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Tis study considers the identifcation uncertainties of closely spaced bending modes of an operating onshore concrete-steel
hybrid wind turbine tower. Te knowledge gained contributes to making mode shapes applicable to wind turbine tower
monitoring rather than just mode tracking. One reason is that closely spaced modes make it difcult to determine reliable mode
shapes for them. For example, the well-known covariance-driven stochastic subspace identifcation (SSI-COV) yields complex
mode shapes with multiple mean phases in the complex plane, which does not allow error-free transformation to the real space. In
contrast, the Bayesian Operational Modal Analysis (BAYOMA) allows the determination of real mode shapes. Te application of
BAYOMA presents a further challenge when quantifying the associated uncertainties, as the typical assumption of a linear, time-
invariant system is violated. Terefore, validity is not self-evident and a comprehensive investigation and comparison of results is
required. It has already been shown in a previous study that the signifcant part of the uncertainty in the mode shapes corresponds
to their orientation in the mode subspace (MSS). Despite all the challenges mentioned, there is still a great need to develop reliable
monitoring parameters (MPs) for Structural Health Monitoring (SHM). Tis study contributes to this by analysing metrics for
comparing mode shapes. In addition to the well-known Modal Assurance Criteria (MAC), the Second-Order MAC (S2MAC) is
also used to eliminate the alignment uncertainty by comparing the mode shape with a MSS. In addition, the mode shape
identifcation uncertainties of BAYOMA are also considered. Including uncertainties is also essential for the typically used natural
frequencies and damping ratios, which can be more appropriately used if the identifcation uncertainty is known.

1. Introduction

Wind energy accounts for the largest share of renewable
electricity generation in the European Union (EU). In 2018,
wind energy accounted for 18.4% of the electricity gener-
ation capacity in the EU, with an installed capacity of 170
Gigawatt (GW) onshore and 19GWofshore [1]. As in many
engineering disciplines, efcient operation and maintenance
also play a major role in the feld of wind turbines.Terefore,
there is a strong incentive to establish efcient monitoring
strategies to minimise maintenance expenses whilst simul-
taneously enhancing safety [2]. In civil engineering, the
associated monitoring concept is referred to as Structural
Health Monitoring (SHM). A distinction between model-

and data-based SHM in this context is generally made. In
model-based SHM, a simulation model of a wind turbine is
used, which can rely just on its structure model or can also
consider the environment (like aerodynamics). Popko [3]
presented an overview of commonly applied wind turbine
simulation tools. For further SHM applications, the model
must be accurate enough to refect reality. On the one hand,
this is achieved by calibrating the structural model. On the
other hand, the model has to consider all relevant in-
teractions accurately enough, such as soil-structure and
fuid-structure interactions. Several studies investigate vi-
bration and time simulations of onshore wind turbine
simulations considering such interactions [4, 5]. Since this
paper focuses on the identifcation of modal parameters
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from measurement data considering the identifcation un-
certainties, the model-based SHM is not in the scope of this
work. However, we use a simulation model to generate data
to preliminary investigate the identifcation of closely spaced
modes of tower structures before using real
measurement data.

For data-based methods, a suitable measurement con-
cept is crucial. A global monitoring approach is often used
due to a more economic measurement concept than local
approaches. Here, a small number of sensors are used to
determine information about the condition of the whole
structure in terms of structural dynamics. Based on the
measured system response data, monitoring parameters
(MPs) are extracted using feature extraction techniques.
From these parameters, a subset of parameters is determined
which can distinguish between a damaged and an un-
damaged state of the structure [6]. Here, operational modal
analysis (OMA) methods are often used to determine modal
parameters such as natural frequencies, damping ratio, and
mode shapes as MPs. Tis study aims to investigate the
identifcation of modal parameters and their uncertainties as
MPs for a hybrid concrete-steel tower in a 3.4MW onshore
wind turbine during operation. In the use case of wind
turbine monitoring, the Stochastic Subspace Identifcation
(SSI) [7–11], the poly-reference Least Squares Complex
Frequency (pLSCF) [8, 9], and the Frequency Domain De-
composition (FDD) [12, 13] are to be mentioned here. In this
application, a nonstationary, time-variant system is typically
present, contradicting the assumption of a time-invariant
system under white noise excitation of linear OMAmethods.

In general, the difculty in applying these methods lies in
the complexity of a wind turbine. Tis complexity is
manifested in identifying modal parameters in the presence
of harmonic excitation, which can lead to distortion of the
natural frequencies [7]. Possible approaches in the context of
monitoring wind turbine towers, for example, do not
consider the identifed natural frequencies in the range of
higher harmonics of the rotor [14], or use cluster analysis to
separate natural frequencies from harmonics [15]. Another
challenge arises from the short evaluation time compared to
the oscillation period (typically 10minutes). However, there
arises also a problem if the evaluation time is extended
beyond the commonly used 10minutes to improve the
identifcation accuracy because there is a risk that the
identifcation will become less reliable due to instationarities
caused by varying environmental and operating conditions
(EOCs). Nevertheless, OMA methods are often successfully
used to monitor and identify the dynamics of wind turbine
support structures, as they are robust against violations of
the assumptions [8, 16]. Identifying the dynamics of wind
turbine towers is further complicated by the fact that the
damping of the fore-aft mode (FA) at higher rotor speeds is
greater than that of the side-to-side mode (SS) [12]. In
addition, the damping of a hybrid tower is greater than that
of a pure steel tower. Te tower also has a greater mass,
making the structure less susceptible to vibration than
a typical steel tower.Te low-frequency system dynamics are
also challenging to capture. Terefore, the measurement
chain must be designed and calibrated for the low-frequency

range [17]. All these efects ultimately increase the identi-
fcation uncertainty of the modal parameters [18].

