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As the stay cables of cable-stayed bridges become longer, parametric resonance with a large amplitude is more easily triggered,
which becomes a vibration hazard of super-long stay cables. An increasing number of practical applications of vibration
mitigation on stay cables demonstrate that vibration control strategies can efectively facilitate hazard mitigation and improve
cable-stayed bridge reliability and service life. Tis study proposes a semiactive control approach to reduce the parametric
vibration of super-long stay cables in cable-stayed bridges installed with magnetorheological fuid damper (MRFD). First, using
the cable’s gravity sag curve equation, an equation governing the combined stay cable-bridge deck-damper control system was
established to consider the efect of the chordwise force of cable gravity. Subsequently, a targeted LQR-based optimal active
control law is proposed to provide the target control force in the semiactive control.Te parametric infuences on the performance
of the LQR-based optimal active control were analysed to provide insight into the proposed control strategy. Since the semiactive
control could achieve almost the same control efcacy of the targeted optimal active control, a semiactive control strategy
employing MRFD is proposed to mitigate the parametric vibration of a super-long stay cable. Based on the proposed semiactive
control strategy, the system was attached with the MRFD of the longest cable, S36, in the designed prototype long cable-stayed
bridge. Te efcacy of the established semiactive control system was also analysed. Te analysis results confrm that the proposed
semiactive control strategy and designed semiactive control system can perform similar to the LQR-based optimal active control.
Te semiactive control system attached to the MRFD can mitigate the parametric vibration of super-long stay cables in cable-
stayed bridge engineering practice.

1. Introduction

Cable-stayed bridges are prominent in modern long-span
bridge structures because of their great spanning ability,
graceful appearance, and wind-resistant stability. As es-
sential structural bearing component in cable-stayed
bridges, stay cables play an important role. Te dynamic
performance of stay cables afects the service status of cable-

stayed bridges. One of the major ways stay cables afect
cable-stayed bridges is the large-amplitude parametric vi-
bration of the stay cables. In contrast to forced vibration, the
parametric vibration of stay cables is support-induced
motion due to a bridge deck or tower vibration when
cable-stayed bridges are under external excitations, such as
wind, trafc load, and earthquakes. Frequent vibrations can
lead to the fatigue fracture of the anchor ends of stay cables
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andmay cause the failure of stay cables in severe cases, which
seriously impacts the safety and durability of cable-stayed
bridges [1–4].

Several scholars have studied the parametric vibrations
of cables. Te excitation triggered by the parametric vi-
bration of the stay cables can be divided into two cases
according to the excitation. One is ideal excitation, in which
the quality of the bridge deck or tower is much greater than
that of the cable; consequently, the coupling interaction
between the cable and bridge deck/tower can be neglected.
Te second is the nonideal excitation case. For this case,
cable-bridge deck/tower coupling efects are considered, and
the amplitude and frequency of the excitation vary with
time. For ideal excitation, Tagata [5] and Lilien and Dacosta
[6] ignored the efect of the gravity sag of the cable and
derived the parametric vibration equations of cables under
an axial ideal cosine excitation. Perkins [7] and Warnitchai
et al. [8] used a quadratic parabola as the cable gravity sag
curve when the parametric vibration equations of the cables
were established under the end ideal displacement excita-
tion. For nonideal excitation, the parametric vibration
system varies with time and is nonautonomous [9, 10]. Xia
and Fujino [11], Kang et al. [12], Yu et al. [13], andWei et al.
[14] established a coupled cable-bridge deck/tower para-
metric vibration system under nonideal excitation. Tey
demonstrated that the cable-bridge coupling efects could
enhance the nonlinear behavior of the parametric vibration.

Te length and fexibility of stay cables increase con-
tinuously with the span of cable-stayed bridges, and with
that comes the risk of large-amplitude parametric vibration
[15]. It was found that if the inherent frequencies of the stay
cable and bridge deck are close to a certain range, the large-
amplitude parametric resonance of the cable would occur
easily [16].Trough feld measurements, it was observed that
when the cable’s local vibration frequency and the bridge’s
overall vibration frequency were close to 1 :1, clear coupling
stay cable-bridge deck parametric vibrations and corre-
sponding strong interactions were observed and measured
on International Guadiana Bridge [17] and Fred Hartman
Bridge [18], respectively. Numerical analysis on the
super-span cable-stayed bridge Sutong Bridge with a main
span of 1088m showed that it was easy for the cable to
generate large-amplitude parametric vibrations [19]. With
the span of the bridge deck and the length of the stay cable
increasing, the stifness and natural frequency of the stay
cable decrease, and vibration inherent frequencies of both
the bridge deck and stay cable are low and close-spaced,
leading the range of modal frequency corresponding to the
parametric vibration to widen, which makes it easy for the
large-amplitude parametric resonance to arise under ex-
ternal excitation. Consequently, in terms of super-span
cable-stayed bridges, inducing the large-amplitude para-
metric resonance of the cables becomes easier, thus reducing
the durability of cable-stayed bridges. Currently, controlling
the vibration of stay cables has become increasingly im-
portant to ensure the safety and durability of cable-stayed
bridges. An appropriate control strategy can efectively
mitigate the large-amplitude vibration of stay cables and
improve the safety and long-term service life of cable-stayed

bridges. Terefore, studying and designing an efective
control strategy to avoid large-amplitude parametric reso-
nances are important.

Recently, novel control approaches are proposed during
the rapid research development on vibration control of stay
cables [20–24]. In terms of control devices, Gao et al. [21]
proposed a novel design approach, in which the viscous inerter
damper (VID) is regarded as a special output feedback control
system, giving a high efcacy on mitigating multimode vi-
brationmitigation of stay cables.Ten, Gao and coauthors [22]
further proposed a novel negative stifness inerter damper
(NSID), in which the damper can utilize simultaneously the
damping enhancement of the negative stifness and inerter for
cable vibration control, thereby improving the control per-
formance of stay cables. In terms of vibration control strategies,
semiactive control is gaining popularity because it provides
better control performance than passive control, which re-
quires less external power than active control [25–36]. Ou and
Li [37] proposed two principles for optimising the parameters
of semiactive control devices and passive dampers; they used
numerical simulations to determine the capacity of semiactive
control required to achieve a performance similar to that of
active control. With an intelligent control algorithm, a semi-
active control device can consume a small amount of external
energy to actively adjust its parameters according to the
structural response while retaining outstanding control per-
formance [38–42]. Shook et al. [39] proposed a superelastic,
semiactive base isolation system that provides variable viscous
damping that can be altered in real-time for the intelligent
amelioration of the superstructure response. As a typical
semiactive control device, the magnetorheological (MR)
damper can easily achieve the targeted active control force
amplitude [40, 43–47]. Recently, there have been new de-
velopments in the technique ofMR damper [48, 49]. Jiang et al.
[48] proposed a phenomenological model, which is more
accurate in refecting the dynamic characteristics of fuid-
defcient MR dampers. Wang et al. [49] proposed a modi-
fed mechanical model, thereby improving the accuracy in
describing the mechanical behavior of used MR dampers.

