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Various concrete bridges have been built across oceans, valleys, and mountains; however, the settlement displacement of bridge
piers caused by environmental changes or self-weight during construction phases often leads to uneven stresses, cracking, and
eventual collapse. To address the labor-intensive and high-cost issues of pier displacement monitoring using contact-type sensors,
this paper proposes an automatic vision-based method for measuring pier settlement displacement under complex construction
environments, such as complex image backgrounds, varying ambient light, and camera movement. In the proposed method,
a deep learning network was frst employed to eliminate the adverse efect of complex image backgrounds and varying ambient
light on the accuracy of target detection; then, an adaptive displacement extraction algorithm without a human-computer
interaction process was developed to automatically extract the center coordinates of targets attaching to the bridge piers and
reference platform; fnally, the pier settlement displacement was calculated by using the relative displacements obtained by a dual
camera system to eliminate the measurement error caused by camera translation and rotation movements. Laboratory tests of
a cantilever beam and feld tests of a continuous multispan concrete girder highway bridge under construction have successfully
validated the efectiveness and robustness of the developed methodology. Te results obtained in this paper can provide some
insights for engineers in applying computer vision technology for the real-time monitoring of bridge displacements.

1. Introduction

Various concrete, steel, and composite bridges have been
built all around the world to span oceans, mountains, and
valleys. Concrete bridges are the most common type of
bridge in engineering. Bridge piers are necessary com-
ponents for transferring trafc loads from the bridge deck
to the foundations [1, 2]. Te settlement displacement of
bridge piers caused by environmental changes or self-
weight during construction phases is ubiquitous, which
can lead to uneven stresses, cracking, and eventual col-
lapse.Terefore, pier settlement displacement is one of the
most important metrics for assessing the construction
quality and safety of bridges, and it is essential to be

monitored by advanced sensing technologies [3–7].
Current displacement measurement technologies mainly
depend on contact sensors, such as displacement trans-
ducers and fbre Bragg grating (FBG) sensors [8]. How-
ever, sensor installation and data transmission are difcult
when the bridge pier is difcult to access. To overcome the
challenging problems of contact-type sensing technolo-
gies, researchers have developed various noncontact
equipment for bridge displacement monitoring, such as
total station [9], global position system (GPS) [10], and
microwave radar [10–13]. Although these noncontact
technologies have been applied to measure structural
displacements and pier settlements, they still have some
limitations in practical applications.
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With the maturity of optical cameras and artifcial in-
telligence, computer vision technology has been recognized
as an inexpensive displacement measurement method with
the capability of multipoint displacement measurement,
high precision, and remote sensing [14–19]. Te current
computer vision-based displacement extraction algorithms
can be roughly divided into image intensity-based methods
and phase-based methods. Most of the computer vision-
based displacement extraction methods use the image
intensity-based method, such as target detection algorithms,
edge detection algorithms, feature tracking algorithms, and
template matching algorithms. For example, Ye et al. de-
veloped a continuous edge detection algorithm for structural
deformation measurement by close-range digital photo-
grammetry system [20]; Feng et al. used a single camera to
measure the multipoint dynamic displacement of a simply
supported beam by template matching algorithm [21]; Tian
et al. used the gradient-based Hough transform (GHT)
method to measure the multipoint dynamic displacement of
a cantilever beam under static load and impact load [22];
Havaran et al. used the random Hough transform algorithm
to track the movement of elliptical markers attached to the
structural surface to measure the multipoint displacement of
the structure [23]; Tian et al. developed a line segment
detection (LSD) and matching algorithm to calculate the
dynamic displacements of bridge cables [24]; Shao et al.
developed a novel monocular vision system for 3D vibration
displacement measurement by using deep neural networks
to learn the depth of scenes from captured images [25]. In
addition, researchers have developed various phase-based
algorithms for structural displacement measurement. Chen
et al. developed a phase-based motion magnifcation algo-
rithm for structural displacement measurement and modal
identifcation of simple structures [26]; Cha et al. developed
a phase-based optical fow method for structural displace-
ment measurement and bolt loosening detection using the
unscented Kalman flters [27]; Valente et al. quantifed the
amount of physical motion with the degree of magnifcation
in phase-based displacement extraction method [28]; Shao
et al. developed a target-free three-dimensional (3D) tiny
displacement measurement method by deep learning and
motionmagnifcation technique [29, 30]; Luo et al. proposed
a broadband phase-based motion magnifcation and line
tracking algorithm for cable displacement and cable tension
force estimation [31]. Although the computer vision-based
method has been widely investigated for 2D and 3D dis-
placement measurement of civil infrastructure, there are two
challenging problems that need to be addressed when ap-
plying this method to complex construction sites.

