure 2(b)). Te degraded target is shown in
Figure 2(c). Te range of the electric displacement table was
500mm, and the accuracy was 0.1mm. Te object distance
was 50m.

First, the target remained stationary, and the image
sequence was obtained with an acquisition rate of 2 frames/s.
Te gray square centroid method, binary gray centroid
method, and proposed method were used to extract the
center pixel coordinates, as shown in Figure 3(a). Te dis-
creteness of the location results obtained using the proposed
method was smaller than those of the other two methods,
corresponding to a higher resistance to disturbance. Sub-
sequently, the target was moved in steps of 1mm through
the displacement table. Te displacement measurement
results are shown in Figure 3(b). To evaluate the mea-
surement accuracy, the root mean squared error (RMSE)
was calculated using the data of the displacement table as the
reference values. By contrast, the displacement measured
using the weighted positioning algorithm exhibited the
highest accuracy and stability.

2.2. Data Self-Diagnosis Method Resistance to Adverse
Interference

2.2.1. Te Principles of Data Diagnosis Based on a Relevance
Vector Machine. When the vision-based displacement
measurement method was applied to real structures, two
types of data anomalies are typically caused by environ-
mental vibrations: (1) missing data owing to the failure of
target positioning, attributable to drastic illumination
changes, shadows, or severe occlusion and (2) abnormal data
(data jump or shift) caused by unexpected camera shaking or
other unknown factors. Considering the similarity of the
vibration responses of diferent sections of long-span
bridges, the trained RVM was proposed to be used to
supplement the missing data and correct the abnormal data.
Figure 4 shows the process fow of the RVM regression
model. Due to limited space, detailed principles will not be
introduced.

Te implementation process of RVM-based abnormal
data identifcation and correction is as follows:

(a) Select the normal displacement data of diferent
sections as the training sample

(b) Initialize the kernel functions and the hyper-
parameter α. Gaussian kernel function was adopted
in this study because of its high regression accuracy
and operation speed. Te insensitive loss parameter
is set as u� 0.02, penalty coefcient C is 10, and error
accuracy σ is 0.0001

(c) Te maximum a posteriori probability (MAP)
method was used to solve the weight coefcient w,
and then the covariance matrix  was calculated

(d) Update the hyperparameter α according to w and .
Repeat step (c) until data residuals satisfy the ac-
curacy requirement, where fdata is the training
sample data and fRVM is the predicted value

(e) Get the predicted samples datapred � xpred,1,

xpred,2, · · · , xpred,n} of the abnormal monitoring
samples dataorigin � x1, x2, · · · , xn  using the non-
linear model of the trained RVM

(f) Locate the abnormal data using the generalized 3-
delta method

(g) Replace the abnormal data or missing data with
predicted data

2.2.2. Verifcation Test of an Impacted Steel Beam. To
evaluate the reliability of the abnormal data diagnosis
method, the displacement measurement data of an impact
test based on a high-speed camera was analyzed, as shown in
Figure 5(a). Te beam was 1.5m long, and six measurement
points were evenly arranged on it. Figure 5(b) shows the
vibration-response time history curves for all measurement
points, generated under the impact of a force hammer. Te
vibration displacements at P2, P3, and P4 from frames 1∼800
were used as the training samples of RVM. Ten the trained
model was adopted to correct the results from other frames.
Te case for abnormal data was established by falsifying the
data of measurement point P4. Similarly, parts of the data of
measurement points P3 and P4 were deliberately erased to
establish the case for missing data. Te measured dis-
placement at P2 remained unchanged, and then combining
the trained model, the predicted displacement at P3 and P4
was obtained. Finally, the 3-delta method was used to locate
the abnormal data.Te predicted value is compared with the
real measured value, as shown in Figure 5(c). Te missing
data identifcation and complementation results are shown
in Figure 5(d). It is found that the diference between the
predicted and measured values was less than 5%.