Up to now, as the world’s frst magnetorheological (MR)
smart damping system in bridge structures has been in-
stalled for rain-wind-induced cable vibration control on the
cable-stayed Dongting Lake Bridge, China [46], intelligent
semiactive control adopting MR dampers, including mag-
netorheological fuid dampers (MRFDs), has been widely
used to suppress large-amplitude vibrations of stay cables in
cable-stayed bridges [46, 50–55]. Li et al. [50] used MRFD to
control the stay cable vibration of the Yellow River Highway
Bridge in Binzhou, Shandong Province, and proposed an
innovative control algorithm based on a measurable ac-
celeration response at limited locations along a stay cable. By
employing a semiactive control algorithm, Wu and Cai [51]
experimentally demonstrated that a semiactive MR damper
achieves better control than a passive damper to mitigate
cable vibration. Zhou et al. [53] proposed a semiactive
control strategy based on the modulated homogeneous
friction algorithm and verifed its vibration reduction ability
with optimally controlled MR dampers using a typical short
cable as an example. Huang et al. [55] derived an efcient
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semiactive control strategy in which the damping of the MR
damper was tuned according to the dynamic characteristics
of the stay cable to achieve the optimal damping of the cable
damper system.

However, since the semiactive control is mainly used to
suppress the wind/rain-induced vibration of stay cables in the
previous research studies, there are hardly any studies on the
semiactive control of parametric vibration of stay cables. Be-
sides, the infuence of the chordwise force of gravity of stay
cables is usually ignored when establishing the parametric
vibration model of stay cables [5–8, 11–14]. As the length of
stay cables increases, the infuence of the chordwise force of
gravity increases. Trough static analysis, it has been dem-
onstrated that the physical quantities obtained by using the sag
curve equation considering the chordwise force of gravity are
the closest to the elastic catenary solutions, and the accuracy of
the physical quantities is higher than that obtained by using
parabola as the gravity sag curve equation [56]. Numerical
results also showed that the infuence of the chordwise force of
gravity on the displacement response of parametric resonance
gradually increases with the increase of the initial disturbance,
and the chordwise force of gravity would amplify the dis-
placement response of the main parametric resonance of stay
cable [57].Terefore, it is necessary to consider the efect of the
chordwise force of gravity when establishing the parametric
vibration model of the stay cable.

To this end, this study improves the design accuracy and
control efcacy of the control system. Considering the in-
fuence of the chordwise force of gravity, a more accurate
stay-cable parametric vibration model is established; the
model provides an intelligent semiactive control strategy
that efectively mitigates the large-amplitude parametric
vibration of the coupled stay cable-bridge deck system. First,
based on the gravity sag curve equation of the stay cable,
including the chordwise force of gravity proposed by Liu
et al. [58], the equation governing the parametric vibration
of the coupled stay cable-bridge deck system is shown to
have a sinusoidal excitation that directly acts on the bridge
deck. Subsequently, a targeted LQR-based optimal active
control law is proposed, which provides an optimal active
control force. Subsequently, to optimise the active control
force based on the branch-and-bound Hrovat optimal
control algorithm [59], the study provides an intelligent
semiactive control strategy for MRFD. Using the longest
cable S36 in the prototype super-span cable-stayed bridge as
an example, numerical simulations are used to compare

semiactive control with active control. Te numerical results
demonstrated that the semiactive control attached to the
MRFD could provide control performance similar to that of
the optimal active control and could efectively mitigate the
parametric vibration of the super-long-stay cables in
super-span cable-stayed bridges.

2. Theoretical Model of the Combined Stay
Cable-Bridge Deck-Damper System

2.1. Diferential Equation Governing the Parametric
Vibration. As the span of the cable-stayed bridge increases,
the coupling interaction between the stay cable and bridge
deck becomes increasingly highlighted and cannot be
neglected when the vibration of stay cables is studied. In the
present study, considering the coupling interaction between
the stay cable and the bridge deck, the diferential equation
of the stay-cable parametric vibration, including the
chordwise force of gravity, was established with the fol-
lowing assumptions: (1) only considering the tensile stifness
of the stay cable, the cable’s bending stifness is neglected, (2)
the bridge deck was simplifed as a concentrated mass block,
including stifness and damping, and (3) the stay cable and
bridge deck vibrate only in the gravity plane.

Te combined stay cable-bridge deck-damper vibration
control system is shown in Figure 1, where the x and y axes
are the axial and lateral coordinates, respectively. A damper
was installed close to the stay cable end, as shown in Figure 1,
where xd is the distance between the damper position and
the end of the stay cable. Te chord length of the stay cable
was L, the mass per unit length of the stay cable was m, and
the inclined angle of the chord from the horizontal was a.
Te mass, damping, stifness, and natural frequency of the
bridge deck block are denoted by Mb, Cb, Kb, and ωb, re-
spectively. Te external vertical excitation P(t) acts directly
on the bridge deck, where P(t) � P0 cos(θt). P0 and θ are the
amplitude and frequency of excitation, respectively. Te
vertical displacement of the bridge deck is d(t). When the
stay cable vibrates, the displacement from the axial and
transverse equilibrium positions is u(x, t) and v(x, t), re-
spectively. Te microsegment initial chord length and dy-
namic arc length of the cable are assumed as ds and dp,
respectively, as shown in Figure 2.

According to Newton’s second law, the nonlinear
equation governing the in-plane transverse equilibrium of
the combined stay cable-bridge deck-damper system is

z

zp
T0 + Td( 􏼁

z(f + v)

zp
􏼢 􏼣dp � m

z
2
v

zt
2 dx + c

zv

zt
dx − mgcosadx + Fd(t)

dδ x − L + xd( 􏼁

dx
, (1)

where T0 and Td are the initial static tangential tension and
additional tangential dynamic tension of the stay cable,
respectively, f(x) is the gravity sag of the stay cable, δ(·) is
the unit pulse function, and Fd(t) is the damping force from
the damper. Te gravity sag curve equation of the stay cable,
including the chordwise force of gravity, is [58]

f(x) �
mgcosa
2T0

x(L − x) 1 −
λ
3

1 − 2
x

L
􏼒 􏼓􏼢 􏼣, (2)

where λ � mgL sin a/T0, representing the proportion of the
gravitational chord component to the initial tension of the
cable. Te initial chordal tension and additional chordal
dynamic tension of the stay cable are H0 and Hd,
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respectively. According to the triangle similarity principle
and the stay cable’s static equilibrium [9], the in-plane vi-
bration diferential equation of the stay cable can be written
as

H0 + Hd( 􏼁
z
2
v

zx
2 + Hd

d
2
f

dx
2 � m

z
2
v

zt
2 + c

zv

zt
+ Fd(t)δ x − L + xd( 􏼁. (3)

Te additional chordal dynamic tension Hd can be
obtained by taking the integral along the x-axis of dx over the
chord length of the cable [9] as
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Figure 1: Modelling of the combined stay cable-bridge deck-damper system.
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Figure 2: Schematic diagram of the microsegment of the stay cable.
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where Le is the equivalent length, in which
R � mgL cos a/8H0, representing the ratio of the sag to span.

Te vibration mode of the stay cable was approximated
to be equal to that of a standard string. Considering sinu-
soidal excitation, the boundary conditions of the system
were assumed as

u(0, t) � v(0, t) � 0,

u(L, t) � sin a · d(t),

v(L, t) � cos a · d(t).

(5)

Te displacement of the stay cable from the transverse
equilibrium position considering only the frst vibration
mode can be expressed as

v(x, t) � v1(x, t) + v2(x, t)

� sin
π
L

x􏼒 􏼓y(t) +
x

L
cos a · d(t),

(6)

where y(t) is the generalised coordinate of the stay cable
displacement from the transverse equilibrium position.

By substituting equations (2) and (6) into equation (4)
and by integrating them, Hd becomes

Hd �
EA
Le

d(t) sin a +
16R

π
y(t) +

π2

4L
y(t)

2
+ cos2 a

d(t)
2

2L
2􏼠 􏼡.

