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Te detection of ballastless track surface (BTS) defects is a prerequisite for ensuring the safe operation of high-speed railways.
Traditional convolutional neural networks fail to fully exploit contextual information and lack global pixel representations. Te
extensive stacking of convolutions leads deep learning models to play a black-box detection role, lacking interpretability. Due to
the current lack of sufcient high-quality surface data for ballastless tracks, it is a severe constraint on the accurate identifcation of
the substructure state in high-speed railways. Tis paper proposes an intelligent detection method for BTS defects named
TrackNet based on self-attention and transfer learning. Te method enhances the fusion ability of global features of BTS defects
using multihead self-attention.Temodel’s dependence on extensive defect data is reduced by transferring knowledge from large-
scale publicly available datasets. Experimental results demonstrate that compared to advanced Swin Transformer model results,
the TrackNet model achieves improvements in average accuracy and F1-score by 5.15% and 5.16%, respectively, on limited test
data. Te TrackNet model visualizes the decision regions of the model in identifying BTS defects, revealing the black-box
recognition mechanism of deep learning models. Tis research performs engineering applications and provides valuable insights
for the multiclass recognition of BTS defects in high-speed railways.

1. Introduction

As China’s expansive high-speed railway lines, encompassing
eight vertical and eight horizontal high-speed railway net-
works, have continuously developed, by the end of 2023, the
total operational length of high-speed railways is about
45,000 km, securing a leading position globally. Currently, the
operating speed of China’s high-speed trains has attained
a peak of 350 km/h, establishing them as the fastest globally [1].
Te ballastless track is a critical infrastructure supporting the
safe and stable operation of high-speed trains, mainly con-
sisting of rail, fastener, track slab, self-compacting concrete,
concrete roadbed, etc., as shown in Figure 1 [2]. With the
extension of service time, under the infuence of factors such as
high-frequency train loads, temperature stress, andweathering,

feld research has found that ballastless tracks may exhibit
surface defects, such as concrete cracks and fastener broken, as
shown in Figure 2. Concrete cracks provide a pathway for
rainwater to corrode the steel reinforcement and other
structural elements of the ballastless track, thereby reducing the
structural load-bearing capacity and signifcantly afecting the
durability and service performance of the structure. Fasteners
are critical components to ensure a reliable connection be-
tween the rail and the track slab. Once a fracture occurs, it can
intensify the dynamic response between the wheel and the
track and even lead to train derailment, potentially leading to
safety accidents. Terefore, to ensure operational safety and
high-speed railways, it is particularly important to understand
the surface state of ballastless tracks and adopt efcient
methods for detecting BTS defects.
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Visual changes in railway infrastructure defects directly
indicate the health status of the structure to inspection
personnel [4]. Traditional surface defect detection primarily
depends on manual inspection, and this method has limi-
tations such as low efciency, poor accuracy, and in-
completeness. With the rapid development of information
technology, a growing number of scholars are focusing on
the automation of infrastructure surface detection using
advanced computer visual information [5]. Computer visual
inspection techniques are mainly categorized into image
processing and deep learning-based detection techniques
[6]. Common image processing techniques include edge
extraction [7], region growing [8], threshold segmentation
[9], and template matching [10]. Te detection accuracy of
these methods depends on manually adjusted feature pa-
rameters and is usually limited by the dataset. In the complex
and variable night environment, the detection of BTS defects
often lacks robustness.

In recent years, considerable advancements have been
achieved in the realm of surface defect detection within
infrastructure such as railways, pavements, and bridges,
thanks to advanced deep learning technologies. Santur et al.
[11] adopted laser cameras for railway surface inspection to
reduce time loss and additional costs during railway
maintenance. James et al. [12] proposed a multiphase rail
surface defect detection technique based on deep learning,
which improves detection performance by reducing false
alarm rates. Wang et al. [13] presented a quantitative
classifcation approach for track cracks utilizing deep
learning networks, achieving the determination of track
crack severity levels. Guo et al. [14, 15] proposed real-time
railway component detection and pixel-level segmentation
models, which have signifcant advantages in terms of ac-
curacy and processing speed. Wu et al. [16, 17] used drone
images for rail defect and track component detection and
proposed the RBGNet and AOYOLO models based on

hybrid deep learning. Cai et al. [18] introduced a few-shot
learning model for ballastless track defect detection, efec-
tively addressing the challenge posed by the scarcity of high-
quality data necessary for training deep learning models. Ye
et al. [19] developed a pixel-level segmentation-
quantifcation method suitable for nighttime ballastless
track crack detection, completing the precise measurement
of track crack width in nighttime environments. Zhang et al.
[20] proposed ShuttleNet for multiple distress detection on
asphalt roads, which can learn and integrate context in-
formation at diferent resolution levels many times to en-
hance expression. Tran et al. [21] assessed the performance
of fve advanced target detection algorithms in bridge crack
recognition and integrated the YOLOv7 model with the U-
Net algorithm for bridge crack detection and segmentation.
Teir research studies signifcantly improved the capability
of infrastructure surface defect detection, highlighting the
robustness of deep learning models based on convolutional
neural networks in defect detection. However, deep con-
volutional neural networks overlook the long-distance de-
pendencies between pixels in the feature extraction and
modeling process of defects, posing challenges to their global
modeling capability [22].