In recent years, OMA methods, therefore, have focused
on the consideration of uncertainties and methods such as
Bayesian Operational Modal Analysis (BAYOMA) [19] or
the uncertainty extension for the SSI [20] have been de-
veloped. Including those uncertainties is of great importance
to monitor a wind turbine reliably. However, one of the
main challenges with monitoring tower structures is still the
identifcation of closely spaced modes, especially in terms of
mode shapes. When applying the widely used SSI-COV to
tower structures, the problem with closely spaced modes is
that the identifed complex mode shapes may have mean
phases separated by spatial directions [21–23], making it
difcult to compare the mode shapes. By contrast, BAY-
OMA can be used to identify real mode shapes and will,
therefore, also be used in this study. Regarding uncertainty,
Au et al. [18] showed that the largest uncertainty in the case
of closely spaced modes occurs in the identifed mode
shapes. Tis uncertainty can be divided into two parts. Te
frst part is the uncertainty of the mode subspace (MSS)
spanned by the dominant vibration shapes. Tis uncertainty
is similar to the uncertainty of mode shapes in the well-
separated case, which depends mainly on the noise of the
measurement chain. Hence, the MSS can be identifed in the
case of low-noise data very reliably. Te second part of the
uncertainty of the mode shape is the alignment of the mode
in theMSS.Tis fnding aligns with [21], which examines the
mode shapes of a prestressed segmented concrete tower
under laboratory conditions using BAYOMA and SSI-COV.
It was found that the uncertainty of the alignment identi-
fcation increases signifcantly with the increase in closeness
of the frequencies. It has also been shown that an extension
of the well-known modal assurance criterion (MAC) in the
form of the subspace of order 2 MAC (S2MAC) [24] is
advantageous in this case and enables the detection of system
changes for symmetrical tower structures based on mode
shapes [21, 25].

Terefore, this study aims to transfer the fndings of the
identifcation uncertainty of closely spaced modes [21] to
monitor a hybrid tower of a 3.4MW onshore wind turbine
during operation. To achieve this, frst, the SSI-COV and
BAYOMA are compared using a simulation model of
a tower. Subsequently, the suitability of BAYOMA to a wind
turbine in operation is analysed, and the uncertainties as-
sociated with identifying the hybrid tower are investigated.
Additionally, a new representation of the S2MAC is used to
compare mode shapes of natural frequencies that are closely
spaced. As a result, it can be demonstrated how to handle the
mode shape uncertainty with meaningful metrics based on
the MSS, particularly from closely spaced modes, to obtain
a signifcant MP for the SHM of an onshore wind turbine.
Te work is structured as follows. Section 2 introduces the
metrics considered in subsequent sections. Section 3 de-
scribes the investigated tower and themeasurement setup. In
Section 4, a comparison of the identifcation methods based
on a simulation model of a tower is performed. Section 5
examines the wind turbine tower under investigation and
analyses its dynamics in greater detail, accounting for
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identifcation uncertainty. Lastly, Section 6 provides
a summarised review of the study and ofers an outlook.

2. Metrics for Mode Shapes

For almost rotationally symmetric tower structures, closely
spaced modes occur for bending deformations since the
natural frequencies of the two spatial bending directions are
almost the same. In such cases, previous investigations have
shown that the mode shapes have much higher associated
identifcation uncertainty than in the case of well-separated
modes [18, 25]. Te widely used metric to compare to mode
shapes φj and φk is the Modal Assurance Criterion (MAC),
defned as

MACj,k �
φH

j φk

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
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Most of the uncertainty is in the alignment of the mode
shape in the MSS, so the MAC becomes very uncertain, as
shown in [21, 25]. Figure 1 shows a MAC interpretation for
the three-dimensional case.

Te subspace of order 2 Modal Assurance Criterion
(S2MAC) was developed [24] to eliminate the alignment
uncertainty. Te S2MAC calculates the best MAC between
the mode shape φi and the MSS spanned by two vibration
shapes vectors ψj and ψk. In the case of normalised real
mode shapes of length one, the S2MAC is defned as
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Tis metric determines the best possible MAC between
the vector and a linear combination of two vectors, as
visualised by a dashed red arrow in Figure 1. Te MAC and
S2MAC are relatively insensitive to small mode shape
changes relative to the reference shape, respectively, MSS.
Since both metrics represent a squared scalar product of
vectors normalised to one, the corresponding angles αMAC
and αS2MAC can be derived [26].