(7)

By substituting equations (2), (5), and (7) into equation
(3) and processing the outcome with the Galerkin dis-
cretisation method, the diferential equation governing the
combined stay cable-bridge deck-damper system consid-
ering only the frst mode is
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(8)

Te position of the exerted control force is defned as
εd � xd/L. Te diferential equilibrium equation of the
bridge deck is written as follows:

Mb
€d(t) + Cb

_d(t) + Kbd(t) + Td sin a � P(t). (9)

Here, _∎ and €∎ represent the frst and second derivatives
for actual time t, respectively.

For analysis, the following dimensionless parameters are
introduced:

τ � ωt, Y(τ) � π/Ly(t), Z(τ) � d(t)/L, e � EA/H0, and
ι � L/Le. Uεd

(τ) are the dimensionless generalised control
force at the damper position, and Uεd

(τ) � 2Fd(εd, τ)/mLω;

ξ � c/2mω and ξb � Cb/2Mbωb are the damping ratios of the
stay cable and bridge deck, respectively. Rm � Mb/mL is the
mass ratio of the bridge deck block to stay cable. c0 � ω0/ω,
c � θ/ω, and cb � ωb/ω are the vibration frequency ratios of
a standard string to the stay cable, excitation to the stay
cable, and bridge deck to the stay cable, respectively, where
ω2
0 � π2H0/mL2, ω2 � ω2

0(1 + (8χ2)/π4 − (16eιRs sin 2a)/
(π4Rm)), and ω2

b � Kb/Mb + ιEAsin2 a/MbL, and ω0, ω, and
ωb are the frequency of a standard string, stay cable, and
bridge deck, respectively.

Equations (8) and (9) can be rewritten as

Y
″
(τ) + 2ξY′(τ) + Y(τ) + α1Z(τ) + α2Z(τ)

2
􏼐 􏼑Y(τ) + α3Y(τ)

2
+ α4Y(τ)

3

+ α5Z′(τ) + α6Z(τ) + α7Z(τ)
2

+ Uεd
(τ) sin π 1 − εd( 􏼁( 􏼁 + Py cos(cτ) � 0,

(10a)

Z
″
(τ) + 2cbξbZ′(τ) + c

2
bZ(τ) + α8Y(τ) + α9Y(τ)

2
+ α10Z(τ)

2
� Pb cos(cτ), (10b)

where ∎′ and ∎″ represent the frst and second derivative for
the dimensionless time τ, α1 � c2

0eι sin a, α2 � 1/2c0
2
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Equations (10a) and (10b) are dimensionless diferential
equations that consider only the frst vibration mode of the
combined stay cable-bridge deck-damper active control
system.

2.2. LQR-BasedDesignApproach of theActive Control System.
In the state-space form, equations (10a) and (10b) can be
rewritten as shown in equation (11) by neglecting nonlinear
terms as follows:

z′(τ) � A(τ)z(τ) + DF(τ) + BUεd
(τ), (11)

where
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where z(τ) is the state vector of the system, A is the state
matrix of the system,D is the position matrix of the external
excitation, B is the position matrix of the control force, and

Uεd
(τ) is the dimensionless generalised control force at the

damper position.
In this study, a linear quadratic regulator (LQR) con-

troller was studied for a coupled stay cable-bridge deck
active control system.Te linear quadratic optimal regulator
is an active control theory that can enable active control
systems to achieve the expected structural response re-
duction. Te quadratic function J of the active control
system is defned as follows [60]:

J � 􏽚
∞

τ0
zΤ(τ)Qz(τ) + U

Τ
εd|a(τ)RUεd|a(τ)􏼔 􏼕dτ, (13)

where Uεd|a(τ) is the dimensionless generalised optimal
active control force of the active controller and is given by

Uεd|a(τ) � − R− 1BΤPz(τ), (14)

where Q and R are the weight matrices expressed by di-
agonal matrices and P is a symmetric positive defnite matrix
and the solution of the following algebraic Riccati equation:

− PA − AΤP + PBR− 1BΤP − Q � 0. (15)

Te generalised active control force Uεd|a(τ) can be
determined by minimising the performance index J. By
combining the stay cable properties, the forms of Q and R
are given by

Q � α

10 5 α6 + α8( 􏼁 0 0

5 α6 + α8( 􏼁 10c
2
b 0 0

0 0 1 0

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (16a)

R � βI, I � identity matrix, (16b)

where α and β are the weight matrix coefcients.We defne P
as

P �

P11 P21 P31

P21 P22 P32

P31 P32 P33

P41

P42

P34

P41 P42 P34 P44

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

By substituting equations (12d), (16a), (16b), and (17)
into equation (14) and considering only the frst mode, the
dimensionless generalised optimal active control force
Uεd|a(τ) of the active controller is calculated as

Uεd|a(τ) � β− 1
P31Y(τ) + P32Z(τ) + P33Y′(τ) + P34Z′(τ)( 􏼁sin π 1 − εd( 􏼁( 􏼁. (18)
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Te dimensionless generalised control force Uεd
(τ) is

composed of elastic and damping forces.Tus, Uεd
(τ) can be

described by using the equivalent stifness and damping
coefcients as

Uεd
(τ) � kp1Vεd1(τ) + kp2Vεd2(τ) + cp1Vεd1

′(τ) + cp2Vεd2
′(τ)􏼐 􏼑, (19)

where Vεd1(τ) and Vεd2(τ) are the dimensionless transverse
displacements of the stay cable and bridge deck at the
damper installation location; kp1 and kp2 are the equivalent
stifness coefcients of the cable and bridge deck; and cp1 and

cp2 are the equivalent damping coefcients of the cable and
the bridge deck, respectively.

By using equation (6) and considering only the frst
mode, the dimensionless displacement and generalised
control force of the installed damper can be expressed as

Vεd
(τ) � Vεd1(τ) + Vεd2(τ) � sin π 1 − εd( 􏼁( 􏼁Y(τ) + 1 − εd( 􏼁cos a · Z(τ), (20)

Uεd
(τ) � Kp1Y(τ) + Kp2Z(τ) + Cp1Y′(τ) + Cp2Z′(τ)􏼐 􏼑, (21)

where

Kp1 � kp1 sin π 1 − εd( 􏼁( 􏼁, (22a)

Kp2 � kp2 1 − εd( 􏼁cos a, (22b)

Cp1 � cp1 sin π 1 − εd( 􏼁( 􏼁, (22c)

Cp2 � cp2 1 − εd( 􏼁cos a. (22d)

Suppose Uεd
(τ) equals the dimensionless generalised

optimal active control force Uεd|a(τ), that is,
Uεd

(τ) � Uεd|a(τ), then by considering equations (18), (20),
(22a)–(22d), the expressions of Kp1, Kp2, Cp1, Cp2, kp1, kp2,
cp1, and cp2 are given as

Kp1 � β− 1
P31 sin π 1 − εd( 􏼁( 􏼁,

Kp2 � β− 1
P32 sin π 1 − εd( 􏼁( 􏼁,

(23a)

Cp1 � β− 1
P33 sin π 1 − εd( 􏼁( 􏼁,

Cp2 � β− 1
P34 sin π 1 − εd( 􏼁( 􏼁,

(23b)

kp1 � β− 1
P31,

kp2 �
β− 1

P32 sin π 1 − εd( 􏼁( 􏼁

1 − εd( 􏼁cos a
,

(24a)

cp1 � β− 1
P33,

cp2 �
β− 1

P34 sin π 1 − εd( 􏼁( 􏼁

1 − εd( 􏼁cos a
.