Te Transformer model employs a self-attention
mechanism to encode and represent input sequences, of-
fering higher computational efciency compared to deep
convolutional neural networks [23]. It is particularly adept at
capturing dependencies of feature patterns at diferent po-
sitions within a global view, enabling long-distance context
awareness. Tis architecture has been widely applied and
achieved signifcant success in various felds, including
natural language processing (e.g., ChatGPT) [24], autono-
mous driving [25], and audio-video recognition [26].
However, it is crucial to acknowledge that Transformer
models frequently necessitate a substantial volume of
training data samples. To reduce the model’s dependence on
extensive image data samples, transfer learning is an efective
solution, enhancing the model’s performance in target
domains by transferring knowledge from large-scale public
datasets [27]. Shamsabadi et al. [28] utilized transfer learning
and the ViTmodel to detect cracks on asphalt and concrete
surfaces, demonstrating strong robustness against various
noise signals. Pan et al. [29] presented a novel transfer
learning model founded on MobileNet, which addresses the
issue of limited data samples and efectively detecting
welding defects. Bunrit et al. [30] studied models pretrained
on the ImageNet large dataset, which can be trained to
classify construction material images in a shorter time
through transfer learning and fne-tuning schemes. Tese
studies provide new insights for the precise detection of
limited BTS defects.

Tis study reviews the development of current in-
frastructure damage detection technologies and the appli-
cation of artifcial intelligence. It is found that deep
convolutional neural networks have certain limitations in
extracting long-distance dependencies between defect fea-
tures, while Transformer models require a substantial
amount of training samples. At the same time, these de-
tection models mainly play the role of a black box, and
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Figure 1: CRTS III ballastless track structure.

Figure 2: Ballastless track surface defects: (a) fastener broken [3];
(b) concrete crack.
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interpreting these models remains a challenging task [31].
Terefore, an interpretable track detection network
(TrackNet) model based on the Swin Transformer and
utilizing transfer learning is proposed for the detection of
BTS defects. Tis paper primarily contributes in the fol-
lowing ways:

(1) Te TrackNet model can load pretrained weights
from extensive public datasets and perform pa-
rameter adjustments on a limited BTS defect dataset,
which accelerates the model’s convergence and re-
duces the dependence on extensive training samples.

(2) Te TrackNet model utilizes the window multihead
self-attention to enhance the global modeling ca-
pability of the detection model. Tis hierarchical
structure can provide feature information about BTS
defects at various scales.

(3) Te TrackNet model introduces activation heatmaps
and a nonlinear dimensionality reduction strategy,
making the decision-making process of the model
more interpretable and transparent. By reducing
high-dimensional spatial semantic information to
2D or 3D visual spaces, a clearer expression is
achieved in the paper.

To be more specifc, the contents of the subsequent
sections are as follows. Section 2 introduces the interpretable
transfer learning method. Section 3 describes the process of
constructing a dataset for surface defects of ballastless tracks
at night. Section 4 details the experimental process, in-
cluding the training environment and evaluation metrics.
Section 5 discusses the test results and provides visualiza-
tions of the model’s decision regions and dimensionality
reduction identifcation results. Section 6 demonstrates the
application efectiveness of the model in identifying on-site
damage images. Finally, the conclusions and future work are
given in Section 7.

2. Interpretable Transfer Learning Method

Tis section introduces an interpretable transfer learning
method named TrackNet for detecting multitarget BTS
defects. Tis method utilizes the ImageNet-1k data to obtain
pretrained weights and optimizes training based on the Swin
Transformer model, which accelerates the model’s conver-
gence speed and enhances its generalization ability [32].
Additionally, it incorporates the Grad-CAM (Gradient-
weighted Class Activation Mapping) mechanism [33] to
interpret the deep network model in the form of heatmaps.
Te t-SNE [34] nonlinear dimensionality reduction tech-
nique is also used to reduce the model’s high-dimensional
space data representation to 2D or 3D space, facilitating the
visualization of the identifcation results.

2.1.Transfer LearningModel. Figure 3 illustrates the overall
structure of the TrackNet model. Te Swin Transformer
model is trained on the publicly available large dataset
ImageNet-1k to obtain pretrained weights. Subsequently,

through transfer learning, the model undergoes further
fne-tuning on the track defect dataset. Firstly, the sizes of
the BTS defect images are uniformly adjusted to
256 × 256 × 3 and fed into the entire network structure.
Te images undergo Patch Partitions, specifcally, a 4×4
2D convolutional operation with a stride of 4 within the
channel dimension. Tis process yields a feature map,
denoted as F0, with dimensions of 64 × 64 × 48. Sub-
sequently, F0 is utilized in the construction of four stages
to extract defect features at diferent scales. Tis hierar-
chical structure is similar to the network structures of
VGG [35] and Resnet [36], which are capable of capturing
damage information at multiple scales. Shallow-layer
structures handle more data, while top-layer structures
handle less data, yet with richer semantic information.

Te feature map passes through a Linear Embedding
layer in the stage 1 block, where a linear transformation
alters the image shape to 64× 64× 96 (C� 96). Ten, the
feature map goes through a transformer block, maintaining
its size after passing through the self-attention computation.
To reduce the quadratic complexity of the token count and
facilitate the transmission of information between adjacent
windows, the transformer block employs two types of MSA
(multihead self-attention) mechanisms. Specifcally, it
contains the W-MSA (Windows MSA) and SW-MSA
(Shifted Windows MSA), which also elucidates the rationale
behind the presence of an even number of transformer
blocks at diferent stages (i.e., 2, 2, 6, 2). Te computation of
the entire consecutive sequence of transformer blocks is
performed as follows:

􏽢zl
� W − MSA LN zl−1

􏼐 􏼑􏼐 􏼑 + zl−1
,

zl
� MLP LN 􏽢zl

􏼒 􏼓􏼒 􏼓 + 􏽢zl
,

􏽢zl+1
� SW − MSA LN zl

􏼐 􏼑􏼐 􏼑 + zl
,

zl+1
� MLP LN 􏽢zl+1

􏼒 􏼓􏼒 􏼓 + 􏽢zl+1
,

(1)

where 􏽢zl and 􏽢zl+1 represent the output features of the
W-MSA and SW-MSA, respectively, and zl and zl+1 rep-
resent the output features of the MLP.