3. Application to Vortex-Induced Bridge
Vibration Response Measurement

Te measured bridge is a sea-crossing cable-stayed bridge
with a main span of 888m, as shown in Figure 6(a). An
unexpected vortex-induced vibration (VIV) event was ob-
served on this bridge, potentially caused by the temporary
cover placed on the bridge deck during vertical hanger
replacement. In general, the use of traditional contact-type
sensing technologies on this bridge when VIV occurs is
dangerous and time-consuming. In contrast, the proposed
camera-based displacement method can satisfy the sudden
and urgent measurement requirements. During the day, the
camera was set up under the bridge to track the drainage
holes evenly distributed under the main girder to measure
the defection, as shown in Figure 6(b). To overcome the
problems associated with poor illumination at night, the
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camera was placed on the shore to track the evenly dis-
tributed LED lights, as shown in Figure 6(c). Te details of
the feld measurement at diferent times are described in the
following sections.

3.1. Reliability Evaluation Using a Microwave Radar. As
shown in Figure 7(a), to verify the measurement accuracy of
the proposed optical method, a high-precision microwave

radar was used to measure the defection at 1/8 span. In this
test, the pitching angle of the camera was approximately 23°.
As shown in Figure 7(b), the width of the bridge bottom was
used for the scale factor calibration of the section of interest,
and the evenly distributed drainage holes were tracked.
Figure 7(c) shows the measured displacements. Taking the
measurement results of radar as the reference value, the
RMSE of the two positioning algorithms were calculated,
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Figure 2: Outdoor test (a) camera layout; (b) displacement stations and targets; (c) camera feld of view.
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respectively. It can be seen that the results obtained by the
proposed centroid tracking algorithm were closer to the data
from the radar. However, it cannot be concluded that the
proposed method is more accurate. Because the measure-
ment results of the radar correspond to the average dis-
placement for a cross-section and the cross-section position
determined by the radar is not necessarily consistent with
that tracked by the camera. But to a certain extent, the
reliability of the proposed method was proved.

3.2. Abnormal Data Correction. As shown in Figure 8(a),
when a camera was set up under a bridge, the feld of view
may be blocked by passing ships. Terefore, a test was
performed to evaluate the abnormal data correction capa-
bilities of the proposed method. Both the left and right
drainage holes in each section were monitored. Only the 4/8
span was not disturbed by occlusion, and its complete de-
fection time history is shown in Figure 8(b). Te other
sections were disturbed, leading to missing data. Two cases
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Figure 5: Measurement results for the impact test. (a) Test confguration. (b) Original defection data of all measurement points. (c)
Abnormal data identifcation and correction for measurement point P4 (the confdence is 95%). (d) Comparison of the predicted and
measured data for points P3 and P4.
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Figure 6: (a) Image of the tested bridge. (b) Camera layout in the day. (c) Camera layout at night. (d) Schematic of the bridge deck.
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of missing data were considered: (1) the left and right
measurement points were not simultaneously blocked, as in
the cases of 5/8 and 6/8 span, and (2) both points were
simultaneously blocked, as in the case of 7/8 span.

Te defections of the other sections and diferent
measurement points in the same section could be used to
compensate for missing data. In general, a higher correlation
between the measurement points can help enhance the
accuracy of the prediction results. Terefore, a data corre-
lation analysis of the 4/8 and 5/8 spans was performed using
the multiple regression analysis method, as shown in
Figure 8(c). Te correlation of defection data in the same
section was higher than that between adjacent sections.
Terefore, it was preferable to use the data from the same
section for the data prediction. Nevertheless, it was pref-
erable to use the data of adjacent measurement points when
bothmeasurement points in the same section were occluded.
Since the moment of occlusion occurrence was known in
this test, the displacement from frames 0∼3000 was used as
the training samples of RVM. Te data completion results
are shown in Figure 8(d). In another implementation, the
camera underwent an accidental collision, resulting in data
jumps and data drifts, as shown in Figure 9. Instead of
recognizing the time of mutation and subtracting a constant

from the subsequent data, these two types of phenomena are
uniformly processed as data anomalies. Tis is because some
of the abnormal data is the superposition of these two
phenomena before the camera comes to rest. According to
the proposed method, after the 3-delta method identifes the
abnormal data and RVM predicts the displacement at the
corresponding time and fnally replaces the abnormal value
with the predicted value.