Te frst problem is how to remove the negative efect of
complex image backgrounds on the accuracy of target de-
tection for subsequent displacement calculation. Due to the
complex environment on the bridge construction site, the
camera-captured images contain many invalid backgrounds,
such as trees, buildings, construction machinery, workers,
and so on. Tese complex backgrounds usually lead to false
matching in the target detection and feature tracking pro-
cesses for displacement calculation. In recent years, several
deep learning algorithms have been developed to remove

complex backgrounds from captured images to enhance the
robustness of the vision-based displacement measurement
methods. For instance, Zhang et al. used a pretrained fully
convolutional network (FCN) model to remove the complex
background information (i.e., pedestrian movement,
buildings, trees) contained in the drone-captured video of an
urban footbridge for dynamic displacement extraction of the
bridge cables with an improved line segment detection al-
gorithm [32]; Cheng et al. used the Yolov4 target detection
network to remove the invalid background contained in the
captured image of bridge piers; and the displacement tra-
jectory of a bridge pier in the lifting process was extracted by
tracking elliptical targets [33]. However, no studies have
comprehensively investigated the efect of various complex
image backgrounds and varying ambient light on the ac-
curacy of target detection from captured images of bridge
piers in complex construction sites with deep learning
methods.

Te second problem is how to compensate for the
measurement error caused by camera movement and avoid
the human-computer interaction process for real-time
monitoring applications. On the bridge construction site,
many uncontrollable factors interfere with the camera, such
as the motion caused by the construction machinery, ac-
cidental hand touch, and wind-induced vibration, resulting
in large errors in the subsequent displacement extraction
process. To overcome this problem, researchers have
attempted to use stationary objects in the background, such
as nearby mountains or buildings, to compensate for the
measurement errors caused by camera movement [34–38].
However, it is difcult to fnd fxed reference points on the
bridge construction site in the captured image due to the
limited lens and resolution of the camera. On the other hand,
computer vision algorithms, such as target detection, tem-
plate matching, and feature detection algorithms, are usually
employed to extract static or dynamic displacements from
camera-captured images. In those algorithms, the GHT
target detection algorithm has been widely investigated in
civil engineering for circular target detection and dis-
placement measurement because of its unique advantage of
high accuracy [39]. To cope with the efect of the perspective
view on target detection results, a randomized Hough de-
tection algorithm was used to track the movement of ellipse
markers attached to the structure for displacement mea-
surement [23]. However, the computational efciency is
seriously afected by the requirement to predefne the radius
value when extracting the coordinates of the target center,
which makes it difcult to automatically extract the dis-
placement of bridge piers for real-time applications.

Aiming to address the above problems faced by com-
puter vision-based displacement monitoring in complex
construction sites, this paper proposes a computer vision-
based automatic and highly robust method for the pier
displacement measurement of a high bridge pier under
construction. Te structure of this paper is organized as
follows. Section 2 describes the theoretical framework of the
proposed method, including the deep learning-based image
background removal for accurate target detection, the au-
tomatic pier settlement displacement extraction algorithm,
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and the camera motion compensation method. Ten, lab-
oratory validation of the developed method is presented in
Section 3. Subsequently, the robustness and efectiveness of
the developed method are further verifed by full-scale tests
of a long-span bridge under construction in Section 4. Fi-
nally, the conclusions are presented in Section 5.

2. Proposed Methodology

2.1. Framework. Te framework of the proposed method for
displacement measurement of bridge piers under con-
struction from captured video by optical cameras is shown in
Figure 1. In the proposed method, a dual-camera system was
designed to capture the video of both the bridge pier and the
reference target. Ten, a deep learning network was trained
to remove the unnecessary complex background and varying
ambient light contained in the captured video, from which
circular targets attached to the bridge pier and reference
points were accurately detected. Subsequently, the region of
interest (ROI) was determined and mapped to the original
image for displacement calculation, in which an adaptive
threshold-based GHT algorithm was developed to extract
multipoint displacements of the bridge pier and reference
points. Finally, the pier settlement displacement is obtained
by combining the raw displacements extracted from cap-
tured images of the main camera with camera motion
calculated from the collected images of the reference target.

