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Existing semantic segmentation methods for fatigue cracks in steel bridge girders are fully supervised and thus demand manual
annotation of pixel-level labels, which is time-consuming. Recently, there have been remarkable developments in semantic
segmentation under image-level tag supervision. However, these weakly supervised approaches are still inferior to the fully
supervised manner in terms of accuracy. To mitigate this gap, this paper commits to improving the correlation between high-level
semantics to low-level appearance. A two-stage training manner with a segmentation refnement module for progressively
refning pseudolabels and training the segmentation network was proposed. First, an activation modulation and recalibration
scheme was recommended, which leverages a spotlight branch and a compensation branch to locate both the discriminative and
less-discriminative object regions.Ten, the generated pseudolabels were used as supervision to train the segmentation network in
the proposed two-stage manner. In the frst stage, the network was pretrained to learn all essential information and provide a basic
segmentation performance, aiming to facilitate network convergence in the following training. To develop the inference quality, in
the second stage, the pretrained network was further trained recursively with the designed segmentation refnement module to
improve the labels using two postprocessing algorithms between each iteration. Overall, our method achieves comparable
inference results to fully supervised approaches while signifcantly reducing annotation workload, which improves the efciency
of routine bridge inspection.

1. Introduction

Steel box girders have been widely applied in long-span
cable-stayed and suspension bridges in light of their ad-
vantages of low weight, high torsional stifness, and rapid
construction. Such structures are sufering from fatigue
cracks owing to initial defects and residual stresses related to
fabrication and construction processes. Under repeated
vehicle loads, the development of fatigue cracks continues to
reduce the stifness and integrity of the local welded con-
nections, thereby decreasing the reliability and durability of
bridges. To support accurate decision-making on bridge

maintenance, it is essential to detect and monitor the fatigue
cracks in a periodical or even real-time manner.

Nondestructive testing (NDT) techniques, such as tra-
ditional ultrasonic testing or advanced phased-array ultra-
sonic testing [1], are usually used to approach the problem of
local damage detection, which can obtain both the inner and
surface damage characteristics. Nevertheless, the accuracy of
these NDT-based methods is limited by measurement noise
and highly depends on skilled inspectors or expensive in-
struments. Compared with NDT, the vision-based methods
are relatively inexpensive to implement and adaptive for
surface cracks [2]. Currently, human-based visual inspection
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still plays a crucial role in the routine fatigue maintenance of
steel bridges. However, its consistency in quantitative
evaluation and accessibility cannot be guaranteed consid-
ering environmental and human factors [3, 4]. Furthermore,
the inspection by human inspectors is often labor-intensive
and time-consuming.

With the rapid development of computer technology,
methods for crack inspection based on computer vision have
emerged. Most of these studies have focused on image
processing techniques (IPTs). A signifcant advantage of
IPTs is that almost all surface defects may be identifed [3].
However, this method is limited by its reliance on sub-
jectively chosen parameters and flters, which indicates a lack
of generality under diferent scenarios [5]. Terefore, some
researchers tried to improve the robustness of the IPT-based
method in real-world situations by machine learning (ML)
[6–9]. However, these improvements are strictly limited by
the feature extraction capacity of IPTs, and despite the
improvements, these optimized methods still require some
pre- and postprocessing techniques that are time-consuming
[10, 11].

Owing to the development of convolutional neural
network (CNN), deep learning (DL)-based methods have
been proposed for image-based crack detection in computer
vision. Recent studies on DL-based crack detection have
mainly involved methods of image classifcation, object
detection, and semantic segmentation. Image classifcation
methods focus on obtaining image-level class information,
while object detection methods concentrate on getting the
class and general location information. Neither of the above
methods can provide sufciently accurate information in
terms of crack width, length, and direction, which, however,
play fundamental roles in fatigue maintenance design.
Consequently, semantic segmentation methods based on
supervised learning which could provide pixel-level se-
mantic and localization information have been used for
fatigue crack detection.

However, the utilization of supervised semantic seg-
mentation demands a large number of annotated pixel-level
labels [12], which calls for enormous human labor and time
costs during the preparation process [13, 14]. To approach
this difculty, weakly supervised learning (WSL) with
image-level labels, which indicates the existence of the object
of interest, has been implemented in the training of seg-
mentation networks [14, 15]. Compared with pixel-level
annotation, the labeling cost at the image level can be sig-
nifcantly reduced. Nevertheless, the network performance
byWSL is lower than that by fully supervised learning (FSL),
and there remains room for performance improvement.

Tis paper proposed an improved WSL-based method
for high performance of fatigue crack detection with low
labeling cost. Te main contributions of the proposed
method are as follows:

(i) A pixel-level detection method was proposed for the
segmentation of fatigue cracks, which only used
image-level classifcation labels but achieved state-
of-the-art performance in WSL-based methods.