αMAC �
180
π

arccos(
�����
MAC

√
). (3)

Te angle of the MAC is simply the angle between the
two mode shapes, and for the S2MAC, it is the smallest angle
between the mode shape and the MSS, as shown in Figure 1.
Te representation using αMAC and αS2MAC allows a more
meaningful comparison of similar mode shapes. Moreover,
a Gaussian distribution can better express the uncertainty
distribution than without the angle transformation. Section
4 shows this fact in more detail.

Te alignment in the MSS can be approximated by the
directional angle c in the case of a tower structure as
visualised in Figure 1. If an orthogonal sensor setup at all
measurement levels in both spatial directions exists, the
directional angle is calculated analogous to the calculation of
the mean phase [27], as shown in [21].

c � arctan
−V12

V22
􏼠 􏼡with USVT

� φx  φy􏽨 􏽩, (4)

where USVT is the singular value decomposition, φx are the
entries of the mode shape in x-direction, and φy are the
entries of the mode shape in y-direction. V12 and V22 are the
corresponding elements of the matrix V. Te alignment
uncertainty in the MSS will be particularly noticeable in the
directional angle for closely spaced modes. In the context of
wind turbine towers, the directional angle depends on the
nacelle position.

3. Case Study: 3.4MW Onshore Wind Turbine
Hybrid Concrete Steel Tower

Tis study investigates a hybrid concrete-steel tower of
a 3.4MW onshore wind turbine located close to Bremen,
shown in Figure 2. Te frst 57m of the 122m high tower
consists of prestressed segmented concrete rings. Te upper
part is composed of steel tubes.

Te rated rotor speed of 14 rpm is reached at a wind
speed of about 10m/s.Temain wind direction is west. Since
the measurement system was installed on an existing wind
turbine, the fve measurement levels coincide with the tower
platforms due to limited accessibility. Tree Integrated
Electronics Piezo-Electric (IEPE) accelerometers are installed
on each level. Two sensors measure in the radial direction of
the tower, with a 90° angle to each other (MP1r and MP2r).
An additional sensor of tangential direction is attached to
one measuring point (MP1t) per measuring level, as shown
in Figure 2. Te calibrated IEPE sensors are combined with
an IEPE supply with a cutof frequency of 0.0106Hz, en-
abling the measurement of acceleration signals without
distortion down to 0.05Hz [17].Temeasurement data of all
sensors are digitised synchronously with a 24 bit analogue to
digital converter on Level 1 positioned and stored on
a computer with a sampling rate of 500Hz.Te signal is then
digitally reduced to 10Hz. Tis experimental setup aims to
investigate the dynamics of the hybrid tower in operation to
extract possible monitoring parameters and compare ac-
celeration measurements with displacement measurements.
In this work, the frst is examined. For the evaluation, only
the two accelerometers of MP1 from eachmeasurement level
are used.

4. Preinvestigations Using a Simulation Model

Te fndings of the investigations on the identifcation of
closely spaced modes using BAYOMA and SSI-COV based
on a laboratory structure [21] will frst be verifed in this
section using a simulation model. Tis study does not de-
scribe the theory of the two identifcation methods. In-
terested readers are referred to the relevant literature for the
SSI-COV [28, 29] and BAYOMA [30, 31].

Te simulations are carried out in DeSiO, an in-house
simulation tool for simulating slender structures prone to
vortex-induced vibrations. It combines a structural model
based on a multibody fnite element system, possibly con-
sisting of rigid bodies, geometrically exact beams and solid-
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degenerate shells, and the computation of aerodynamic
loads by the unsteady vortex lattice method.Te formulation
allows using holonomic and nonholonomic constraint
conditions [32]. In this work, only the structural solver is
used. It combines a total Lagrangian formulation with
a director-based description of the kinematics to ensure path
independence and objectivity. Furthermore, the time in-
tegration methods allow for controlled energy dissipation
but preserve total energy and linear and angular momentum
[33]. Geometrically exact beam theory can be seen as an
extension of the classical Timoshenko beam to geometric
nonlinearity, allowing for the consideration of shear de-
formation as well as large rotations, large displacements, and
coupled efects with regard to both stifness and inertia.

Te wind turbine tower described in Section 3 is
modelled using one geometrically exact beam with a rigid
body on top as a typical simplifed model of the rotor nacelle
assembly (RNA), i.e., nacelle, hub, and blades. Te RNA is
connected to the tower top knot by a set of constraints
prohibiting any relative displacement and rotation. As no
detailed information on the properties of these parts (es-
pecially of the blades) is available, the properties of this rigid
body are chosen in a roughly realistic order of magnitude
and in a manner that ensures that the slight asymmetry
between the frst FA and SS mode of the tower is captured.