2.2. Deep Learning-Based Image Segmentation for Accurate
Target Detection. In construction sites, the video recorded
by optical cameras usually contains the physical targets,
trees, pedestrian movement, and construction machinery,
which leads to the difculty of accurate target detection and
displacement extraction. In addition, the varying ambient
light afects the intensity distribution of camera-captured
images in long-term measurement. Terefore, the U2-net
deep learning architecture was employed to remove the
invalid background contained in the recorded video (Fig-
ure 2). U2-Net is a two-level nested U-structure that is
designed for object detection without the use of any pre-
trained backbones from image classifcation [40].TeU2-net
network consists of a six-stage encoder, a fve-stage decoder,
a saliency map fusion module that is attached to the decoder
stages, and the fnal encoder stage [40]. Te encoder and
decoder structures include fve residual network structures,
namely, RSU-7, RSU-6, RSU-5, RSU-4, and RSU-4F, where
the RSU-4F uses dilated convolutions to replace the
upsampling and the downsampling. Te fusion module then
fuses the saliency maps produced by each layer to produce
the fnal predicted probability map.

Te loss function in the training process is defned as
follows:

L � 􏽘
M

m�1
w

(m)
side l

(m)
side + wfuselfuse L � 􏽘
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m�1
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(m)
side l
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(1)

where l
(m)
side and lfuse are the loss of the side output salience

map and the loss of the fnal fusion output salience map,
respectively, and w

(m)
side and wfuse are the weights of loss of l

(m)
side

and lfuse, respectively;
Te standard binary cross-entropy is used to calculate

each loss term l:

l � − 􏽘

(H,W)

(r,c)

PG(r,c) logPS(r,c) + 1 − PG(r,c)􏼐 􏼑log 1 − PS(r,c)􏼐 􏼑􏽨 􏽩,

(2)

where (H, W) and (r, c) are the pixel coordinates and the
height and width size of the captured image, and PG(r,c) and
PS(r,c) are the pixel values of the ground truth and the
predicted saliency probability map, respectively.

Te evaluation metrics max Fβ and MAE [41, 42] are
used in the U2-net network training process to assess
whether themodel has converged. Fβ is used to evaluate both
the precision and recall.

Fβ �
1 + β2􏼐 􏼑 × precision × recall

β2 × precision + recall
, (3)

where β is a number from 0 to 1, and it is set to 0.3 in this
training process. Te max Fβ is chosen as the evaluation
index, and the higher the value obtained, the better the
training accuracy obtained.

Te mean absolute error (MAE) is calculated to evaluate
the average per-pixel diference between a predicted saliency
map and its ground truth.

MAE �
1

H × W
􏽘

H

r�1
􏽘

W

c�1
|P(r, c) − G(r, c)|, (4)

where P(r, c) is the predicted probability map and G(r, c) is
the corresponding ground truth. Te lower the value of
MAE, the better the training performance.

2.3. Automatic Displacement Extraction and Camera Motion
Compensation. After removing the complex image back-
ground and varying ambient light efect in the captured
video, target-tracking algorithms can be further employed to
extract structural displacements. An adaptive threshold-
based GHT algorithm was developed to automatically de-
tect the radius of circular targets contained in the captured
video and calculate structural displacements, as shown in
Figure 3. Te basic idea of the developed algorithm is de-
scribed as follows.

First, the radius of circular targets contained in the
captured images is estimated for subsequent automatic
displacement calculation, as shown in Figure 3(a). In this
step, the Gaussian flter was employed to eliminate various
noises contained in the captured images, which is expressed
as follows:

H[i, j] �
1

2πσ2
e

− (i− k− 1)2+(j− k− 1)2/2σ2( ), (5)
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where k and σ are the dimension size and standard deviation
of the Gaussian flter, respectively, and i and j are the co-
ordinates in the X and Y direction.

After applying the Gaussian flter to the raw images, the
image gradient in the X and Y direction can be calculated as
follows:

Gx � Sx ∗ I,Gy � Sy ∗ I, (6)

where Gx and Gy are the image gradient in the X and Y
directions, Sx and Sy stands for the Sobel operator, and I is
the intensity matrix of the recorded image.

By combining the image gradients expressed in
equation (6), the image gradient at pixel (i, j) is calculated
as Gm(i, j) �

����������������
Gx(i, j)2 + Gy(i, j)2

􏽱
. Ten, the non-

maximum suppression (NMS) algorithm was adopted to
eliminate the errors caused by edge detection. Te linear
interpolation of two adjacent gradient values was calcu-
lated as follows:

Gup(i, j) � (1 − t)Gm(i, j + 1) + tGm(i − 1, j + 1), (7a)

Gdown(i, j) � (1 − t)Gm(i, j − 1) + tGm(i + 1, j − 1), (7b)

where t � |Gy(i, j)|/Gx(i, j) is the proportional ratio for
gradient value calculation.