(ii) To realize customized optimization for the seg-
mentation characteristics, the activation modula-
tion and recalibration (AMR) scheme was adopted
to generate refned pseudolabels, which approached
the problem that only the most discriminative re-
gions were highlighted in state-of-the-art WSL-
based methods.

(iii) To the best of the author’s knowledge, this paper is
the frst to propose a two-stage training method for
weakly supervised fatigue crack segmentation. After
learning the semantic features in refned pseudo-
labels, the segmentation network was trained re-
cursively with a segmentation refnement module.
Tis takes both the advantages of deep learning and
the morphological knowledge of cracks.

Te remainder of this paper is organized as follows.
Section 2 introduces the current literature on crack de-
tection. Section 3 outlines the methodology of our proposed
method. Section 4 presents the experimental results. Lastly,
conclusions are given in Section 5.

2. Related Works

2.1. Conventional IPT-Based Crack Detection Methods.
Conventional IPT-based methods have been widely utilized
for crack detection over the past two decades. Early studies
rely on intensity-thresholding methods due to their sim-
plicity and efciency, assuming that crack pixels exhibit
lower intensity than the background [16–18]. However,
these methods face challenges in unevenly illuminated
images, as a single threshold is applied to the entire image.

Edge detection, leveraging edge-like and texture features
associated with cracks, has also been a common technique
[4, 19–23]. Despite its popularity, edge-detection methods
often yield disjoint crack fragments instead of complete
profles [24]. Researchers have attempted to address this
limitation through fragment-linking techniques [25–28].
Texture-analysis methods, such as those employing local
binary patterns, have been applied to detect textured cracks,
like in pavement crack detection [29–31]. However, these
methods may struggle with cracks exhibiting intensity
inhomogeneity.

To overcome challenges related to real-world image
variations, IPT-based methods have been enhanced by in-
tegrating several ML classifers such as support vector
machine (SVM) and k-nearest neighbor (KNN) algorithms
[6, 7, 32]. Nevertheless, these improvements are constrained
by the feature extraction capacity of IPTs. Notably, prior
IPT-based studies predominantly focused on cleaner sur-
faces, such as pavement or concrete, and may not be robust
enough for crack detection in steel bridge girders, where
obstacles such as marker curves and weld line edges exist.

2.2.DeepLearning-BasedCrackDetectionMethods. With the
development of high-performance graphics processing units
(GPUs) and parallel computing, DL-based techniques are
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gaining prominence in computer vision-based surface
damage detection. CNNs do not require manual construc-
tion of features or prior knowledge of crack shape, texture,
or contextual information. DL-based crack detection
methods have been widely used in civil engineering and are
categorized into two main types: patch-level and pixel-level
methods [2, 33].

Patch-level methods typically employ sliding window
techniques or crop small patches for crack detection. A
CNN-based workfow utilizing sliding windows allows the
detection of cracks in images larger than those used for
training [3]. Faster region-based CNN (faster R-CNN) has
been proposed for real-time detection of cracks [10], and
transfer learning from a benchmark CNN enhances robust
crack classifcation with limited crack images [11]. While
these methods provide satisfactory crack region detection,
they may lack morphology information related to cracks.
Postprocessing algorithms, such as edge detection and di-
lation operations, are employed to segment detected patches
at the pixel level [34, 35]. However, postprocessing accuracy
depends on the optimal patch size, which can be challenging
to determine.

Semantic segmentation has emerged as an efective way
to detect cracks at the pixel level, ofering quantifcation
properties. Fully convolutional network (FCN) retains
spatial information, enabling pixel-level segmentation.
Various end-to-end segmentation models, including FCN,
VGG16, InceptionV3, ResNet152, feature pyramid networks
(FPN), and U-net, have been applied for crack detection,
achieving high accuracy [36–48]. Recent innovations include
FCS-Net, a deep FCN-based network integrating ResNet50,
atrous spatial pyramid pooling (ASPP), and batch nor-
malization (BN) for fne fatigue crack segmentation [48].

While these approaches have advanced automated crack
detection, patch-level methods are quick but limited in
extracting crack information. Pixel-level methods provide
accurate segmentation but are labor and time-intensive for
pixel-level label preparation. Addressing this trade-of, an
efcient crack detection method with reduced annotation
burden needs to be proposed.

2.3. Image-Level Weakly Supervised Semantic Segmentation
(WSSS). Since the generation of fully annotated datasets is
laborious, alternative learning methods based on unlabeled
or weakly labeled visual data have become prevalent in
recent years. Various forms of weak labels have been pro-
posed in previous studies, such as bounding boxes, points,
scribbles, and image-level supervision. Among these, image-
level weak supervision is favorable for its simplicity and
reliability [49]. Terefore, this study focuses on the image-
level weakly supervised crack segmentation.