Since the focus of this work is not to simulate the wind
turbine as realistically as possible but only for the validation
of BAYOMA and SSI-COV, this is sufcient. Te cross-
sectional properties of the tower are modelled according to
the provided documentation of its geometry and materials.
Te beam consists of 43 elements, with the bottom fxed
rigidly on the ground. Tis simplifcation neglects the soil-
structure interaction, as no foundation data and soil pa-
rameters were available. Te top of the beam is rigidly
connected to the rigid body, which represents RNA, as
shown schematically in Figure 3. Te diferent cross-
sectional properties along the tower’s height are consid-
ered by assigning diferent element mass and stifness
properties. More detailed information about the geometry
and material parameters is subject to confdentiality.

Two types of simulations are carried out to compare the
two OMA methods using the frst pair of bending modes:
frstly, a linear modal analysis, i.e. the classical eigenvalue
problem neglecting all damping efects, is conducted to
obtain the natural frequencies (details on the modal solver
used in DeSiO can be found in [34]). As the deformation of
the tower observed here is relatively small, this linear
analysis is sufciently accurate. Te results are listed in
Table 1 as “DeSiO.” Figure 3 shows the corresponding frst
bending mode shape. Secondly, a transient simulation with
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Figure 2: Sensor setup on the steel-concrete hybrid tower of a wind turbine. MP2 is aligned at 10° North and MP1 at 100° East.
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and the directional angle.
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a duration of 10minutes and a random excitation in the
range of zero to two MN at the rigid body representing the
RNA in all three spatial directions (i.e., vertical and in two
perpendicular horizontal directions) is run to create the
database for the analysis using BAYOMA and SSI-COV.
Tis random excitation is used instead of computing
aerodynamic forces. As we do not have detailed information
on either the blade geometry or the wind loads acting on the
turbine, simulating the aerodynamic loads in a meaningful
way was not possible. However, only its structural response
is required to identify the modal parameters of the tower.
Terefore, we are able to use this random excitation instead.
Te resulting displacements are the samemagnitude as those
measured with terrestrial laser scanning at this wind turbine
[35]. Te corresponding identifed natural frequencies f0
and damping ratios ζ are also presented in Table 1. Te same
measurement levels are used for the identifcation procedure
as for the real measurement.

As observed in previous studies [21, 36], the identifed
natural frequencies of both methods are almost identical
under ideal conditions. Te damping ratios are lower than
those of a real wind turbine, which are around 1% [37] to
allow using the linear modal solver to compare the iden-
tifcation results of BAYOMA and the SSI-COVwith DeSiO.
Te reason for this underestimation is the neglect of the
exact material damping and damping from the soil-structure
interaction and aerodynamics.Tese topics will be addressed
in future studies. For the investigations of the identifed
mode shapes, the mode shapes of the FE model are used as
reference MSS and compared using the metrics presented in
Section 2. Te identifcation with BAYOMA provides the
most probable values of the mode shape and the covariance
matrix of the mode shape.Te uncertainty of the metrics can
be calculated using a Monte Carlo simulation with 3000
samples. Te SSI-COV implementation that is used provides
the most probable values so that one value can be calculated

tower
(beam)

RNA
(rigid
body)

(a)

1st
bending

mode

undeformed
configuration

(b)

Figure 3: (a) A sketch of the FEM model of the wind turbine used in DeSiO (crosses correspond to the boundary of the elements).
(b) Undeformed confguration and frst bending mode of the tower (deformation scaled by factor 10 for better visibility).

Table 1: Natural frequencies f0, the damping ratio ζ of the simulation model, and the identifcation results of BAYOMA or the SSI-COV.

Method
f0 in Hz ζ in %

B1y (CoV) B1x (CoV) B1y (CoV) B1x (CoV)

DeSiO 0.2973 0.3021 ∗ ∗

BAYOMA 0.2975 (0.10%) 0.3021 (0.20%) 0.13 (139.3%) 0.35 (61.8%)
SSI-COV 0.2974 0.3017 0.20 0.11
Te CoV in % is shown in brackets for the BAYOMA identifcation results (∗since DeSiO includes only velocity damping but not modal damping, no
equivalent damping ratio can be determined, for details, see [34]).
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for each metric, which is called deterministic. Real mode
shapes are required to determine the S2MAC and the di-
rection angle. Terefore, for the metrics, the mode shapes
identifed with SSI-COV are rotated by the mean phase in
the complex plane, and then the real part is used. Tis
procedure is equivalent to the complex normalisation used
in [11]. For comparison, the metrics are also calculated
deterministic using the most probable mode shape identifed
using BAYOMA. Te results are shown in Figure 4.