Each feature map generates a total of H/M×W/M
windows, each with a size of M×M. Te W-MSA operates
within each window, where each patch in the window is
considered a token, and its features are regarded as the
concatenation of the original pixel values. Each token
generates three vectors Q, K, and V through three trainable
transformation matrices Wq, Wk, and Wv. To facilitate the
model to concern itself with information from various
subspace locations,Q,K, andV vectors are linearly projected
into a low-dimensional space h times according to (2) and
(3), to perform self-attention operations. After obtaining the
self-attention outputs from diferent subspaces, they are
concatenated and projected back to a higher dimension
through a linear projection to obtain the fnal output,
thereby enhancing the semantic expression of the defect
features.
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MultiHead(Q, K, V) � ConcatWo
, (2)

headi � Attention Qi, Ki, Vi( 􏼁

� softmax
QiKi

T

��
dk

􏽰􏼠 􏼡Vi,
(3)

where Q is query, K is key, and V represents the information
extracted from each token.

To enhance the information connection between dif-
ferent windows, after completing W-MSA, the feature
map undergoes SW-MSA computation. Taking an 8 × 8
feature map as an example, Figure 4 illustrates the shifted
window partition. At the l layer, a standard window
partitioning approach is utilized, with M ×M (M � 4)
patches and 2 × 2 windows. Subsequently, self-attention
calculations are performed within each window. At the
l + 1 layer, it is visible that the window partitioning has
shifted, displacing (M/2, M/2) pixels from the

conventionally divided windows to create new windows.
Te self-attention computation crosses the previous
window boundaries, providing connections between
windows. Tis helps in transferring information between
diferent windows and strengthens the global connections
of the feature map.

In Stage 2, the feature map undergoes downsampling
through the Patch Merging layer, resulting in a halved size
and doubled channel number, ultimately forming a new
feature map with dimensions of 32 × 32×192. Te key to
this process is the reduction of the number of tokens to
lower computational complexity while preserving con-
textual information. As illustrated in Figure 5, Patch
Merging extracts pixels at the same position within each
adjacent 2× 2 region in the H×W ×C feature map and
concatenates them in the channel dimension, yielding H/
2 ×W/2× 4C feature maps. Tese feature maps undergo
a linear transformation in the channel dimension through
the LayerNorm layer, reducing the depth of the feature
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Figure 3: Overall structure of the proposed TrackNet model.
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maps from 4C to 2C. Subsequently, they enter the trans-
former block for multihead self-attention computation,
extracting BTS defect features.

Similarly, after passing through Stage 3 and Stage 4, the
feature map becomes 16×16× 384 and 8× 8× 768, re-
spectively, through the processing of the Patch Merging and
the transformer block. As the stage blocks are stacked, the
multiscale feature information of BTS defects is further
extracted, enhancing the expression of deep semantic fea-
tures. At the same time, as the number of stages decreases,
the number of tokens requiring self-attention computation
also correspondingly reduces. Finally, after global feature
extraction, the feature map outputs the category of BTS
defects. Trough such processing, the model is capable of
capturing the defect features at diferent levels and scales,
achieving efective detection and classifcation of BTS
defects.

2.2. Grad-CAM Module. To build a transparent and in-
terpretable model and to reveal the working mechanism
of the model in the decision-making process for BTS
defect recognition, the Grad-CAM module has been
integrated into the TrackNet model. Figure 6 demon-
strates how the Grad-CAM module functions. In deep
learning models, the output feature map of the last
convolutional layer has the greatest impact on the rec-
ognition results. Te TrackNet model assesses the sig-
nifcance of each neuron in the decision-making process
regarding BTS defects by analyzing the gradient in-
formation that fows into the model’s last convolutional
layer. Te last convolutional layer of the TrackNet net-
work is the output layer of stage 4.

In Figure 6, with a crack image as the input and after the
forward propagation through the TrackNet model, the
original score for identifying the crack category is calculated
through the image classifcation task. For neurons identifed
as belonging to the crack category, their gradients are set to
1, while for neurons of other categories, the gradients are set
to 0. Tis gradient information is backpropagated to the
targeted corrected feature map and then pointwise multi-
plied with the backpropagated gradients to obtain a decision
heatmap.

Specifcally, by backpropagating the predicted value yc

for category c (cracks), the partial derivative of the value yc

to the feature map Ak is calculated, obtaining the contri-
bution of each element in the feature map Ak to the value yc.
Te neuron importance weight αc

k is computed as follows:

αc
k �

1
Z

􏽘
i

􏽘
j

zy
c

zA
k
ij

, (4)

where yc represents the score predicted by the TrackNet
model for category c before softmax activation, Ak

ij represents
the data in A at the location of coordinate (i, j) on channel k,
and Z is the multiplication of the width and height.

Te gradient heatmap is obtained by a weighted com-
bination and applying the ReLU activation function. Te
expression is given in the following equation:

L
c
map � ReLU􏽘

k

αc
kA

k
. (5)

2.3. t-SNE Module. Te t-SNE module [34] is added to the
TrackNet model to reduce 768-dimensional semantic features
to a 2D or 3D space for visualizing identifcation results. Te
core idea of t-SNE is to transform the Euclidean distance
between data points into a probability distribution that
represents their similarity, which is then mapped to a low-
dimensional space. Specifcally, data points that are far apart
in high-dimensional space remain distant after being mapped
to the low-dimensional space, and vice versa. In high-
dimensional space, a Gaussian distribution is used to cal-
culate the similarity between points. pij is defned as follows:

pij �
exp − xi − xj

�����

�����
2
/2σ2􏼒 􏼓

􏽐k≠l exp − xk − xl

����
����
2/2σ2􏼒 􏼓

, (6)

where pij represents the similarities between xi and xj in
high-dimensional space and σ means the variance of the
Gaussian.