(24b)

According to equations (24a), (24b), and (19), the values
of P31, P32, P33, and P34 can directly determine the equiv-
alent stifness and damping coefcients, thereby infuencing
the active control force. In addition, equation (15) shows that
P31, P32, P33, and P34 can be determined from the ratio of β
to α. Tus, the ratio of β to α plays an essential role in the
active control force. Obtaining an appropriate value of β/α is
critical for achieving the expected control performance.

If equation (21) is substituted into equations (10a) and
(10b), then equations (10a) and (10b) are represented as

Y
″
(τ) + 2ξY′(τ) + Y(τ) + α1Z(τ) + α2Z(τ)

2
􏼐 􏼑Y(τ)

+ α3Y(τ)
2

+ α4Y(τ)
3

+ α5Z′(τ) + α6Z(τ)

+ α7Z(τ)
2

+ sin π 1 − εd( 􏼁( 􏼁 · Kp1Y(τ) + Kp2Z(τ)􏼐

+ Cp1Y′(τ) + Cp2Z′(τ)􏼑 + Py cos(cτ) � 0,

(25a)

Z
″
(τ) + 2cbξbZ′(τ) + cb

2
Z(τ) + α8Y(τ)

+ α9Y(τ)
2

+ α10Z(τ)
2

� Pb cos(cτ).
(25b)

Te expressions for the parameters in equations (25a)
and (25b) are the same as those listed in Section 2.1.

2.3. BinghamModel of theMRFD and the Optimal Semiactive
Control Algorithm. In this study, the Bingham model pro-
posed by Stanway et al. was adopted to describe the damping
force of the MRFD, as shown in the following equation:

F(t) � fd(t)sgn _xd( 􏼁 + cd _xd, (26)

where fd(t) is the adjustable Coulomb damping force of the
MRFD, sgn(·) is the sign function, _xd is the velocity of the
MRFD location, and cd is the viscous damping coefcient of
the MRFD.
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Utilising the branch-and-bound Hrovat optimal semi-
active control algorithm on the Bingham dynamic model,
the dimensionless generalised semiactive control force
Uεd|s(τ) of the MRFD can be expressed as

Uεd|s(τ) �

− �cdV′
(τ)
εd

− �fdmaxsgn Vεd
′ (τ)􏽨 􏽩, Uεd|s(τ) · Vεd

′ (τ)< 0 and Uεd|a(τ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌>Uεd|s(τ)max,

− Uεd|a(τ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, Uεd|s(τ) · Vεd
′ (τ)< 0 or Uεd|a(τ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌<Uεd|s(τ)max,

− �cdV′
(τ)
εd

− �fdminsgn Vεd
′ (τ)􏽨 􏽩, Uεd|a(τ) · Vεd

′ (τ)≥ 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(27)

where Vεd
′ (τ) is the dimensionless relative velocity when

x � xd, that is, the velocity at the MRFD location, where
Vεd
′ (τ) � sin(π(1 − εd))Y′(τ) + εd · cos a · Z′(τ) according

to equation (6); �cd is the dimensionless viscous damping
coefcient of MRFD; �fdmax and �fdmin are the dimensionless
maximum and minimum Coulomb damping forces of
MRFD; and Uεd|a(τ) expressed in equation (18) is the di-
mensionless generalised active optimal control force.

In addition, the bang-bang control algorithm is also
utilized to give a comparison analysis with the branch-and-
bound Hrovat optimal semiactive control algorithm. Based
on the bang-bang control algorithm, the dimensionless
generalised semiactive control force Uεd|B(τ) can be
expressed as

Uεd|B(τ) �
− �cdV′

(τ)
εd

− �fdmaxsgn Vεd
′ (τ)􏽨 􏽩, Uεd|B(τ) · V′

(τ)
εd
< 0,

− �cdV′
(τ)
εd

− �fdminsgn Vεd
′ (τ)􏽨 􏽩, Uεd|B(τ) · Vεd

′ (τ)≥ 0.

⎧⎪⎨

⎪⎩
(28)

Suppose that the generalised control force Uεd
(τ) in

equations (10a) and (10b) is equal to the dimensionless
generalised semiactive control force Uεd|s(τ), that is

Uεd
(τ) � Uεd|s(τ), then by substituting Uεd|s(τ) in equations

(10a) and (10b), equations (10a) and (10b) can be rewritten as

Y
″
(τ) + 2ξY′(τ) + Y(τ) + α1Z(τ) + α2Z(τ)

2
􏼐 􏼑Y(τ) + α3Y(τ)

2
+ α4Y(τ)

3
+ α5Z′(τ) + α6Z(τ) + α7Z(τ)

2

− sin π 1 − εd( 􏼁( 􏼁 · Uεd|s(τ) + Py cos(cτ) � 0,
(29a)

Z
″
(τ) + 2cbξbZ′(τ) + cb

2
Z(τ) + α8Y(τ) + α9Y(τ)

2
+ α10Z(τ)

2
� Pb cos(cτ). (29b)

2.4. Parameter Design of MRFD. As stated above, a targeted
optimal active control law was frst designed for the coupled
stay cable-bridge deck system. If the semiactive control
strategy can emulate the targeted optimal active control
efcacy, then the semiactive control can achieve the maxi-
mum optimal control force. Hence, the maximum damping
force of the MRFD (including the passive viscous and
Coulomb damping forces) should be designed according to
the targeted maximum optimal active control force. To

compare semiactive control with optimal active control, we
let the maximum semiactive control force of theMRFD to be
equal to the corresponding maximum active control force.
Te semiactive control attached to the MRFD of the coupled
stay cable-bridge deck system is assumed to achieve the same
control efcacy as the optimal active control system. Tus,
the maximum dimensionless generalised control force can
be expressed as

Uεd|smax(τ) � − �cd V ′
s|Uεd |smax

(τ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− �fdmax � − �cd V ′

a|Uεd |amax
(τ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− �fdmax � Uεd|amax(τ), (30)
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where Uεd|smax(τ) and Uεd|amax(τ) are the maximum di-
mensionless generalised semiactive control force and opti-
mal active control force and |V ′

s|Uεd |smax
(τ)| and |V ′

a|Uεd |amax
(τ)|

are the dimensionless relative in-plane transverse velocity at
the damper location corresponding to the maximum

semiactive control force of MRFD and maximum active
control force, respectively.

Tis study assumes that the dimensionless minimum
Coulomb damping force of the MRFD is zero and the ad-
justable multiple is represented by s, according to the fol-
lowing equation:

Uεd|smax(τ) � − s�cd V ′
s|Uεd |smax

(τ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� − s�cd V ′

a|Uεd |amax
(τ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� Uεd|amax(τ). (31)

Ten, the dimensionless passive viscous damping co-
efcient of the MRFD is

�cd �
Uεd|amax(τ)

s · V ′
a|Uεd |amax

(τ)􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

. (32)

Using equations (30) and (31), the dimensionless
maximum Coulomb damping force of the MRFD is

�fdmax(s − 1)�cd V ′
s|Uεd |smax

(τ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� (s − 1)�cd V ′

a|Uεd |amax
(τ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (33)

To provide insight into the physical parameters of the
designed MRFD, the physical passive viscous damping co-
efcient cd and the maximum Coulomb damping force
fdmax of the MRFD can be obtained as follows:

cd|εd
�
mL
2

· �cd, (34a)

fdmax �
mL
2

· �fdmax. (34b)

3. Numerical Analysis of the Coupled Stay
Cable-Bridge Deck Active and Semiactive
Control System

3.1. Prototypical Stay Cable in Cable-Stayed Bridge. For the
analysis of the infuence of parameters on the dynamic
properties and control efcacy of the parametric vibration of
the super-long stay cable, cable S36 in the Shanghai-Suzhou-
Nantong Yangtze River Bridge was considered. Te geo-
metric parameters and material properties of stay cables are
listed in Table 1. Te classical fourth-order Runge–Kutta
method is employed to solve the diferential equations (25a),
(25b), (29a), and (29b).