Te scatter of the MAC is shown in Figure 4(a). Te
result confrms previous studies [21, 25] that for tower
structures the MAC becomes very uncertain for closely
spaced modes. Moreover, no Gaussian distribution can be
assumed when the MAC approaches one.Te assumption of
a beta distribution is better suited to modelling the MAC
distribution [21]. Using aMSS as a reference and the S2MAC
asmetric, the scatter is signifcantly reduced compared to the
regular MAC and the distribution is closer to a Gaussian
distribution, as shown in Figure 4(c). However, a slight
skewness of the distribution is still present. By the angular
transformation S2MAC, αS2MAC becomes Gaussian dis-
tributed, which is shown in Figure 4(d). In Figure 4(b), αMAC
illustrates that the angle representation can contain a de-
viation from the Gaussian distribution close to zero because
the angles are constrained to be larger than 0. Tis error
occurs in the case of large uncertainty and mean values close
to 0, especially with the signifcantly less reliable αMAC. Te
distribution of the direction angle in Figure 4(e) demon-
strates clearly that it can be assumed as Gaussian. Te
comparison of the deterministic results of SSI-COV and
BAYOMA does not show a clear result for the MAC and
direction angle, as depending on the mode, a diferent
identifcation method fts the simulation results better.
Considering the S2MAC, the modes identifed with BAY-
OMA are more suitable to the simulation model than those
of SSI-COV. One reason for the diferences in the identi-
fcation of the mode shapes is the complex mode shapes of
the SSI-COV with several mean phases according to spatial
directions, as shown in Figure 5. Tis phenomenon in
connection with closely spaced modes has already been
observed in previous studies [21, 23].

Te following section examines whether the fndings
from the simulation can be transferred to a real monitored
wind turbine tower.

5. Structural Dynamics of the Tower

In this section, we frst briefy examine the dynamics of the
tower using a dataset as an example. Subsequently, the long-
term behaviour of the dynamics of the tower is investigated.
Te dynamics of the tower are examined inmore detail using
the example of the 10-minute measurement dataset from
10/22/2021 at 3 p.m. with a wind speed of 11.23m/s, a rotor
speed of 13.7 rpm, and a nacelle position of 291°, which was
the frst one at rated speed. Te singular value curve of the
spectral matrix for this dataset is shown in Figure 6.

For using BAYOMA, the identifcation ranges must be
defned in advance. Four bending mode pairs occur in the
frequency range of up to 5Hz. Te identifcation ranges for

these mode pairs are shown in Figure 6. In addition, the
identifcation is also carried out for the dataset using the SSI-
COV. Te stabilisation diagram of the dataset is shown in
Figure 6. A multistage clustering algorithm makes the mode
selection [27]. Te identifed natural frequencies of the
bending mode pairs for both identifcation methods are
listed in Table 2. Both methods deliver similar results, as
already shown in the previous section.

In addition to the modes described, the SSI identifed
further modes that are not considered in this study.

Te mode shapes of BAYOMA-identifed modes are
shown in Figure 7.

Te bending modes are similar in the FA and SS di-
rections, respectively. Te slight deviations may result from
an asymmetric stifness distribution around the circum-
ference of the tower or the unevenly distributed head mass
through the rotor and nacelle. Te MSSs identifed by the
four bending mode pairs are used in the following as ref-
erence MSSs for the mode tracking and for the calculation of
MAC and S2MAC.

To further examine the metrics introduced in Section 2
to compare the identifed mode shapes with the reference
ones in the context of the tower under investigation, the
identifed frst FA bendingmode of the following ten-minute
dataset with similar operating conditions is used. Tis
bending mode is closely spaced with the SS mode. Te
metrics results are shown the same way as for the simulation
in Figure 8.

Te distributions are similar to the simulation. However,
in this case, αMAC is signifcantly more Gaussian distributed,
as the error close to zero is signifcantly lower. In addition, it
is remarkable that the standard deviation of αMAC and the
direction angle are quite similar. Tis similarity indicates
that the alignment uncertainty of themode in theMSS is well
described by the directional angle c in the case of bending
modes of the tower structures. Te comparison of the mode
shapes between the identifcationmethods clearly shows that
the mode shape identifed using the SSI-COV fts better with
the previously identifed modes with the MAC. In contrast,
the similarity with the BAYOMA-identifed mode shapes is
greater when using the S2MAC.Tis diference could be due
to errors in transforming the complex modes of the
SSI-COV into real space. A more detailed comparison of the
twomethods is not the scope of this work but will be pursued
in the future.

Te following investigation uses the BAYOMA identi-
fcation method to study the long-term behaviours. Te
uncertainties of the mode shape metrics are determined with
a 3000-sample Monte Carlo simulation, which considers the
covariance matrix of the mode shape identifcation. Te
distribution of the mode shape metrics αMAC, αS2MAC, and c

is assumed to be Gaussian despite the possible small error. A
mode tracking algorithm is required to determine the long-
term dynamics, which is described in the following section.

5.1. Mode Tracking of Closely Spaced Modes. In the case of
changing modal parameters caused by varying EOCs or
mechanical changes, mode tracking becomes a challenge.
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Here, the identifed natural frequencies and mode shapes are
compared with reference frequencies and reference shapes.
An assignment of mode shapes in the presence of closely
spaced modes is associated with signifcant uncertainties. In
the case of support structures of wind turbines, this is further
complicated because the mode alignment changes along
with changing nacelle positions. A typical approach for this
application is to rotate the reference mode shape depending
on the nacelle position [15]. Subsequently, the rotated ref-
erence mode shape can be compared to the identifed mode

with theMAC, such that it becomes insensitive to the nacelle
angle. A similar procedure is used for this study, shown in
Figure 9.