To avoid crowding of data points in the low-dimensional
space, a heavy-tailed distribution called the Student-t dis-
tribution is used instead of the Gaussian distribution to
compute the similarity between points. Te similarity in the
low-dimensional is given by

Layer l Layer l + 1

A local window

A patch

Figure 4: Shifted window partition.
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qij �
1 + yi − yj

�����

�����
2

􏼒 􏼓
−1

􏽐k≠l 1 + yk − yl

����
����
2

􏼒 􏼓
−1, (7)

where qij represents the similarities between yi and yj in the
low-dimensional space.

To ensure the convergence of the probability distribu-
tions before and after dimensionality reduction, the KL
(Kullback–Leibler) divergence is employed to formulate the
loss function for dimensionality reduction. Te discrepancy
between the probability distributions in the low- and high-
dimensional spaces is optimized by minimizing the KL
divergence. Here, the loss C is defned as

C � KL(P‖Q) � 􏽘
i

􏽘
j

pij log
pij

qij
, (8)

where C denotes the loss function for dimensionality re-
duction and P and Q represent the joint probability dis-
tribution in high- and low-dimensional spaces, respectively.

3. Ballastless Track Surface Defect Dataset

Tis study focuses on the BTS defects, primarily involving
concrete cracks and fastener defects. Te ability to detect
these defects efectively during nighttime relies on the image
quality. Tis section introduces the data preparation and
analysis.

3.1. Image Preparation. Te concrete crack data used in this
study are derived from two sources: frstly, crack images of
the ballastless at the HSR site are captured using a high-
defnition camera and crack images of the test platform at
the Southwest Jiaotong University (SWJTU) are captured
using a drone; secondly, the study refers to publicly available
concrete crack datasets [6, 37]. Fastener data are collected
from the images on the experimental platform at SWJTU
through a ballastless track inspection vehicle [38]. To achieve
precise detection of various BTS defects, this study selected
2,400 images from the mentioned datasets. Te dataset is
stratifed into a training set of 1,680 images and a test set of
720 images in a 7 : 3 ratio, ensuring balanced data distri-
bution to improve the model’s performance [39]. Te
identifed target categories comprise eight classes, namely,
background (BG), transverse crack (TC), vertical crack
(VC), oblique crack (OC), intact fastener (IF), single-broken
fastener (SBF), both-broken fastener (BBF), and missing
fastener (MF). As shown in Figure 7, the type of crack is
determined based on the angle of the crack [40]. Specifcally,
a crack appearing in the range of region I is defned as
a transverse crack, a crack appearing in the range of region II
is defned as a vertical crack, and a crack appearing in the
range of region III is defned as an oblique crack.

As Chinese high-speed trains operate during the day,
maintenance work on ballastless tracks can only be con-
ducted at night. To better align the reference image data with
nighttime conditions, these images undergo further dark-
ening processing. Specifcally, the images consist of pixel
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matrices for the RGB (Red, Green, Blue) channels, with each
pixel matrix containing 256× 256 pixel values. Te pixel
values span from 0 to 255, with 0 denoting black and 255
signifying white.Te higher the pixel, the brighter the image.
In Figure 8, this study achieves the darkening of the images
by batch-processing all images and implementing a co-
efcient reduction on pixel values through a program.

3.2. Image Analysis. Tis section analyzes the BTS defect
images after the image darkening process. Table 1 displays
images of eight categories of BTS defects in the dataset, and
the pixel values of the images form a normal distribution,
indicating good image quality after the darkening process. In
the histograms, the x-axis represents the pixel values, with
smaller values indicating darker regions and larger values
indicating brighter regions. Te pixel values are roughly
distributed between 50 and 70 across the histograms of BTS
defect images for the eight categories. Additionally, after the
image darkening process, some pixel values for fastener
defects are 0, which is related to the fact that fasteners
themselves have a black color.

To further validate whether the image darkening process
afects the features of BTS defects, Table 1 presents the
gradient diagrams of BTS images. In the gradient diagrams,
it is clear that the original gradient features along the edges
of concrete cracks and fractured fasteners are retained,
indicating no loss of defect features. Tis further confrms
the efectiveness of the constructed multiclass dataset, en-
suring the reliability of fne-tuning model parameters in the
transfer learning process for identifying BTS defects.

4. Experimental Design

Tis section introduces themodel training confguration, the
training optimization process, and the evaluation metrics
used for the recognition of BTS defects.

4.1. Training Confguration. To mitigate the impact of dif-
ferent devices on training and testing results, and to ensure
a fair hardware environment for experimental study, all
algorithms are trained and tested on an identical computing
system. Te computer is equipped with an Intel i7-11700
processor as the CPU and an NVIDIA GeForce RTX 3080 Ti
GPU for accelerated computation. All models ran suc-
cessfully in the Python 3.8 version and PyTorch 1.9
environment.

When confguring the learning strategy, the batch size is
established at 16, and the transfer learning model undergoes
training for a duration of 100 epochs. Te training opti-
mization employs the SGD optimizer with initial parame-
ters, including a learning rate of 0.1, a momentum value of
0.9, and a weight decay of 0.0001. A learning rate adjustment
strategy is implemented, involving stepwise reduction of the
learning rate to 1/10 of its initial value at specifc epochs,
coupled with a linear warm-up of the learning rate. Figure 9
illustrates the detailed learning rate strategy.

4.2.Model Training. Te training procedure of the TrackNet
model primarily involves two crucial phases: forward
propagation (FP) and backward propagation (BP). During
the FP phase, the model utilizes training image data and
weight parameters to compute the predicted output. Te BP
phase introduces a loss function to assess the disparity
between actual labels and predicted values. Subsequently, an
optimizer is employed to adjust the model’s weight pa-
rameters. Te FP and BP phases are executed in a loop
within the specifed number of epochs.