If the current gradient value is larger than the computed
gradient value in the positive and negative directions, the
current pixel point is considered the edge point. Ten, the
binary images of attached circular targets can be obtained by
a defned threshold. After that, the number of pixels with grey
values of 1 in the binary imagewas counted, and the pixel radius
value of the circle in each image can be estimated as follows:

ri �
Ni

2nπ
(i � 1, 2, 3, · · · k), (8)

where ri is the radius value (pixel) of the i-th frame of the
recorded images, n is the number of circular targets to be
detected, N is the number of pixels with a grey value of 1 in
the binary image, and k is the number of images.
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After obtaining the radius value of each image, the
averaged radius value of all images r � 􏽐

k
1ri/k was calculated

as the fnal results for the subsequent calculation. An op-
timized range with the calculated radius value was used to
automatically detect possible circular targets in the gradient
Hough transform algorithm, as shown in Figure 3(b). In this
step, a discrete characteristic curve is defned on the image
gradient feld to determine the circle center coordinates in
the image.

Assume that the image sequences corresponding to the
time t0, t1, · · · tn are collected, and the GHT algorithm with
an optimized radius threshold is applied to all the captured
images to automatically detect the circle center. Ten, the
two-dimensional displacements of the bridge piers and
reference targets in pixel coordinates can be calculated by
subtracting the circle coordinates of subsequent images from
those of the reference image, as shown in Figure 3(c).
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where dti
x and dti

y are the vertical and horizontal displace-
ments of the target at the time ti; X

ti
c,p and X

t0
c,p are the circle

center of the target p at the time ti and t0 in the horizontal
direction respectively; Y

ti
c,p and Y

t0
c,p are the circle center of

the target p at the time ti and t0 in vertical direction, re-
spectively; p is the number of artifcial targets attached to the
bridge surface; and m is the total number of the attached
targets.

Finally, the pixel displacements need to be converted
into physical displacements using the pixel-to-displacement
conversion factor. In this study, the known target di-
mensions in the captured video are used to calculate the
conversion factor, S � dphysical/dpixel.

Te above equation can extract the raw displacements of
the bridge piers and the reference target from the captured
video, but the extracted displacement contains the mea-
surement error caused by the camera movement, such as the
vertical translation motion and rotation motion in the
vertical and horizontal direction, respectively. To address
this issue, a dual-camera system was used to compensate for
the efect of camera motion on extracted displacements, as
shown in Figure 4. If the support platform has a vertical
translation movement (shown in Figure 4(a)), the true
displacement of the pier settlement is calculated by sub-
tracting the raw vertical displacement of the main target
attaching to the bridge pier from that of the reference target.
Te calculation formula is expressed as follows:

d
ti

y � d
ti

y,C1
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+ ∆d � d
ti
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− d
ti

y,C2
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, (10)

where dti
y is the relative displacement obtained by the dual

camera system; d
ti

y,C1
and d

ti

y,C2
denote the vertical raw

displacement of the bridge pier and reference target, re-
spectively; SC1

and SC2
are the conversion factors of camera 1

and camera 2, respectively; and C1 and C2 stand for the main
camera and secondary camera for video recording of bridge
piers and reference targets, respectively.

If the support platform has a rotation movement in the
vertical direction (as shown in Figure 4(b)), the true dis-
placement of the pier settlement can be calculated by the
following equation:

d
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+ d
ti
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. (11)

If the support platform has a rotation movement in the
horizontal direction (shown in Figure 4(c)), the false dis-
placements induced by the two cameras are the same;
therefore, the true pier settlement is calculated as follows:

d
ti

y � d
ti

y,C1
SC1

+ d
ti

y,C2
SC2

. (12)
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Substituting the displacement calculation formula in
equation (9b) into (10)–(12) results in the fnal expression for
pier settlement calculation by considering three types of
camera movements, namely,
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where m and n denote the total number of attached targets on
the bridge pier and reference platform, respectively. It should
be noted that equations (13a)–(13c) are used to eliminate the
vertical translation movement and rotation movement in the
vertical and horizontal direction, respectively.

3. Laboratory Testing of a Cantilever Beam

3.1. Experimental Setup. Te efectiveness of the proposed
methodology is frst verifed by laboratory testing of a can-
tilever beam. Te experimental setup of the cantilever beam
under investigation is shown in Figure 5. Te cantilever
beam has a length of 2m, and the height of the cross-section
is 0.4m. A total of six circular targets were attached to the
cantilever beam for displacement extraction, and six dis-
placement gauges were also installed at the corresponding
position to verify the accuracy of the proposed method. In
this experiment, a high-speed camera with a resolution of
1024×1024 pixels and a frame rate of 1000Hz was used to
capture image sequences of the circular targets when the
cantilever beam was excited by an impact hammer.