First, the modal parameters and the associated un-
certainties are identifed from the acceleration measurement
data using BAYOMA. Since BAYOMA is a nonparametric
identifcation method, the identifcation ranges and the
number of modes within a frequency range are required as
prerequisite information. According to Brincker et al. [38],
this information can be provided automatically or manually.
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In this work, the identifcation ranges are set manually. Tis
manual setting has the advantage that only the modes of
interest are identifed. However, care must be taken to
ensure that these ranges are sufciently large to include the
full range of variability and that the identifcation results are
verifed. For verifcation that two diferent modes have been
identifed, it is required that the maximum MAC of the two
closely spaced mode shapes does not exceed 0.5 to obtain
two diferent modes and that the identifed natural fre-
quencies are within the identifcation range.

In a further part of the verifcation, the S2MAC is used to
check whether the identifed mode matches the previously
determined reference MSS. Assuming that the MSS of each
bending mode pair identifed with BAYOMA does not
change signifcantly due to diferent EOCs, the identifed
MSS from the frst dataset investigated in the previous
section is used as the reference mode. Te use of the S2MAC
has the advantage that the alignment of the mode shape in
the MSS, which is the main uncertainty of the mode shape
for closely spaced modes, does not infuence the mode
tracking process. In addition, the infuence of the nacelle
position on the bending mode pair tracking can be elimi-
nated, which is advantageous in the case of nonsynchronous
aggregated Supervisory Control and Data Acquisition
(SCADA). An identifedmode is assigned to a bendingmode

pair when the S2MAC is higher than 0.8. Lower values of
S2MAC are considered to be misidentifcations.

However, the nacelle position is required to distinguish
the modes according to FA and SS within a bending mode
pair. Tis distinction is achieved by classifying the mode
whose directional angle c is closest to the nacelle position as
the FAmode.Te other mode is correspondingly assigned as
the SS mode.

5.2. Long-Term Behaviour of the Tower Dynamics. For a de-
tailed study of the long-term behaviour of the dynamics of
the tower, measurement datasets from themiddle of October
2021 to the end of September 2022 are used, assuming
enough EOC variation during this period. Figure 10 shows
the trend of the natural frequencies over time.

As generally known, the natural frequencies of wind
turbine tower structures change over time due to EOCs. In
addition, there appear to be assignment issues, especially
with the second and fourth mode pair. A better insight is
provided by the Campbell diagram in Figure 11, which
shows the natural frequencies as a function of rotor speed.

Te harmonic excitation has no relevant infuence on
identifying the modal parameters, as the dashed lines of the
higher harmonics of the rotor speed do not correlate with the
identifed natural frequencies. In addition, the assignment
problem of the fourth bending mode pair mainly occurs in
standstill and start-up conditions. However, the second
bending mode pair around 1.5Hz scatters clearly and ap-
pears to have diferent states, as depicted in the Campbell
diagram. Hence, the assignment of the second bendingmode
pair does not work reliably. A cause for this behaviour could
not be found. However, interactions with the rotor may be
an explanation. Tis theory is also supported by the fact that
the SSI in Figure 6 identifed another mode in this frequency
range. However, this phenomenon deserves further in-
vestigation in future studies.

In the following, this study focuses on the dynamics of
the plant in operation. To exclude uncertainties due to
transient time signals caused by the start-up and shutdown
of the wind turbine as far as possible, only datasets where the
aggregated 10-minute SCADA data indicate constant
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areas (ident. area) for the identifcation using BAYOMA of the dataset from 10/22/2021 at 3 p.m.

Table 2: Identifcation results of the natural frequencies f0 of the
four lowest bending mode pairs identifed with BAYOMA and
SSI-COV.

Mode
pair

BAYOMA SSI-COV
f0 FA (CoV) f0 SS (CoV) f0 FA f0 SS

1 0.30Hz
(9.36%)

0.297Hz
(0.27%) 0.308Hz 0.298Hz

2 1.431Hz
(0.34%)

1.418Hz
(0.22%) 1.442Hz 1.393Hz

3 3.187Hz
(0.83%) 3.027Hz (0.2%) 3.225Hz 3.053Hz

4 3.55Hz
(0.34%)

3.796Hz
(0.26%) 3.568Hz 3.813Hz

Te coefcient of variation (CoV) is listed in brackets in BAYOMA in
addition to the identifcations.

8 Structural Control and Health Monitoring



operation are considered. Table 3 lists the selection criteria
ensuring this. Te medians of the identifed natural fre-
quencies and the identifcation rate for the selected data are
listed in Table 4.

Te reason for the relatively low identifcation rates is
that only completely identifed bending mode pairs are used.
In the case of strongly unequal excitation of the pair, only
one mode may be identifed, and the identifcation of the
pair is thus incomplete. In addition, harmonic excitation and
other transient efects can disturb the identifcation, as in the
case of the second bending mode. In general, some modes
are often more difcult to identify when monitoring wind

turbine towers [15], leading to lower identifcation rates.
Figure 12 shows the power curve, the distribution of the
wind speed and the wind direction of all data, and the se-
lected data during the almost 12-month period considered in
this study.