In this study, Label Smoothing Loss is employed as the
loss function. Tis loss function frst smoothes the labels to
prevent the network from being overly confdent, thus
avoiding overftting and improving the model’s general-
ization capability [41]. According to (9), the labels are
smoothed by introducing a small hyperparameter α, making
the label distribution more uniform. Ultimately, the loss is
represented by the cross-entropy expectation between the
actual and predicted values, as in (10).

y
ls
k � yk(1 − α) +

α
K

, (9)

Loss � H(y, p) � 􏽘
K

k�1
−y

ls
k log pk( 􏼁, (10)

where yk is the original actual label, yls
k is the actual label

after smoothing, pk is the predicted value, and K indicates
the BTS defect category.

To enhance result accuracy while reducing computa-
tional time, this study employed the approach of transfer
learning. Figure 10 illustrates the training processes of
various algorithms. As the epoch increases, the model’s loss
gradually decreases and stabilizes. Te TrackNet model,
based on transfer learning, loaded pretrained weights on the
ImageNet-1K dataset during training. From Figure 10, it can
be observed that after 100 training epochs, the loss of the
TrackNet model stabilizes around 1.0. In contrast, the Swin
Transformer model exhibits slower training speed, with

region II

region III

region I

15°

15°

transverse crack
vertical crack
oblique crack

Figure 7: Crack classifcation rules.
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a smaller rate and magnitude of loss reduction. By the time
the training epoch reaches 200, the loss gradually stabilizes
around 1.6. Te TrackNet model not only demonstrates
a faster rate of loss reduction but also achieves a smaller fnal
loss value. Tis suggests that the transfer learning model has
achieved a more signifcant performance improvement
within the same training period.

4.3. Evaluation Metrics. Tis section introduces the basic
concepts required for calculating these evaluation metrics.
TP is the number of correctly predicted instances of the
target defect, categorized into eight target classes in this
study. FP is the number of instances where other defect
categories are incorrectly predicted as the target category.
TN is the number of instances where other defect categories
(i.e., categories outside the target defect category) are cor-
rectly identifed as other respective defect categories. FN is
the number of instances where the target defect category is
incorrectly identifed as other defect categories.

Accuracy is a commonly used overall performance
metric for models, as shown in the following equation.

Accuracy �
TP + TN

TP + FP + FN + TN
. (11)

Precision, as demonstrated in (12), is defned as the
proportion of true positive samples to the total number of
samples predicted as the positive class by the model.

Precision �
TP

TP + FP
. (12)

Recall, as depicted in (13), is calculated as the fraction of
samples predicted as true positives relative to the total
number of actual positive class samples.

Recall �
TP

TP + FN
. (13)

Te F1-score, represented in (14), is defned as the
harmonic mean of precision and recall.

F1 − score �
2Precision · Recall
Precision + Recall

. (14)

5. Results and Discussion

Tis section presents the outcomes achieved by various
algorithms on the limited test set and provides

a comprehensive evaluation of the test results using a con-
fusion matrix, PR curve, and ROC curve. Additionally, this
section visualizes the decision regions of the models in
identifying BTS defects and the data representations in low-
dimensional space.

5.1. Test Results. Te confusion matrix serves as a tool for
assessing a model’s detection performance by summarizing
its predictions across diverse categories and presenting the
outcomes in matrix format. Figure 11 illustrates the con-
fusion matrices of diferent models in the limited test results,
serving as an assessment of the models’ generalization ca-
pabilities. In the confusion matrix, each column represents
the true labels of the eight types of BTS defects, while each
row represents the model’s predictions for defect categories.
Taking the example of transverse crack recognition in
Figure 11(a), the value 77 indicates the number of correctly
predicted samples of transverse cracks. Te value 9 repre-
sents the number of transverse cracks mistakenly classifed
as background samples. Te value 4 represents the number
of transverse cracks mistakenly classifed as oblique crack
samples. Te more concentrated the predicted values on the
diagonal of the confusion matrix, the better the performance
of the model in detecting BTS defects. From the calculation
in Figure 11(b), the detection accuracy of the TrackNet
model is obtained as 99.17%, which is an improvement of
5.15% compared to the Swin Transformer model results.

Tables 2 and 3, respectively, present the evaluation
metrics of the Swin Transformer and the proposed TrackNet
model on a limited test set. Tis limited test set consists of 90
images, covering various types of defects such as back-
ground, transverse crack, vertical crack, oblique crack, intact
fastener, single-broken fastener, both-broken fastener, and
missing fastener. Table 2 reveals that the average precision,
recall, and F1-score are 94.63%, 94.31%, and 94.29% for
detecting various types of BTS defects, respectively. Spe-
cifcally, Swin Transformer demonstrates a more signifcant
improvement in the detection accuracy of concrete cracks
compared to fastener defects. In contrast, Table 3 reveals that
the average precision, recall, and F1-score of the proposed
TrackNet model are 99.20%, 99.17%, and 99.16%, re-
spectively. When compared to the detection outcomes of the
Swin Transformer algorithm, the results of the TrackNet
model show an improvement of 4.82%, 5.15%, and 5.16%,
respectively. Te assessment outcomes suggest that the
TrackNet model exhibits superior performance on the

original image matrix operation image darkening
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Figure 8: Image darkening of BTS defects.
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Figure 11: Confusion matrix of diferent models in limited test results: (a) Swin Transformer; (b) TrackNet model.
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limited test set, particularly in signifcantly enhancing the
detection accuracy of fastener defects.

To enhance the recognition performance of the model
for surface defects on ballastless tracks in nighttime con-
ditions, the study conducts a darkening process on the image
pixel values in Section 3.1. Te section adds the performance
of the TrackNet model in recognizing ballastless track de-
fects under diferent pixel reduction coefcients. In the
comparative experiments, the pixel coefcients were set to
0.25, 0.50, and 0.75, where a smaller pixel coefcient in-
dicates a darker image of ballastless track defects. From
Table 4, it can be observed that as the pixel coefcient de-
creases, the recognition performance of the TrackNet model
weakens, to some extent indicating that the recognition
performance of deep learningmodels is still closely related to
the lighting environment.