3.2. Relation between theWeightMatrix Coefcient Ratio and
Equivalent Stifness/Damping Coefcients. In this study,
because the weight matrices Q and R are determined by the
weight matrix coefcients α and β, respectively, the control
efcacy of the LQR controller is determined by the ratio of β
and α, that is, β/α. As mentioned above, the generalised active
control force Uεd|a(τ) is expressed by the equivalent stifness
coefcient kp1 and equivalent damping coefcient cp1 of the

stay cable and the equivalent stifness coefcient kp2 and
equivalent damping coefcient cp1 of the bridge deck, which
are shown in equations (24a) and (24b). To numerically in-
vestigate the relationship between the ratio β/α and four
equivalent coefcients, cable S36 in the prototype super-span
cable-stayed bridge is taken as an example. Te relationships
between the ratio β/α and equivalent coefcients kp1, kp2, cp1,
and cp2 obtained using the fourth-order Runge–Kutta algo-
rithm are shown in Figure 3.

Figure 3 shows that the ratio β/α decreases nonlinearly with
an increase in the four equivalent coefcients. In addition, for
a certain value of β/α, the equivalent damping coefcient cp1 of
the cable is much larger than the equivalent damping co-
efcient cp2 of the bridge deck, whereas the equivalent stifness
coefcient kp1 of the cable is approximately ten times the
equivalent stifness coefcient kp2 of the bridge deck.

3.3. Infuence of Parameters on the ParametricVibration of the
Active Control System. Te infuence of parameters on the
parametric vibration of the coupled stay cable-bridge deck
active control system, including the infuence of parameters
such as the frequency ratio of the bridge deck, stay cable, and
external excitation c3 � ωb: ω: θ, the optimal weight matrix
coefcient ratio β/α, and the characteristics of the active
control force, was analysed with the coupled stay cable-
bridge deck system and is operated under active control and
sinusoidal excitation. To analyse the infuence of the fre-
quency ratio in more detail, the frequency ratios of the
bridge deck to the stay cable cb � ωb/ω and external exci-
tation to the stay cable c � θ/ω were established.

3.3.1. Infuence of the Frequency Ratios and Weight Matrix
Coefcient Ratios. For the super-long cable S36, the infu-
ence of the frequency ratio of the bridge deck to the stay
cable cb � ωb/ω, external excitation to the stay cable c � θ/ω,
and bridge deck-stay cable-excitation c3 � ωb: ω: θ on the
dynamic performance of the coupled stay cable-bridge deck
is discussed frst. For free vibration, that is, when P0 is zero,
based on equations (25a) and (25b), the initial conditions are
Rm � 100, ξ � 0.002, ξd � 0.01, Z(τ0) � 0.05, Z′(τ0) � 0,
Y(τ0) � 0.0001, Y′(τ0) � 0, and P0 � 0.

First, the frequency ratio of the bridge deck-stay cable cb

is analysed. Te relationship between the maximum dis-
placement of the stay cable and frequency ratio of the bridge
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deck-stay cable cb corresponding to the free vibration of the
coupled stay cable-bridge deck system is shown in Figure 4.
Te fgure shows three peaks corresponding to the frequency
ratios cb of the bridge deck-stay cable of 0.504, 0.999, and
2.001, indicating that the stay cable exhibits 1 : 2 super-
harmonic resonance, 1 :1 primary resonance, and 2 :1 main
parametric resonance when the frequency ratio of the bridge
deck-stay cable is approximately 0.5, 1, and 2.

For the frequency ratios cb of the bridge deck-stay cable
of 0.5, 1, and 2, the force amplitude of the forced vibration
of the external excitation subjected to the bridge deck P0 is
80 kN. By some numerical trial calculations, it is found that
the vibration response displacement of the stay cable would
be too large when P0 > 136 kN, and too small when
P0 < 69.1 kN. Since the paper focuses on the engineering
practice, it is wanted that the value of the vibration re-
sponse displacement of the cable is close to that in a real
system of engineering analysis. Terefore, the represen-
tative 80 kN was chosen as the excitation amplitude P0,
which can arose a proper vibration response of cable,
making it appropriate for engineering practice. Te initial
values of the parameters were identical to those of the free
vibration. Te frequency ratio c of the external excitation-
stay cable was then analysed. Te relationship between the
maximum displacement of the stay cable/bridge deck and
frequency ratio c of the external excitation-stay cable are
shown in Figure 5.

As shown in Figure 5(a), when the frequency ratio cb of
the bridge deck-stay cable is approximately 0.5, as marked
with the red curve, there are peaks corresponding to the

frequency ratios c approximately, indicating that there are
large displacement amplitudes when the frequency ratio of
the bridge deck, stay cable, and external excitation c3 �

ωb: ω: θ is approximately 1 : 2 :1 and 1 : 2 : 2, respectively. In
other words, the external excitation resonates with the same
and twice to that of the frequency of the bridge deck, and the
stay cable exhibits a 1 : 2 superharmonic resonance. Simi-
larly, the blue and yellow curves in Figure 5(a) show that the
maximum displacement response amplitude at the midspan
of the stay cable under the external sinusoidal excitation
occurs when the frequency ratio of the bridge deck, stay
cable, and external excitation c3 � ωb: ω: θ is approximately
1 : 2 :1, 1 : 2 : 2, 1 :1 :1, 2 : 1 :1, and 2 :1 : 2. In other words, the
external excitation resonates with half, same, and twice the
frequency of the bridge deck, and simultaneously, the stay
cable exhibits a 1 : 2 superharmonic resonance, 2 :1 main
parametric resonance, or 1 :1 primary resonance.

For the vibration of the bridge deck, as shown in
Figure 5(b), the peak displacement amplitude of the bridge
deck for the frequency ratio of the bridge deck, stay cable,
and external excitation c3 � ωb: ω: θ of approximately 1 : 2 :
1 is the maximum, followed by the displacement response
for the frequency ratios c3 � ωb: ω: θ of approximately 1 :
1 : 1 and 2 :1 : 2, respectively. Owing to the super-span
cable-stay bridge with small stifness and large fexibility,
the natural frequency of the bridge deck is small, and
consequently, the resonant response is signifcantly in-
creased. Terefore, considering the bridge deck’s vibration,
mitigating the stay cable’s large-amplitude vibration is
crucial.

Table 1: Parameters of a typical super-long stay cable.

Initial tension Mass per
unit length Length Inclination angle Cross-sectional area Young’s modulus Fundamental frequency

H0 m L α A E ω/2π
12183 kN 145.0 kg/m 594.35m 26.48° 173.57 cm2 205GPa 0.244Hz
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Figure 3: Relationships between the weight matrix coefcient ratio β/α and equivalent coefcients kp1, kp2, cp1, and cp2.
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Ten, the frequency-amplitude characteristics of the
coupled stay cable-bridge deck system operated with active
control were analysed. Figure 6 shows the relationship be-
tween the maximum displacement of the stay cable/bridge
deck and the frequency ratio c of the external excitation to
the stay cable when the coupled stay cable-bridge deck
system has active control. Figure 6 shows that when the
optimal active control force with diferent weight matrix
coefcient ratios β/α is exerted on the coupled stay cable-
bridge deck system, the peak displacement responses at the
midspan of the stay cable only exist with the frequency ratios
of the bridge deck, stay cable, and external excitation
c3 � ωb: ω: θ of approximately 1 : 2 :1 and 1 :1 :1, and the
peak values of the displacement are decreased signifcantly
compared with those shown in Figure 5(a). For the bridge
deck, the frequency ratios of the bridge deck, stay cable, and

external excitation c3 � ωb: ω: θ corresponding to the res-
onance are close to those without control, and the resonance
displacement amplitudes decrease slightly compared to
those without control, as shown in Figure 6(b). For the
frequency ratios of the bridge deck, stay cable, and external
excitation c3 � ωb: ω: θ of approximately 1 : 2 :1 and 1 :1 :1,
respectively, there is only one peak displacement response.