3.2. Experimental Results. After acquiring the images of the
investigated beam under impact loading, the U2-net was
used for image background removal. Ten, the developed
displacement extraction algorithm was used to detect
circular targets from the preprocessed images. Figure 6(a)
shows the circular target detection results of the cantilever
beam without complex background segmentation with
a radius range of [0.8r, 1.2r] in the conventional gradient
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L2

Camera translation motion (Vertical)

(a)
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Camera 1
Camera 1 Camera 2Camera 2
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Δβ
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Figure 4: Schematic diagram of diferent camera motion: (a) translation motion; (b) rotation motion in vertical direction; (c) rotation
motion in horizontal direction.
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Hough transform algorithm. Te conventional method
requires a human-computer interface by selecting the re-
gion of interest (ROI) and artifcially determining the
radius for circular center detection. It can be seen that
incorrect target detection results occur in the process of

circular target detection with a larger radius range of
[0.8r, 1.2r].

In comparison, there are no false circular target de-
tection results when the raw image is processed by the
proposed method (Figure 6(b)). However, the detected

1st Frame 3rd Frame 10th Frame

[0.8 r, 1.2 r]

Wrong target
detection results

Wrong target
detection results 

Wrong target
detection results

(a)

[0.8 r,1.2 r]No wrong targets No wrong targets No wrong targets

1st Frame 3rd Frame 10th Frame

(b)

[0.9 r, 1.1 r]One target missing Tree targets missing Two targets missing

1st Frame 3rd Frame 10th Frame

(c)

[0.9 r, 1.1 r]No target missing No target missing No target missing

1st Frame 3rd Frame 10th Frame

(d)

Figure 6: Target detection results of the studied cantilever beam. (a) Target detection without background removal with a radius of
[0.8r, 1.2r]; (b) target detection with background removal with a radius of [0.8r, 1.2r]; (c) target detection without background removal with
a radius of [0.9r, 1.1r]; (d) target detection with background removal with a radius of [0.9r, 1.1r].

Image acquisition system Computer

Data acquisition system 

High-speed camera
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L = 2 m
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Figure 5: Experimental setup.
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circular targets are missing when the circle radius is set to
a smaller range [0.9r, 1.1r], as shown in Figure 6(c). Spe-
cifcally, one, three, and two circular targets are lost in the
frst, third, and tenth frames of the recorded images of the
studied cantilever beam, making it impossible to calculate
displacements at these targets. However, in the pre-
processed images using the proposed method, there are no
missing targets (Figure 5(d)). It is concluded that incorrect
target detection results and target-missing phenomena
occur in the process of circular target detection by the
conventional method due to the complex image back-
grounds. In addition, the change in the radius range afects
the circular target detection results due to the invalid image
background.

After the image background segmentation, the de-
veloped automatic displacement extraction algorithm is
used to extract the dynamic displacements of the six circular
targets attached to the cantilever beam. Te extracted dis-
placements are compared with the directly measured dis-
placements collected by the displacement meters to verify
the accuracy of the developed algorithm (Figure 7). It can be
seen that the extracted displacements by the developed al-
gorithm are in good agreement with the directly measured
displacements by the displacement meter, thus verifying the
correctness of the developed algorithm.

Furthermore, three metrics—the correlation coefcient
(ρ), the root mean square error (RMSE), and the coefcient
of determination (R2)—are used to quantitatively evaluate
the measurement accuracy of the developed algorithm.

RMSE �

�����������������

􏽐i xv(i) − xc(i)( 􏼁
2/n

n

􏽳

,

ρ �
􏽐i xv(i) − μv( 􏼁 × xc(i) − μc( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�������������

􏽐i xv(i) − μv( 􏼁
2

􏽱

×

�������������

􏽐i xc(i) − μc( 􏼁
2

􏽱 ,

R
2

� 1 −
􏽐i xv(i) − xc(i)( 􏼁

2

􏽐i xc(i) − μc( 􏼁
2 ,

(14)

where xv and xc are displacements obtained by the developed
method and the displacementmeters, respectively, n represents
the total number of captured images, μv and μc are the average
values of calculated displacement time histories, ρ stands for
the correlation degree between two kinds of displacements, and
R2 represents the matching degree of two curves.