Te PR and ROC curves serve as tools for assessing the
models’ performance in BTS defect detection across various
thresholds [42]. In the PR curve, recall is plotted on the x-
axis, and precision is plotted on the y-axis. Te curve closer
to the upper right corner indicates better model perfor-
mance. Te Area under the PR curve (AUCPR) serves as an
evaluation metric for model performance, where a higher
AUCPR value signifes better performance. In the ROC
curve, the x-axis is the FPR, and the y-axis is the TPR. Similar
to the PR curve, a curve that approaches the upper left corner
signifes better model performance.TeArea under the ROC
curve (AUCROC) is another evaluation metric for model
performance, where a larger AUCROC indicates superior
performance.

Figure 12 displays the PR curves of the Swin Transformer
and TrackNet model on the limited test set. Te average
AUCPR value for the Swin Transformer model to identify all
BTS defects is 0.981. Te average AUCPR of the proposed
TrackNet model is 0.999, which is 1.83% higher than that of
the Swin Transformer model. From Figure 12(a), it is evident
that the Swin Transformer model has the maximum area
under the curve for detecting vertical cracks, suggesting
superior performance in detecting vertical cracks.
Figure 12(b) illustrates that the TrackNet model performs
exceptionally well in detecting all types of BTS defects
without the background category.

Figure 13 illustrates the ROC curves of the Swin
Transformer and TrackNet model on the limited test set. Te
Swin Transformer model has an AUCROC value of 0.989,
while the TrackNet model achieves an AUCROC value of
0.999, representing a 1.01% improvement. From Figur-
es 13(a) and 13(b), it can be observed that the result patterns
are similar to the trends seen in the PR curves, emphasizing
the outstanding performance of the TrackNet model in
detecting BTS defects.

5.2. Result Visualization. Te section visualises the model
decision-making process and the identifcation results of the
dimensionality reduction. Interpretability studies are es-
sential for researchers to gain a deeper understanding of the

decision-making processes of complex models. Terefore,
Grad-CAM is introduced to the TrackNet model. Tis ap-
proach leverages gradient information that enters the fnal
convolutional layer of the model to discern the signifcance
of each neuron in the decision-making process. Te study
prefers to obtain decision heatmaps at diferent stages. From
Figure 14, it can be observed that the decision heatmaps
output by the frst three stages are not very efective. Tis is
mainly because the shallow convolutional layers usually
learn low-level features of the image, such as edges and
textures, which may not be sufciently distinctive for the
fnal classifcation decision. In contrast, the last convolu-
tional layer typically learns more advanced feature repre-
sentations, which are more conducive to the model making
correct decisions.

Figure 15 shows the decision heatmap of the last con-
volutional layer output of the diferent network models. Te
red regions indicate the important feature areas that the
models focus on during defect identifcation decisions.
Specifcally, in the recognition process of concrete cracks,
the Swin Transformer model focuses on areas mainly dis-
tributed at the edges of crack defect features. In contrast, the
TrackNet model concentrates its attention on the crack

Table 3: Results of the TrackNet model.

Type Precision (%) Recall (%) F1-score (%) Support
BG 100.00 93.33 96.55 90
TC 97.83 100.00 98.90 90
VC 95.74 100.00 97.82 90
OC 100.00 100.00 100.00 90
IF 100.00 100.00 100.00 90
SBF 100.00 100.00 100.00 90
BBF 100.00 100.00 100.00 90
MF 100.00 100.00 100.00 90
Macro avg 99.20 99.17 99.16 720

Table 4: Results of the TrackNet model with diferent pixel re-
duction coefcients.

Coefcient Precision (%) Recall (%) F1-score (%) Support
0.25 97.45 97.22 97.34 720
0.50 99.20 99.17 99.16 720
0.75 99.59 99.58 99.59 720

Table 2: Results of the Swin Transformer model.

Type Precision (%) Recall (%) F1-score (%) Support
BG 88.24 100.00 93.75 90
TC 100.00 85.56 92.22 90
VC 100.00 97.78 98.88 90
OC 95.70 98.89 97.27 90
IF 86.73 94.44 90.42 90
SBF 91.67 85.56 88.51 90
BBF 94.74 100.00 97.30 90
MF 100.00 92.22 95.95 90
Macro avg 94.63 94.31 94.29 720
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Figure 12: PR curve of diferent models in limited test results: (a) Swin Transformer model; (b) TrackNet model.
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Figure 13: ROC curves of diferent models in limited test results: (a) Swin Transformer model; (b) TrackNet model.
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Figure 14: Decision-making heatmaps obtained at diferent stages.
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feature regions. In the recognition process of fastener de-
fects, both models have more widespread attention areas,
without a relatively concentrated attention region. Tis is
due to the fastener features occupying a more extensive
image area. By comparing the visual interpretation efects of
decision regions for diferent models, it can be observed that
the TrackNet model highlights more distinct important
features.

Te results produced by deep learning models typically
present high-dimensional semantic information, making it
challenging for individuals to comprehend intuitively. To
address this issue, the TrackNet model incorporates t-SNE
nonlinear dimensionality reduction technology. Tis tech-
nique can map high-dimensional semantic recognition in-
formation to a low-dimensional space. It also preserves the
similarity relationships among data points in the high-
dimensional space, providing researchers with a more in-
tuitive understanding.

Figure 16 illustrates the recognition results of the Swin
Transformer and the TrackNet models on the limited test set,
where high-dimensional information is mapped to a 2D space
using nonlinear dimensionality reduction technology. Te re-
sults of the Swin Transformer model in the 2D space are
displayed in Figure 16(a). Diferent crack defects with similar
features are clustered in the close region. However, due to the
similar features and model recognition errors between intact
fasteners and single-broken fastener defects, there is an overlap
in the clustered regions. Figure 16(b) presents the results of the
TrackNet model in 2D space, where diferent types of BTS
defects are distinctly clustered in their respective independent
areas. Compared to the results of the Swin Transformer model,
the TrackNet model’s outcomes after dimensionality reduction
more distinctly separate various defect categories.Tis indicates
that the TrackNet model possesses superior detection perfor-
mance, allowing for a clear identifcation of various defect types
in the original high-dimensional semantic information.