3.3.2. Optimal Design Weight Matrix Coefcient Ratio and
Characteristics of the Maximum Active Control Force.
For the diferent frequency ratios c3 and to choose the
optimal weight matrix coefcient ratio β/α, the relationship
between the active control efcacies on the midspan dis-
placement of stay cable S36 and weight matrix coefcient
ratios β/α of the coupled stay cable-bridge deck active

Free vibration
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Figure 4: Relation of the maximum displacement of the stay cable and frequency ratio cb corresponding to the free vibration of the coupled
stay cable-bridge deck system.
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Figure 5: Relationship between the maximum displacement response of the stay cable/bridge deck and frequency ratio c corresponding to
the forced vibration without control: (a) at the midspan of the stay cable and (b) at the bridge deck.
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control system is analysed, as shown in Figure 7. Te
characteristics of the LQR-based active control force exerted
on the coupled stay cable-bridge deck system were analysed,
as shown in Figures 8 and 9.

Figure 7 shows that as the weight matrix coefcient ratio
β/α increases, the control efcacy decreases sharply and then
decreases slowly. For c3 � ωb: ω: θ≈ 2 :1 : 2, the active
control efcacy is maximised, reaching 99%. In addition, the
control efcacy decreases slightly as the weight matrix co-
efcient ratio β/α decreases, indicating that the active control
strategy is highly efcient and stable for the main parametric
resonance. Te same variation trend is observed for the
curves of the maximum control force Fdmax of stay cable S36
and the weight matrix coefcient ratios β/α of the coupled
stay cable-bridge deck active control system are shown in
Figure 8. In addition, when the weight matrix coefcient
ratio β/α decreased to a certain value, the maximum active
control force Fdmax tended to be stable.

Figure 9 shows the relationship between the maximum
control force Fdmax and control efcacies of the midspan
displacement of the stay cable of the coupled stay cable-
bridge deck active control system. Te larger the maximum
actual control force Fdmax, the larger the control efcacy,
which is consistent with the relationship between the control
force and efcacy of the active control system.

Te analysis in Sections 3.3.1 clarifes that control ef-
cacy and force should be considered when choosing the
appropriate value of the optimal weight matrix coefcient
ratio β/α. After comprehensive considerations, the optimal
weight matrix coefcient ratio β/α was determined to be
β/α � 1. β/α � 1 indicates that the control efcacy and force
of the coupled stay cable-bridge deck active control system
are efective and moderate.

3.4. Discussions of Semiactive Control of the Coupled Stay
Cable-Bridge Deck Attached with MRFD

3.4.1. Numerical Analysis on the Semiactive Control of the
System Attached with MRFD. Based on the numerical
analysis of the coupled stay cable-bridge deck active
control system, utilising equations (31)–(34a) and (34b)
and taking the super-long stay cable S36 as an example,
the parameters of the MRFD installed at a 3% distance
from the support were designed, and the semiactive
control of the coupled stay cable-bridge deck system was
numerically analysed.

According to Section 3.3.1, the optimal design weight
matrix coefcient ratio β/α of the optimal active control was
determined as β/α � 1. For the superharmonic resonance
with c3 � ωb: ω: θ � 1: 2: 1, primary resonance with
c3 � ωb: ω: θ � 2: 1: 2, and main parametric resonance
with c3 � ωb: ω: θ � 1: 1: 1, the maximum dimensionless
generalised active and physical control forces can be ob-
tained, which are represented by Uεd|amax(τ) and Udmax,
respectively. For the maximum dimensionless active control
force Uεd|amax(τ), the in-plane transverse relative velocity
|Va|Uamax
′ (εd, τ)| of the active control system at the damper

installation location can be obtained. According to the
frequency ratios of the stay cable-bridge deck-external ex-
citation, that is, c3 � ωb: ω: θ, which are 1 : 2 :1, 1 :1 :1, and
2 :1 : 2, the three sets of parameters of the MRFD are
designed based on the branch-and-bound Hrovat algorithm
according to equations (32) and (33) and labelled as para 1,
para 2, and para 3, respectively, as shown in Table 2. Para 1-
B, para 2-B, and para 3-B mean that the designed case is
based on the bang-bang control algorithm. It should be
noted that para 1-B, para 2-B, and para 3-B share the same
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Figure 6: Relationship between the maximum displacement response of the stay cable/bridge deck and frequency ratio c corresponding to
the forced vibration under active control: (a) at the midspan of the stay cable and (b) at the bridge deck.
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design parameters with para 1, para 2, and para 3,
respectively.

Te fourth-order Runge–Kutta numerical analysis
method was used to solve equations (29a) and (29b); for the
frequency ratios c3 of 1 : 2 :1, 1 :1 :1, and 2 :1 : 2, the max-
imum displacement responses of the stay cable at the
midspan and bridge deck with the MRFD semiactive control
are calculated and shown in Table 3. Te semiactive control
efcacy values are listed in Table 4. In addition, the re-
lationship curves between the displacement response of the
MRFD and control force were obtained and are shown in
Figure 10. To give a comparison of semiactive control and
widely used passive viscous control, the optimal passive
control parameter, i.e., the optimal additional damping
coefcient is also obtained as 577.2 kNs/m according to

equation (35) [57], and the corresponding displacement
responses and control efcacies are also given in Tables 3 and
4, respectively.

Cp,opt �
mLω

π2 l1/L( 􏼁
·

1
1 − cos a l2/L( 􏼁

, (35)

where Cp,opt is the optimal damping coefcient of the passive
control and the other notations are the same as Section 2.1.

As shown in Tables 3 and 4, the MRFD semiactive
control based on the branch-and-bound Hrovat optimal
control algorithm achieved more signifcant control efcacy
on cases based on the bang-bang control algorithm.
Terefore, the branch-and-bound Hrovat optimal control
algorithm is a better option. First, we noted that in the case of
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Figure 7: Relationship between the active control efcacies on the midspan displacement of the stay cable and the weight matrix coefcient
ratios β/α of the coupled stay cable-bridge deck active control system.
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Table 2: Parameters of MRFD designed by three resonance frequency ratios corresponding to resonance.

Amplitude of design excitation P0 � 80 kN
Optimal design weight matrix coefcient ratio β/α � 1
c3 (design is based on the frequency c3) 1:2:1 1:1:1 2:1:2
Name of design parameters Para 1/Para 1-B Para 2/Para 2-B Para 3/Para 3-B
|V

a|Uεd |amax′(τ)|
0.0211 0.0015 0.0017

Uεd|amax(τ) 7.9426 1.5704 0.7802
s 8 8 8
cd

46.995 130.25 57.240
fdmax, 6.9497 1.3741 0.6826
Udmax (kN) 203.21 110.91 55.100
cd (kN·s/m) 2025.0 5612.5 2466.5
fdmax (kN) 299.47 59.210 29.420
Maximum MRFD force for c3 � 1: 2: 1 (kN) 199.88 173.01 199.25
Maximum MRFD force for c3 � 1: 1: 1 (kN) 66.840 66.460 66.730
Maximum MRFD force for c3 � 2: 1: 2 (kN) 535.06 188.11 57.420

Table 3: Displacement response of the stay cable/bridge deck of the stay cable-bridge deck semiactive control system installed with MRFD/
optimal passive control system installed with viscous damper.