As stated before, only datasets belonging to operation
conditions are used, and data points outside the expected
power curve are not considered. Regarding the wind speeds,
datasets below 2.7m/s are consistently omitted. Otherwise,
the distributions of wind speeds and wind direction remain
qualitatively the same. For excluding inconclusive identif-
cation results, identifcations are not considered if the
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Figure 11: Campbell diagram with the natural frequencies of the four lowest bending mode pairs.

Table 3: Data selection criteria based on 10minutes aggregated SCADA data.

Criterion Minimum Maximum Max standard
deviation

Power in kW 0 — —
Pitch angle in degree −2 25 2.5
Nacelle angle in degree — — 0.3

Table 4: Median of the natural frequencies f0, identifcation range, and identifcation rate of the studied bendingmode pairs for the selected
EOCs from the middle of October 2021 to the end of September 2022.

Mode pair f0 FA (Hz) f0 SS (Hz) Identifcation range (Hz) Identifcation rate (%)

1 0.309 0.297 0.24Hz–0.36 61.9
2 1.445 1.475 1.25Hz–1.7 40.9
3 3.144 3.036 2.8Hz–3.35 54.5
4 3.602 3.788 3.35Hz–4.2 78.5
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determined identifcation uncertainty of the natural fre-
quency and damping ratio is detected as an outlier using
a Hampel flter [39] with a window length of 144, which
corresponds to one measurement day.

For further investigations, the frst and fourth bending
mode pairs are selected, as the frst is the closest and the
fourth is the best-separated mode pair. Figure 13(a) shows
the natural frequencies depending on the wind speed. Te
frst bending mode in the FA direction has a much stronger
dependence on wind speed than the mode in the SS di-
rection. In addition, the observed scattering of the FA di-
rection is signifcantly higher. Similar observations are made
for the fourth bending mode pair, although the scattering is
lower than that for the frst bending mode pair. Te iden-
tifcation uncertainty of the natural frequencies in
Figure 13(b) shows that the FA direction is identifed with
a higher uncertainty than the SS direction. Te main reason
for this diference is the aerodynamic damping [15], which
leads to a signifcantly higher damping ratio in the FA di-
rection, as shown in Figure 14.

A higher damping ratio leads to higher identifcation
uncertainties of the frequency. Since the damping ratio of
the frst FA bending mode increases with the wind speed, the
identifcation uncertainty of the natural frequency also in-
creases. For the fourth bending mode pair, the highest
damping ratio is determined between wind speeds of 4 and
12m/s, so the corresponding natural frequencies are iden-
tifed with the highest uncertainty in this range. In general,
the identifcation of the damping is associated with signif-
icantly higher uncertainties than the identifcation of natural
frequencies [40], and this can also be confrmed for the
datasets used in this study. Regarding the uncertainties of the

damping ratio identifcation, as shown in Figure 14(b), it is
noticeable that the damping ratio identifcation of the SS
modes is relatively more uncertain than the damping ratio
identifcation of the FA modes. However, the absolute
uncertainty of the damping ratio of the SS modes is still
signifcantly lower than that of the FA modes. In addition,
the damping ratio of the fourth bending mode pair can be
identifed more reliably than the damping ratio of the frst
mode pair. Tis efect is due to the length of the 10-minute
datasets used. With increasing vibration periods in the 10-
minute interval, the damping ratio identifcation becomes
less uncertain. Te uncertainty of the frst bending modes in
the SS direction is remarkable, as the identifcation un-
certainties of the damping ratio are more scattering at wind
speeds below 10m/s, as opposed to the trends observed for
the other modes.

In identifying closely spaced modes, the mode shapes
are of particular interest. Te main uncertainty concerns
the alignment of the mode shape in the MSS. In the case of
wind turbine towers, the mode shape also changes due to
the nacelle position. Terefore, in Figure 15(a), αMAC for
both pairs of modes is shown as a function of the nacelle
position. Te reference modes have been identifed in the
main wind direction at a nacelle position of 270°, so at that
nacelle position, the αMAC value is close to 0. Due to the
wind direction distribution, there are few measurement
datasets at nacelle positions below 100° and above 320°.
Te deviation between the mode pairs depending on the
nacelle position that can be observed in Figure 15 is due to
the asymmetric stifness distribution around the cir-
cumference, which may result from imperfections in the
dry joints between the concrete segments or attachments.
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(October 2021–September 2022).
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Te uncertainty of αMAC is shown as a function of the wind
speed. Te fourth pair of bending modes is already well
separated, so the uncertainty of αMAC is relatively small,
which leads to a standard deviation of the direction angle
of less than 5° for both bending modes. In the case of the
frst bending mode pair, the standard deviation of the
αMAC is very high at low wind speeds, especially for the
SS mode.