Figure 17 displays the recognition results of the Swin
Transformer and the TrackNet models, using nonlinear
dimensionality reduction technology to map high-
dimensional information to 3D space. Compared to the
data in 2D space, the results in 3D space present information
on the distribution of data in three-dimensional directions,
with a more pronounced visual impact. Te results in 3D
space provide more information, contributing to a more
comprehensive understanding of the model’s ability to
recognize diferent defect categories.Te overall distribution
of results in 3D space is similar to that in 2D space.

Te results of the Swin Transformer model in
Figure 17(a) still exhibit spatial overlap when the model
recognizes intact fasteners and single-broken fasteners. In
Figure 17(b), the recognition results of the TrackNet model
show that various types of BTS defects can still be clustered
into diferent regions. It is noteworthy that the overall
distribution of crack defects along the z-axis is higher than
that of fastener defects in the results of both the Swin
Transformer and the TrackNet models. Te model’s per-
ception of diferent defect features can be further inferred by
observing the relative positions of cracks and fastener defects
in the results of dimensionality reduction in 3D space.

5.3. Result Discussion. To verify whether the selection of
datasets and training weights afects the detection perfor-
mance of the model, the section discusses the detection
efects of the TrackNet model when loading diferent pre-
training weights. Comparative experiments are conducted
using the NEU-DET and ImageNet-1k datasets for pre-
training.Te NEU-DETdataset contains images of 6 types of
surface defects on hot-rolled steel strips, totaling 1800 im-
ages [39]. On the other hand, the ImageNet-1k dataset
contains 1000 categories, with approximately 1.3 million
images.

Table 5 shows the evaluation metrics of the TrackNet
model using diferent pretraining weights for identifying
diferent surface defects on ballastless tracks. Te results
show that the TrackNet model pretrained with the
ImageNet-1k dataset performs excellently in terms of
identifcation with precision, recall, and F1-score reaching
99.20%, 99.17%, and 99.16%, respectively. In comparison,
the performance of the TrackNet model pretrained with the
NEU-DET dataset is slightly inferior.

Transferring pretraining weights from diferent datasets
may result in diferent computational costs. In this study,
pretraining weights obtained from the ImageNet-1k dataset
can be acquired by referencing open-source code re-
positories, thus incurring no additional computational cost
[32]. However, if one chooses to pretrain weights using the
NEU-DET dataset, an additional 1.77 hours would be re-
quired for pretraining on that dataset before training on the
BTS defect dataset can commence.

Te proposed TrackNet achieves near-perfect results in
Section 5.1, especially in OC, IF, SBF, BBF, and MF, where
the evaluation metrics reach 100%. To enhance the credi-
bility of the results, the study repeatedly splits the training
and test sets. Te section conducts an additional three
random splits of the training and testing sets while main-
taining the same parameters and environment for training
and testing. Tables 6–8 present the evaluation metrics of the
TrackNet model on the three resplit test datasets. In clas-
sifcation tasks, precision and recall are often conficting
indicators.Te F1-score can comprehensively consider these
two indicators, providing a more comprehensive assessment
of the TrackNet model’s performance. From the additional
experimental results in this study, it can be seen that the F1-
score of the TrackNet model in identifying OC, IF, SBF, and
BBF defects did not reach 100% in every test. However, it is
undeniable that the F1-score of the model for MF defects
remained at 100%. To further enhance the credibility of the
TrackNet model’s test results, this study further analyzes the
similarity between MF defect images. Nine randomly se-
lectedMF defect images from the training and testing sets, as
shown in Figure 18, demonstrate the pixel distribution
characteristics of these images using histograms. It can be
observed from the Figure 18 that the pixel values of the MF
defect images are mainly distributed around 50, indicating
a certain degree of similarity in this type of damage. In future
research, the authors will collect a more extensive range of
images of ballastless track defects from railway test sites or
laboratories to train the model and improve its general-
ization ability.
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5.4. Comparison with Other Algorithms. To explore the su-
periority of the TrackNet model in detecting BTS defects,
comparative experimental studies are conducted in this
section. EfcientNet [43], Vision Transformer [44], and Swin
Transformer [32] are all advanced intelligent detection
models and are used for comparative research. Figure 19
shows the results of diferent detection algorithms on a lim-
ited test set of BTS defects. Among all the detection results, the
Vision Transformer model has the lowest average accuracy,
precision, recall, and F1-score. Tis is because models based
on self-attention mechanisms often require a large number of
training samples. Te proposed TrackNet model efectively
overcomes this challenge, achieving high performance on the

limited dataset of BTS defects through transfer learning and
multihead self-attention mechanisms. Compared to the re-
sults of the EfcientNet, Vision Transformer, and Swin
Transformer models, the accuracy of the TrackNet model has
increased by 0.15%, 11.39%, and 5.15%, respectively.

6. Engineering Applications

Te TrackNet model with a global attention mechanism
obtained through transfer learning demonstrates out-
standing advantages in detection performance. In this sec-
tion, engineering application validation is conducted using
actual nighttime environmental images.
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To further validate the scientifc validity and efectiveness
of the proposed TrackNet model, this study selected
nighttime environmental images collected from a certain

high-speed railway line in China and the full-scale test
platform of ballastless track at SWJTU for applied research.
Figure 20 illustrates the full-scale ballastless track structure
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Figure 16: Results of dimensionality reduction in 2D space: (a) Swin Transformer model; (b) TrackNet model.
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Figure 17: Results of dimensionality reduction in 3D space: (a) Swin Transformer model; (b) TrackNet model.