Maximum displacement response at the
midspan of cable (m)

Maximum displacement response at the
bridge deck (m)

c3 �ωb: ω: θ 1:2:1 1:1:1 2:1:2 1:2:1 1:1:1 2:1:2
Uncontrolled 2.625 1.705 1.724 0.672 0.158 0.044
Active control 0.420 0.028 0.006 0.445 0.066 0.044
Para 1 0.358 0.031 0.443 0.317 0.061 0.044
Para 2 0.313 0.029 0.053 0.279 0.061 0.042
Para 3 0.353 0.030 0.053 0.312 0.061 0.043
Para 1-B 0.742 0.284 0.503 0.441 0.067 0.044
Para 2-B 0.874 0.212 0.061 0.472 0.062 0.044
Para 3-B 0.851 0.273 0.061 0.471 0.068 0.044
Passive control 1.223 0.373 0.049 0.538 0.062 0.044
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resonance corresponding to c3 � ωb: ω: θ � 1: 2: 1, the
MRFD designed based on the branch-and-bound Hrovat
optimal control algorithm ofers almost the same control
efcacy for the displacement response of the stay cable at the
midspan and bridge deck. In the meantime, the MRFD
designed by the third set of design parameters para 3 is
observed to generate the smallest MRFD force, thus para 3 is
the optimal design parameter. In this scenario, the maxi-
mum MRFD force is 199.25 kN corresponding to
c3 � ωb: ω: θ � 1: 2: 1, 66.73 kN corresponding to
c3 � 1: 1: 1, and 57.4 kN corresponding to c3 � 2: 1: 2,
respectively. In engineering practice, it is feasible to design
a large-scale MRFD which is capable of generating
100∼200 kN force [62, 63]. Moreover, the larger the passive
viscous damping coefcient, the better the control efcacy.
Comparing the active and semiactive controls in Tables 3
and 4 shows that the semiactive control efcacy was almost
the same as that of the active optimal control. In some cases,
the semiactive control strategy is even more efective than
the active optimal control.

Table 4 shows that the semiactive control attached with
MRFD could achieve better performance than the optimal
active control. Figures 10(a)–10(c) show that the relationship
between the displacement response and semiactive control
MRFD force is consistent with that of the optimal active
control when the frequency ratios c3 � ωb: ω: θ are 1 : 2 :1, 1 :
1 :1, and 2 :1 : 2, indicating that the semiactive force ofMRFD
designed based on the branch-and-bound Hrovat optimal
control algorithm can track and achieve the target optimal
active control force. Figures 10(d)–10(f) show that the
semiactive control force designed based on the bang-bang
control algorithm did not track the optimal active control
force much well. Moreover, the displacement-dependent
negative stifness characteristics are observed from the
force-displacement trajectories in Figures 10(a)–10(c), re-
ferred to as apparent negative stifness or pseudo-negative
stifness (PNS) [64]. Te negative stifness characteristics
realized by semiactive MR damping systems are studied
through numerical simulations by Li et al. [65] and dem-
onstrated through an in situ feld test of a stay cable in the
Binzhou Yellow River Highway Bridge by Li et al. [50, 66]. By
contrast, any passive linear viscous dampers cannot generate
the control force with negative stifness.

3.4.2. Comparison of the Semiactive Control with the Passive
Viscous Control. Te traditional passive viscous control is
validated to be efective in suppressing parametric vibrations
when external excitation is small [42] and is widely used in
engineering practice. However, linear passive damping is not
efcient enough for large-amplitude vibration [36, 67]. To
give an insight into the advantage of semiactive control on
large-amplitude parametric vibration, the damping efect of
semiactive control and passive viscous control is evaluated
and the comparison analysis is obtained.

According to equations (23b) and (35), the theoretical
equivalent additional damping ratio of stay cable due to
LQR-based active control can be obtained as

ζa,opt �
cp1

2
· sin2 π 1 − εd( 􏼁( 􏼁, (36)

where ζa,opt is the equivalent additional damping ratio of stay
cable due to active control. In the study case, ξa,opt can be
calculated as 6.43%. Note that, 6.43% is not directly the
additional damping ratio of the semiactive control system
attached with MRFD because the practical control force of
MRFD is a nonlinear hysteretic damping force. Tus, the
equivalent additional damping ratio of stay cable due to
MRFD can be calculated based on the principle that the
dissipated energy of the nonlinear damper and the linear
viscous damper is equal in per cycle under the same exci-
tation [67–69].

Using the responses and MRFD force on the steady state
of parametric resonance corresponding to the vibration
frequency ratio c3 � ωb: ω: θ ≈ 1: 1: 1, the hysteresis loop of
MRFD under the design parameters of para 2 is obtained
and shown in Figure 11. Te energy dissipation per cycle
equals the area of the hysteresis loop, i.e.,

Ed � 􏽚
Vm

− Vm

Uεd|sdV − 􏽚
− Vm

Vm

Uεd|sdV, (37)

where Vm is the maximum damper deformation and Uεd|s is
the semiactive control force of MRFD.

Te equivalent additional damping ratio can be defned
as

ζs,opt �
Ed

4πEs

, (38)

Table 4: Control efcacy on the stay cable/bridge deck of the stay cable-bridge deck semiactive control system installed withMRFD/optimal
passive control system installed with viscous damper.

Control efcacy on midspan displacement
response at midspan of the stay cable

Control efcacy on displacement response at the
bridge deck

c3 �ωb:ω:θ 1:2:1 1:1:1 2:1:2 1:2:1 1:1:1 2:1:2
Active control 84.00% 98.34% 99.63% 33.70% 58.30% 0.24%
Para 1 89.76% 98.17% 77.31% 52.81% 61.06% − 0.46%
Para 2 88.05% 98.27% 96.87% 58.40% 60.98% 5.52%
Para 3 86.56% 98.19% 96.89% 53.52% 61.05% 3.14%
Para 1-B 71.72% 83.31% 70.83% 34.33% 57.53% 0.90%
Para 2-B 66.71% 87.57% 96.46% 29.75% 60.57% − 0.67%
Para 3-B 67.59% 83.99% 96.46% 29.87% 56.96% 0.67%
Passive control 53.43% 78.12% 97.14% 19.91% 60.44% 0.90%
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where Es is the elastic energy stored at the maximum dis-
placement which can be expressed as

Es � 􏽚
ym

0
Fydy(t), (39)

where ym is the maximum displacement of the stay cable per
cycle and Fy is the approximant elastic restoring force.
According to equations (29a) and (29b), Y(τ) � π/Ly(t) and
Z(τ) � d(t)/L, the approximant elastic restoring force Fy

can be expressed as

Fy �
L

π
y(t) + α1Lz(t) + α2L

2
z(t)

2
􏼐 􏼑

L

π
y(t) + α3

L

π
􏼒 􏼓

2
y(t)

2
+ α4

L

π
􏼒 􏼓

3
y(t)

3
. (40)

Using equations (37)–(40), the equivalent additional
damping ratio ζs,opt due to MRFD is calculated as 5.61% in
the study case. It can be observed that the equivalent ad-
ditional damping ratio ζs,opt due to MRFD is slightly smaller
than the theoretical equivalent additional damping ratio
ζa,opt due to LQR-based active control. Tis is because the
nonlinear terms are neglected when designing the LQR-
based controller, which is considered in the numerical
simulation of the semiactive control strategy attached
with MRFD.