In contrast, αS2MAC depicted in Figure 16 changes less
depending on the nacelle position. In particular, the frst
bending mode pair appears to have a relatively constant
αS2MAC regardless of the nacelle position.Te fourth bending
mode pair has a clear dependence of αS2MAC on the nacelle
position. Tis dependency indicates that the MSS changes
slightly as a function of the nacelle position, presumably due
to an asymmetric stifness distribution over the circum-
ference. Te uncertainties of αS2MAC in Figure 16 are much
lower than those of αMAC in Figure 15 for both bending
mode pairs. Tis observation indicates that αS2MAC elimi-
nates the alignment uncertainty. Furthermore, the un-
certainty of αS2MAC of the frst bending mode pair is
signifcantly lower than that of the fourth one. One reason
could be a better signal-to-noise ratio, as has already been
shown in [25]. In addition, the mode shape of the frst
bending mode pair has no nodal points at the sensor points
considered, in contrast to the fourth bending mode pair, so
the measurement noise has a minor infuence.

Te direction angle c expresses the alignment of the
mode shape in the MSS for symmetrical tower structure [21]
and is shown in Figure 17. Te closer the modes are to each
other, the greater the uncertainty of the directional angle c.

As expected, the direction angle c in Figure 17(a) de-
pends linearly on the nacelle position. However, a larger
scatter can be observed over the whole trend. Tis scatter is
due to the nonsynchronous SCADA and the uncertainty of
the direction angle shown in Figure 17(b).Te uncertainty is
presented as a function of the wind speed. Considering this
result, it is noticeable that the uncertainty of the direction
angle is similar to the uncertainty of αMAC in Figure 15. Tis
fact demonstrates that the main uncertainty of the mode
shapes of bending modes of wind turbine support structures
originates from the alignment uncertainty within the MSS.

Troughout this investigation, it must be considered that
the assumptions of BAYOMA, such as white noise as an
excitation source and a linear time-invariant system, are
violated. Terefore, the calculated uncertainties are in-
dicative but do not precisely correspond to the actual un-
certainties. However, for practical application, it can be
stated that BAYOMA can be used to obtain consistent
dynamical identifcations of an onshore wind turbine tower.

Based on this investigation, it can be concluded that
αMAC of the tower bending mode shapes with their high
identifcation uncertainties independent of the nacelle po-
sition cannot serve as a reliable monitoring parameter.
Instead, the identifed mode shapes should be compared
with a MSS using αS2MAC. Tis metric eliminates the high
alignment uncertainty. As known from other studies [15],
the more weakly damped SS natural frequencies can be
identifed more reliably than the FA natural frequencies.
Nevertheless, it is recommendable to also consider the
natural frequencies as monitoring parameters, like
[9, 15, 41].
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Figure 13: (a) Natural frequencies of the frst and fourth bending mode pairs as a function of wind speed. (b) Coefcient of variation (CoV)
of the natural frequencies as a function of wind speed.
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6. Summary and Outlook

In this study, the identifcation uncertainty of modal param-
eters, especially mode shapes, of a tower of a wind turbine in
operation is investigated using BAYOMA. Te identifcation
and the corresponding uncertainties provided plausible results
despite the presence of harmonic excitation from the rotor.Te
analysis of identifcation uncertainties demonstrates that more
strongly damped natural frequencies are muchmore uncertain
to identify. Consequently, the less damped natural frequencies
in the SS direction can bemore reliably identifed than the ones
in the FA direction. As typical for structures exhibiting closely
spaced modes, the mode shapes can only be identifed with
high uncertainty because the alignment of themode in theMSS
is very uncertain. Terefore, αMAC and the mode alignment
angle are not suitable as reliable monitoring parameters. Tis
statement does not apply to αS2MAC, which proved to be
a reliable monitoring parameter, as already shown in previous
studies for tower structures [21, 25].

Several future research approaches result from this
study. For the investigated wind turbine tower, harmonic
excitation did not have a signifcant impact, so identifying
the modal parameters with BAYOMA worked well. For
a more general statement, it is thus necessary to investigate
how harmonic excitation can afect the modal identifcation
of wind turbine support structures constructed exclusively
from steel, both onshore and ofshore. In addition, a com-
parison of BAYOMAwith the SSI-COV and its uncertainties
should be made. In this context, it is crucial to investigate the
splitting of the mean phase of the mode shape by spatial
direction in the complex plane in the case of closely spaced
modes to obtain an interpretation of this behaviour.

Te examination of themodal parameters clearly showed
that they vary due to EOCs, so the next step is to normalise
the data for a reliable SHM scheme. Te uncertainties of the
modal parameters indicate heteroscedasticity concerning the
EOC, i.e., a variability in dependence of the EOCs.Terefore,
heteroscedastic Gaussian process regression might be
a suitable method for data normalisation to map this var-
iability accurately. Te identifcation results of BAYOMA
with their uncertainties can be used in future research to
calibrate models considering the uncertainties. Tis model
calibration applies, in particular, to parameters that are
difcult to collect, such as soil parameters, to enable realistic
soil-structure interactions. Combined with a fuid-structure
interaction based on the unsteady vortex lattice method, we
aim for more realistic load cases of onshore as well as of-
shore wind turbines that can be calculated using DeSiO with
respect to commonly used wind turbine simulation tools.
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