Table 5: Evaluation metrics of the TrackNet model with diferent pretraining weights on the test set.

Weight Precision (%) Recall (%) F1-score (%) Support
NEU-DET 95.00 94.86 94.93 720
ImageNet-1k 99.20 99.17 99.16 720
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model established indoors at SWJTU. Te entire ballastless
track model is approximately 20m long, consisting of two
structures: CRTS I-type slab ballastless track and CRTS III-
type slab ballastless track. Te surface of the ballastless track
exhibits predefned cracks and fastener defects.

Tis study utilizes a high-defnition camera to capture
images of surface cracks and fastener defects on ballastless
tracks during nighttime and conduct applied validation. Te
upper part of Figure 21 demonstrates concrete crack images
on the track slab and roadbed collected by the collaborative
team during nighttimemaintenance hours on a certain high-
speed railway line. In the images, it is visible that actual
nighttime capture scenes exhibit signifcant interference
from shadows and illuminated areas. Tese interfering
factors pose a considerable challenge to the detection of
surface defects on ballastless tracks. Te proposed TrackNet,

leveraging its outstanding global feature extraction capa-
bility, successfully visualized the concrete crack regions.

Te lower part of Figure 21 showcases images of fastener
defects collected by our team during nighttime at the SWJTU
high-speed ballastless track full-scale test platform. Trough
visual results, it can be observed that the attention of the
TrackNet model is concentrated within a small area of the
fasteners, validating the inference in Section 5.2. When defect
areas occupy a large portion of the image, the model’s at-
tention tends to be more widespread. However, in engineering
applications, defect areas typically occupy only a small portion
of the image, leading themodel’s attention to bemore focused.
Te application validation of the TrackNet model demon-
strates its efectiveness in detecting surface defects on bal-
lastless tracks, providing crucial insights for the identifcation
of surface defects on high-speed railway ballastless tracks.

Table 6: Test results of split dataset I.

Type Precision (%) Recall (%) F1-score (%) Support
BG 100.00 88.89 94.12 90
TC 98.90 100.00 99.45 90
VC 91.75 98.89 95.19 90
OC 98.90 100.00 99.45 90
IF 100.00 97.78 98.88 90
SBF 97.83 100.00 98.90 90
BBF 98.90 100.00 99.45 90
MF 100.00 100.00 100.00 90
Macro avg 98.29 98.19 98.18 720

Table 7: Test results of split dataset II.

Type Precision (%) Recall (%) F1-score (%) Support
BG 100.00 88.89 94.12 90
TC 95.74 100.00 97.83 90
VC 93.68 98.89 96.22 90
OC 100.00 99.45 99.72 90
IF 100.00 100.00 100.00 90
SBF 100.00 100.00 100.00 90
BBF 100.00 100.00 100.00 90
MF 100.00 100.00 100.00 90
Macro avg 98.68 98.40 98.49 720

Table 8: Test results of split dataset III.

Type Precision (%) Recall (%) F1-score (%) Support
BG 100.00 95.56 97.73 90
TC 97.83 100.00 98.90 90
VC 96.74 98.89 97.80 90
OC 100.00 100.00 100.00 90
IF 100.00 98.89 99.44 90
SBF 98.90 100.00 99.45 90
BBF 100.00 100.00 100.00 90
MF 100.00 100.00 100.00 90
Macro avg 99.18 99.17 99.16 720
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Figure 18: Analysis of similarity in images of BTS defects (with MF defects as an example).
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7. Conclusion

Tis study aims to detect limited surface defects of ballastless
tracks through transfer learning and conduct interpretability
research on model decisions and high-dimensional in-
formation. Based on experiments and evaluations conducted
on a constructed limited nighttime defect dataset, the fol-
lowing conclusions were drawn:

(1) In the context of railway nighttime detection, this
study uniformly pixel-reduced three-channel color
images to construct a multiclass defect dataset for
nighttime BTS defects. An interpretable intelligent
detection method for BTS defects based on transfer
learning is proposed. Tis method can efectively
alleviate the shortcomings of deep learning in rec-
ognizing small-sample infrastructure defects at night
by loading pretrained weights obtained on publicly
available large datasets.

(2) Te proposed TrackNet model in the paper enhances
the extraction of global features of BTS defects in
limited test images covering eight categories of BTS
defects. Its average accuracy, precision, recall, and
F1-score are 99.17%, 99.20%, 99.17%, and 99.16%,
respectively. When compared to the detection out-
comes of the Swin Transformer algorithm, it shows
an improvement of 5.15%, 4.82%, 5.15%, and 5.16%,
respectively. Tis indicates that the transfer learning
model exhibits better detection performance on
a limited test set.

(3) When performing transfer learning, it is advisable to
prioritize pretraining weights from large-scale datasets
available in open-source code repositories. Tis ap-
proach can improve the model’s detection perfor-
mance while avoiding additional computational costs.

(4) In terms of interpreting model decisions, this study
visualizes the decision regions of the TrackNet model
in recognizing BTS defects using heatmaps, revealing
the black-box recognition mechanism of deep
learning models. Additionally, the nonlinear di-
mensionality reduction technique shows the model’s
recognition results mapped from high-dimensional
space to 2D or 3D space, aiding in the understanding
of abstract data distributions.

Te authors plan to develop an intelligent detection
device for ballastless tracks in the future, but this is a long-
term research project. Te next specifc work is mainly
divided into two aspects. Firstly, due to the limited col-
lection of track defect data in this study, which may afect
the detection accuracy to some extent, the authors will
collect more extensive images of ballastless track defects
from railway test sites or laboratories to train the model and
improve its generalization ability. Secondly, the authors
will use the TrackNet model as the backbone network and
combine it with object detection algorithms to achieve
defect position localization. Finally, the model will be
deployed in the intelligent detection vehicle for ballastless
track defects.
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