In terms of widely used passive linear viscous control, the
optimal equivalent additional damping ratio due to passive

viscous damping could be calculated as about 1.50%
according to the following equation [57, 70]:

ζp,opt

εd

� π2
Cp,opt

mLω
εd,

ζp,opt �
xd

2L
� 0.5εd.

(41)

Te results demonstrate that the presented semiactive
control strategy attached with MRFD yields 3.74–4.27 times
more additional damping than optimal passive viscous
additional damping. Tables 3 and 4 also show that the
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Figure 10: Relationship between the displacement response and the control force given by the damper: (a) frequency ratio [γ3 � ω]b :ω : θ ≈
1:2:1 and the parameters of MRFD are designed as para 1; (b) frequency ratio [γ3 � ω]b :ω : θ ≈ 1:1:1 and the parameters of MRFD are
designed as para 2; (c) frequency ratio [γ3 =ω]b :ω : θ ≈ 2:1:2 and the parameters ofMRFD are designed as para 3; (d) frequency ratio [γ3 � ω]
b :ω : θ ≈ 1:2:1 and the parameters of MRFD are designed as para 1-B; (e) frequency ratio [γ3 � ω]b :ω : θ ≈1:1:1 and the parameters of MRFD
are designed as para 2-B; (f ) frequency ratio [γ3 � ω]b :ω : θ ≈2:1 :2 and the parameters of MRFD are designed as para 3-B.
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semiactive control has a much better control efcacy than
the passive viscous control. Tus, the presented semiactive
control strategy attached with MRFD is a promising control
method since it signifcantly enhances the stay cable
damping ratio compared to the passive oil dampers.

4. Conclusions

In this study, an active control strategy based on the LQR was
proposed to mitigate the parametric vibration of a super-long
stay cable considering the cable-deck coupling efect. Based
on the optimal active control force, a semiactive control
system with negative stifness attached with MRFD was
designed to mitigate the parametric resonance of the stay
cable. Two diferent algorithms are utilized on the semicontrol
system to give a comparative analysis. A comparative analysis
of semiactive control with optimal active control and passive
viscous control was conducted. Parameter analysis and dy-
namics of active, semiactive control systems for parametric
resonance of stay cable are given by numerical methods. Te
following conclusions can be drawn from the results:

(1) For the frequency ratiosωb: ω: θ of approximately 1 :
2 :1, 1 :1 :1, and 2 :1 : 2, the superharmonic, primary,
and main parametric resonances occur, respectively.
A small excitation amplitude can arouse the large
vibration for main parametric resonance, which
should be paid attention to in control. When the
external excitation amplitude is small, the widely
used passive viscous control can efectively control
the vibration of the cable. However, when it reaches
a certain value, the passive viscous control cannot
meet the demand for mitigating large-amplitude
vibration of super-long stay cable.

(2) Te weight matrix coefcient ratio β/α plays an
important role in the proposed LQR-based active

control strategy. As the weight matrix coefcient
ratio β/α increases, the control efcacy on the
midspan displacement of the stay cable frst de-
creases sharply and then decreases slowly. Te active
control force also decreases with an increase in the
weight matrix coefcient ratio β/α. Both the control
efcacy and force should be considered simulta-
neously when choosing a reasonable optimal weight
matrix coefcient ratio β/α.

(3) Te presented MRFD semiactive control can
achieve the expected reduction in the response of
the coupled stay cable-bridge deck system. Te
presented semiactive system can generate the
control force with the characteristics of damping
and negative stifness, which signifcantly enhances
the cable’s damping ratio compared to the passive
viscous dampers. Terefore, the semiactive control
strategy attached with MRFD is expected to enable
engineers to efectively mitigate the large-
amplitude parametric resonance of super-long
stay cables in super-span cable-stayed bridges
and provide a new prospect in the relevant engi-
neering felds.

Notations

a: Inclined angle of the chord
from the horizontal

A: Sectional area
A: Dimensionless state matrix

of the system
B: Dimensionless position

matrix of control force
c: Damping of the stay cable
Cb: Damping of the

bridge deck
cp1: Dimensionless equivalent

damping coefcients of the
stay cable

cp2: Dimensionless equivalent
damping coefcients of the
bridge deck

Cp1: Dimensionless generalised
equivalent damping
coefcients of the
stay cable

Cp1: Dimensionless generalised
equivalent damping
coefcients of the
bridge deck

d(t): Vertical displacement of
the bridge deck

dp: Dynamic arc length of the
microsegment of the
stay cable

ds: Microsegment initial
chord length of
microsegment of stay cable

V

MRFD approx.
negative stifness
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Figure 11: Hysteresis loop of MRFD under the design parameter
para 2.
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E: Elastic modulus of the
stay cable

f(x): Gravity sag of the
stay cable

Fd(t): MR damping force
H0: Initial chordal tension of

the stay cable
Hd: Additional chordal

dynamic tension of the
stay cable

J: Object quadratic function
of the active control system

Kb: Stifness of the bridge deck
L: Chord length of the

stay cable
Le: Equivalent length of the

stay cable
m: Mass per unit length of the

stay cable
Mb: Mass of the bridge deck
P(t): External vertical excitation

directly acting on the
bridge deck,
P(t) � P0 cos(θt)

P0: Amplitude of the
excitation

P: Symmetric positive
defnite matrix and
solution of the algebraic
Riccati equation

Pij, i � 1, 2, 3, 4;   j � 1, 2, 3, 4: Elements of P
Q: Weight matrices of the

LQR controller
R: Another weight matrix of

the LQR controller
s: Adjustable multiple
Rm: Mass ratio of the bridge

deck block to the stay cable
T0: Initial static tangential

tension of the stay cable
Td: Additional tangential

dynamic tension of the
stay cable

u(x, t): Displacement from the
axial equilibrium position

Ud: Physical control force
Uεd

(τ): Dimensionless generalised
control force

v(x, t): Displacement from the
transverse equilibrium
position

x: Axis coordinate
xd: Distance between the

damper installed position
and the support

_xd: Velocity at the installation
of MRFD

y(t): Generalised coordinate of
displacement of the stay
cable from the transverse
equilibrium position

Y(τ): Dimensionless generalised
coordinate of
displacement of he stay
cable from the transverse
equilibrium position

Z(τ): Dimensionless coordinate
of displacement of the
bridge deck

z: Dimensionless state vector
of the system

α: Weight matrix coefcients
of LQR controller

αi, i � 1, 2 . . . , 10: Dimensionless coefcients
in diferential governing
equations of the combined
stay cable-bridge deck-
damper active control
system

β: Another weight matrix
coefcient of the LQR
controller

θ: Frequency of excitation
ω: Natural frequency of the

stay cable
ω0: Natural frequency of the

standard string
ωb: Natural frequency of the

bridge deck
c: Frequency ratio of

excitation to stay cable
c0: Frequency ratio of the

standard string to the
stay cable

cb: Frequency ratio of the
bridge deck to the
stay cable

c3: Frequency ratio of the
excitation-stay cable-
bridge deck

λ: Proportion of the
gravitational chord
component to the cable’s
initial tension

δ(·): Unit pulse function
ε: Dynamic strain of the

microsegment of the
stay cable

εd: Control force exerted
position, εd � xd/L
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ξ: Damping ratio of the
stay cable

ξb: Damping ratio of the
bridge deck

τ: Dimensionless time
_∎, €∎: Te frst and second

derivative with respect to
the actual time t.
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