Te specifc values of the three metrics between the
displacements calculated by the developed algorithm and the
results measured by the displacement meters are given in
Table 1. It can be seen that the displacements calculated by
the developed method are in good agreement with the
displacements measured by the displacement meters, and
the maximum RMSE of the two displacement curves is
0.0613, the minimum ρ and R2 are 0.9198 and 0.8954,
respectively, validating the accuracy of the developed
algorithm for displacement extraction. In addition, the
target missing rate by using the developed method and the
traditional method was also compared. It is seen that
measurement points 1 to 6 have diferent proportions of the

target missing rate in the traditional method, whereas there
is no target missing in the proposed method, verifying the
correctness of the developed method.

4. Field Testing of a Long-Span Highway Bridge

To verify the robustness and stability of the proposed
method in complex environments, feld tests were carried
out on a continuous multispan long-span highway bridge
under complex construction environments. Tis section
provides details of the feld tests and the results of the pier
settlement displacement of the investigated bridge.

4.1. Bridge Description. Te bridge under investigation,
called the Lugou River Bridge, is a continuous rigid frame
bridge, as shown in Figure 8. Te superstructure is a pre-
stressed continuous rigid-frame with a cast-in-place canti-
lever construction method; the substructure adopts double-
legged solid piers and hollow thin-walled piers; and the
foundation is a group pile foundation. Furthermore, the
bridge is a separate two-line bridge with a main bridge span
arrangement of (96 + 5×180 + 96) m, a deck width of
16.25m, and a maximum bridge height of 209.57m. Te
cross-section of the main girder is a single box girder, and
the height of the box girder is 4.0m at the center of the span
and 11.5m at the top of the pier.

4.2. Overview of Field Tests. To minimize the measurement
error caused by the camera movement during the pier
settlement monitoring, a dual camera system was designed
for the measurement, using two optical cameras (MV-
CA050-10GC) mounted on a tripod with a resolution of
2448× 2048 pixels, as shown in Figure 9(a). Image sequences
of the bridge pier (main target) and the reference point
(subtarget) were acquired simultaneously, with the reference
point being a fxed platform chosen to suit the site condi-
tions. Te main target at the bridge pier and the subtarget at
the reference point are shown in Figures 9(b) and 9(c),
respectively. Te physical radius of the outer circle of the
circular target used in the feld test is 100mm, and the pixel
size is approximately 60.Te camera is roughly located in the
middle of the main target and subtarget, about 30meters
away from both sides.

In the feld test, three test conditions were designed, as
shown in Table 2. Specifcally, case 1 is set up to validate the
efectiveness of the camera motion compensation, and cases
2 and 3 are used to validate the feasibility of the proposed
method in monitoring pier settlement displacement.

4.3. Monitoring Results

4.3.1. Complex Background Removal for Accurate Target
Detection. Before extracting the pier settlement displace-
ment, the deep learning-based image background removal
method is used to remove the invalid background contained
in the image. Te training database contains images with
circular targets and common backgrounds (i.e., pedestrians,
buildings, trees, etc.). In the training phase, the initial
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learning rate, the number of training epochs, and the batch
size are set to 0.001, 50, and 2, respectively.Te segmentation
results of circular targets after model training are shown in
Figure 10. It can be seen that the U2-net model can efectively
detect circular targets in various complex backgrounds.

Te loss function curve during model training is shown
in Figure 11(a), which shows that the training loss and tar
loss decrease rapidly with training epochs and then fuctuate
around 0.08 and 0.01, respectively. In addition, the

evaluation metrics are also shown in Figure 11(b), where
max Fβ gradually increases and stabilizes at 0.96, and MAE
gradually decreases and stabilizes at 0.005.

Te circular target detection results of the bridge pier
without and with complex image background segmentation
are shown in Figure 12. It can be seen that false circular
target detection results occur in the captured images, as
shown in Figures 12(a) and 12(c). Several false circular
targets are detected in the original image when the radius

Table 1: Performance metrics of the ATGHT algorithm.

Measurement points
Proposed method Traditional method

R2 RMSE ρ Target
missing rate (%) R2 RMSE ρ Target

missing rate (%)
1 0.8954 0.0604 0.9198 0 0.7650 0.4229 0.7004 0
2 0.9243 0.0609 0.9210 0 0.6151 0.4508 0.7293 0.1
3 0.9432 0.0611 0.9326 0 0.7687 0.4289 0.8156 0
4 0.9648 0.0613 0.9372 0 0.5184 0.6348 0.7876 2.1
5 0.9724 0.0604 0.9433 0 0.7467 0.6303 0.9117 1.2
6 0.9841 0.0603 0.9501 0 0.8220 0.6396 0.9327 11
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Figure 7: Displacement calculation of the cantilever beam with the developed automatic algorithm.
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value is set to a larger range (Figure 12(a)), while the circular
targets are lost when the radius value is set to a smaller range
(Figure 12(c)). Tis is due to the inaccurate results of circle
radius estimation by manual selection with randomness and
subjectivity. On the contrary, after the image background

segmentation, the radius of the circular targets to be detected
can be estimated automatically, and the change in the radius
range does not afect the circular target detection results
(Figures 12(b) and 12(d)). Tis example shows that the
background segmentation to remove the invalid background