3.3. Synchronous Monitoring of the Complete Bridge
Defection. Te proposed method was used to measure the
vibration response of seven measurement points uniformly
distributed over the complete bridge. During the nighttime,
a moving load test was performed under a VIV event of the
bridge. Te camera was mounted by the riverside and fo-
cused on the LED targets of the bridge, as shown in
Figure 10(a). Te camera elevation was approximately
α � 7°. A lens with a focal length of 75mm was used. Te
distance between adjacent lights was 36m. For the evenly
distributed target points, the object distance L could be
calculated using a curve-ftting method [38] based on the
center detection results of the LEDs (Figure 10(b)). Te
object distance L and scale factor of the control sections are
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Figure 7: Results of the accuracy evaluation test for the proposed optical method. (a) Set up of radar and camera. (b) Captured image and
centroid positioning of the target. (c) Comparison of displacement measured by the radar and optical methods.
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Figure 8: Missing data owing to target occlusion and complementation results. (a) Target occlusion. (b) Vibration response of 4/8 span. (c)
Data correlation analysis. (d) Complementation of defection data at 5/8, 6/8, and 7/8 span.
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Figure 9: Abnormal data caused by camera shaking and machined learning-based correction results.
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Figure 10: Measurement at night. (a) Captured image. (b) Centroid of the LED target.

Table 1: Scale factor calibration results for seven target points.

i Control section (span) OPi � Li (m) SFi (mm/pixel)
0 1/8 165.10 12.96
3 2/8 271.25 21.52
7 3/8 378.45 29.93
10 4/8 486.00 38.30
13 5/8 593.71 46.67
16 6/8 701.52 55.05
19 7/8 809.37 63.42
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summarized in Table 1. Owing to the limited space, part of
the measurement results is shown in Figure 11. Te vison-
based measuring results were processed through the mean-
shift function. Terefore, the ice-blue line indicates the
coupling response of vortex-induced vibration and moving
trucks, and the red curve represents the defection infuence
line caused by moving trucks. Finally, the dominant fre-
quency of the bridge during this period was 0.228Hz,
corresponding to the third vibration mode of the bridge.

4. Conclusion

A distraction-free optical structural-displacement mea-
surement method was proposed based on a modifed center
detection algorithm. Two aspects of innovation were carried
out to address the problems associated with environmental
interferences.

(1) To reduce the center detection error caused by at-
mospheric disturbances or environmental vibra-
tions, an adaptive window selection strategy based
on energy accumulation and a weighted location
algorithm based on LS-SVM were developed. A
displacement table experiment was carried out in an
outdoor environment. Te RMSE of the proposed
method is 0.04mm when the distance is 50m.
Compared with the gray square centroid and binary
gray centroid methods, the proposed weighted po-
sitioning algorithm exhibited the highest accuracy
and stability.

(2) Te problems of missing data (caused by target
occlusion) and data jump or drift (caused by camera
shaking) cannot be efectively solved through image
processing. As the displacement of diferent stations
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Figure 11: Vibration response of the complete bridge in a moving load test.
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is related to each other in both space and time, an
RVM-based data self-diagnosis method for SHMwas
introduced. Te efect of the proposed method was
verifed by manipulating the data of a vibration test
artifcially.

Te proposed displacement method was applied to
a long-span bridge. Te measurement accuracy is verifed by
comparing it with a high-precision microwave radar. Es-
pecially, the environmental interference such as targets
being obscured by ships and cameras being accidently
shaken is solved well in the real bridge application. Tis
study is of great signifcance for long-term vibration
monitoring of long-span bridges.
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