Monitoring pier

(a)

62
00

75
00

12
60

0

12
60

0

19
20

0

12
60

0

11
20

0

85
00

9600 18000 18000 18000 18000 18000 9600

9600+5×18000+9600

7

65

4

8
9

Displacement monitoring target
unit: cm

(b)

Figure 8: Te studied Lugou river bridge: (a) panoramic view and (b) elevation view.
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Figure 9: Field testing setup: (a) image acquisition system; (b) main target at the pier; (c) subtarget at the reference point.

Table 2: Field test conditions.

Test conditions Testing contents
Case 1 Pier settlement monitoring under artifcial disturbance
Case 2 Pier settlement monitoring during lifting of hanging baskets
Case 3 Pier settlement monitoring during concrete pouring
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Figure 11: Train process for complex background removal by U2-net: (a) training loss curve; (b) evaluation metrics.
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Figure 12: Continued.
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not only improves the robustness of the displacement ex-
traction but also avoids the human-computer interaction
process, which greatly improves the computational efciency.

4.3.2. Pier Settlement Displacement Monitoring under
Complex Environments

(1) Case 1: Pier Settlement Monitoring under Artifcial
Disturbance. To verify the efectiveness of the camera motion
compensation method, three groups of experiments were
designed in Case 1, where the camera was artifcially dis-
turbed 1, 2, and 3 times, respectively, during the mea-
surement process. Te experimental setup and the recorded
images are shown in Figure 13. It can be seen that the
brightness of the captured images varies with the mea-
surement time except for the artifcial disturbances.

Ten, the developed automatic displacement extraction
algorithm is applied to the segmented circular targets. Te
extracted displacements of the bridge pier and the true pier
displacement are shown in Figure 14. Tere is an error of
about − 10mm after a single artifcial disturbance, and then
the error returns to 4mm. Te proposed camera motion
compensation algorithm was applied to process the
extracted raw displacements, and the maximum measure-
ment error was reduced to 0.09mm.

Te results of pier settlement monitoring under two
artifcial disturbances are shown in Figure 14(b). It can be
seen that the camera system produces measurement errors
of approximately 3mm and 9mm under the frst and second
disturbances. After applying the camera motion compen-
sation algorithm, the maximum measurement error is re-
duced to 0.15mm. Figure 14(c) shows the measurement

error of the camera under three times of disturbances, the
maximummeasurement error is up to 11mm but is reduced
to 0.13mm by the proposed method. Te averaged absolute
displacement values under one, two, and three times of
disturbance by the proposed method are 0.015mm,
0.2750mm, and 0.088mm, respectively. In contrast, the
averaged absolute displacement values in the three cases
without background removal are 0.595mm, 0.791mm, and
0.559mm, respectively, which is much larger than the results
obtained by the proposed method. It demonstrates the high
accuracy of the developed method for displacement mea-
surement. It can be seen that the measured displacements
have obvious deviations under the camera disturbance, but
the proposed method can reduce the measurement error. It
should be noted that the accuracy of the measured dis-
placements is afected by the pixel/physical size scale and
camera noise. Te systematic investigation of the dis-
placement measurement errors will be conducted in
future work.

(2) Case 2: Pier Settlement Monitoring during Lifting of
Hanging Baskets. Te pier settlement was monitored using
the developed dual camera system when the main beam
basket was lifted, and the captured images are shown in
Figure 15. It is seen that the brightness of the captured image
varies with the natural lighting conditions and even contains
shadows in the captured image of the reference target at the
time of 6400 s. Terefore, the complex image background
needs to be removed by the deep learning method. Te
circular targets mounted on the bridge pier and the reference
target are accurately detected regardless of various complex
image backgrounds, as shown in Figures 15(a) and 15(b).

1st Frame 5th Frame 10th Frame

Four targets missing One target missing Two targets missing 

[0.9 r, 1.1 r]

Wrong target detection results

(c)

No target missing No target missing No target missing 

[0.9 r, 1.1 r]

1st Frame 5th Frame 10th Frame

(d)

Figure 12: Target detection results of the studied bridge pier: (a) target detection without background removal with a radius of [0.8r, 1.2r];
(b) target detection with background removal with a radius of [0.8r, 1.2r]; (c) target detection without background removal with a radius of
[0.9r, 1.1r]; (d) target detection with background removal with a radius of [0.9r, 1.1r].
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Figure 13: Captured images of the bridge pier and reference target in case 1 (a) disturbed 1 time; (b) disturbed 2 times; (c) disturbed 3 times.
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Te extracted displacements of the bridge pier in Case 2
are shown in Figure 16.Te results show that the camera was
slightly disturbed during the lifting process of the hanging
basket (Figures 16(a) and 16(b)), resulting in measurement
errors. Te true pier settlement displacement by the camera
motion compensation method is shown in Figure 16(c). It
can be seen that the pier settlement displacement fuctuates
around 0mm, and there is no obvious settlement tendency.
As the bridge foundation is a deep pile foundation with
a length of 40m, there will be no settlement of the piers when
the hanging basket is lifted.

(3) Case 3: Pier Settlement Monitoring during Concrete
Pouring. Te extracted displacement of the bridge pier
during the concrete concreting process of segment 1 of the

main beam is shown in Figure 17. It is seen that the extracted
raw displacement contains large spikes without the deep
learning-based image segmentation method (Figures 17(a)
and 17(b)). Te pier settlement displacement during the test
period is divided into two stages, which gradually increase
from 0mm and stabilize at 0.15mm, as shown in
Figure 17(c). During the pouring process of segment 1, the
pier settlement increases by about 0.15mm due to the
gradual increase of the concrete wet load. Tis is because the
ratio of the weight of the hanging basket to the weight of the
poured concrete segment is generally 0.3 to 0.5 in the actual
project. Terefore, it is reasonable that the settlement value
of the pier in Case 3 is relatively large.Te test results of both
Cases 2 and 3 have verifed the robustness of the proposed
method for pier settlement monitoring of long-span bridges.
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Figure 14: Pier settlement monitoring results of case 1 (a) disturbed 1 time; (b) disturbed 2 times; (c) disturbed 3 times.
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Figure 15: Captured images of the studied bridge in case 2 with complex image background and varying ambient light: (a) bridge pier;
(b) reference target.
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Figure 16: Displacement results of case 2. (a) Raw displacement of the pier; (b) displacement at the reference point; (c) true pier settlement
displacement.
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5. Conclusions and Future Works

Te complex image background, varying ambient light, and
camera movement afect the robustness of the computer
vision-based method for displacement monitoring, and the
human-computer interaction process in the conventional
method prevents automatic and real-time displacement
extraction. To overcome the above problems, a computer
vision-based automatic and highly robust pier settlement
measurement method was developed using deep learning
technologies. Te detailed results are as follows:

(1) A deep learning-based complex background removal
method was used to eliminate the efect of invalid
backgrounds (i.e., pedestrian movement, trees,
construction machinery, etc.) and the varying am-
bient light on the accuracy of target detection. Ten,
an adaptive threshold-based GHT algorithm was
developed to accurately and automatically calculate
pier settlement displacement. Te relative displace-
ment of the bridge pier concerning the reference
target was considered as the true pier displacement
to compensate for the camera movement induced by
construction machinery on the construction site and
accidental hand contact by workers.

(2) Laboratory tests on a cantilever beam were carried
out to verify the accuracy and robustness of the
developed algorithm. Te test results show that the
displacements extracted by the proposed method are
in good agreement with those directly measured by
displacement gauges. Te RMSE of the two types of
displacement curves is 0.0613, and the minimum
correlation coefcient (ρ) and determination co-
efcient (R2) are 0.9198 and 0.8954, respectively,
verifying the correctness of the developed method.

(3) To validate the efectiveness and robustness of the
proposed method, feld tests were carried out on
a long-span, high-pier highway bridge under con-
struction. Te results show that the proposed
method can efectively reduce the measurement
error caused by the camera movement and eliminate

the adverse efects of complex image backgrounds
and varying ambient light on the measured dis-
placements. Te pier settlement displacements ob-
tained by the proposed method under three types of
experimental conditions are consistent with the
actual engineering project.

In conclusion, the proposed method has great potential
for use in noncontact measurement of pier settlement in
harsh environments. Future work will focus on the devel-
opment of a portable computer vision system for real-time
monitoring of bridge displacement. In addition, a stereo
vision system and an advanced monocular vision system will
be developed to measure the three-dimensional displace-
ments with high accuracy. Te efect of the pixel/physical
size scale, camera noise, and ambient temperature on the
accuracy of the displacement measurement in feld tests also
needs to be systematically investigated.
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