Recently, image-level WSSS works mostly employ class
activation maps (CAMs) [50] as initial pseudolabels for the
training of segmentation networks. CAMs provide a heat-
map representation that highlights the interested object
regions. However, CAMs generated by classifcation net-
works tend to highlight the most discriminative regions;
hence, the obtained pseudolabels may only cover a part of

the target objects. Tese coarse discriminative object regions
may not meet the requirement of pixel-level semantic
segmentation and thus harm the network performance. Te
eforts to alleviate this issue can be classifed into two aspects:
refning the pseudolabels based on CAMs and modifying the
segmentation training procedures.

To obtain fner initial pseudolabels, most studies have
focused on refning the seeds or response regions of initial
CAMs.Wei et al. [51] used dilated convolution with diferent
dilate rates to enlarge the receptive felds. Kolesnikov and
Lampert [52] proposed three principles: seed, expand, and
constrain (SEC) to refne the seeds. Ahn and Kwak [53]
predicted semantic afnity between pixels by AfnityNet
and propagated local activations using a random walk al-
gorithm. Chang et al. [54] enforced the network to learn
better response regions by exploiting the subcategory in-
formation. Lee et al. [55] randomly selected the hidden units
in the feature map to make the activated regions better
characterize the object. However, these methods were de-
veloped in an interactive and random manner, which may
lose essential information. To approach this issue, Qin et al.
[56] recently proposed a novel activation modulation and
recalibration (AMR) scheme, which leverages a spotlight
branch and a compensation branch to provide comple-
mentary and task-oriented CAMs for WSSS.

In addition to refning the initial pseudolabels, several
studies have focused on improving the WSSS performance
by modifying the segmentation training procedures. Most of
them trained segmentation networks in a recursive manner
along with a refnement module that exploits the prior in-
formation at its best. Khoreva et al. [57] proposed a recursive
training enhanced by denoise techniques that improved the
labels between each round with object priors. Li et al. [58]
designed a new superpixel conditional random feld
(superpixel-CRF) model to refne generated masks, based on
which the segmentation model was trained iteratively. Re-
cently, for WSSS of power lines, Choi et al. [59] introduced
a broken line connection algorithm to provide refned
segmentation labels for recursive segmentation training.

To the authors’ knowledge, no studies have been con-
ducted on WSSS of fatigue cracks in a noisy background,
let alone the corresponding improvementmethods forWSSS
performance. Tis paper is also based on the concept of
CAM and utilizes a recursive training procedure. A critical
diference from previous studies is our proposed two-stage
training procedure, which frst trains the segmentation
network based on refned pseudolabels generated by AMR
and then performs recursive training with a designed re-
fnement module to denoise the crack segmentation.
Terefore, the proposed method can beneft from both the
refnement of the initial pseudolabels and the modifcation
of the segmentation training procedure.

3. Methods

3.1. Overview of the Proposed Method. Single classifcation
networks can localize the most discriminative object regions,
which is however far from the requirement for pixel-level
segmentation. To provide refned pseudolabels, the AMR
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method is recommended to integrate less-discriminative
regions. In addition, to further enhance the performance
ofWSSS, a two-stage training procedure is proposed, aiming
to continuously refne training labels by leveraging the
features of deep learning and fatigue crack morphologies.

As shown in Figure 1, our framework consists of two
parts: the frst part deals with the training of AMR branches
and the generation of initial pseudolabels; the second part
involves the proposed weakly supervised two-stage training
of the segmentation network. Specifcally, the frst part in-
volves a systematic four-step process. First, the input images
(Xin) undergo preprocessing, wherein they are cropped into
small patches, and each patch is annotated with four image-
level labels: background (Lb), crack (Lc), marker (Lm), and
the combination of crack and marker (Lcm). Subsequently,
AMR is trained using these annotated patches, enabling it to
efectively highlight crack and marker regions of interest.
Te trained AMR is then utilized to generate CAMs of
patches for new input images. Importantly, the images used
for AMR training are distinct from those used for generating
the CAMs, avoiding overestimating the trained AMR per-
formance. Finally, the dense conditional random feld
(DenseCRF) [60] is employed to process the probability
maps derived from CAMs, producing fne segmentation
masks as initial pseudolabels for the following training of the
segmentation network.

In the second part, the generated pseudolabels are used
to train the segmentation network within certain epochs to
obtain fne-enough basic segmentation performance in stage
I. After that, the pretrained network is further trained in
a recursive manner in stage II, and in each iteration,
a designed refnement module refnes the predicted masks
from the prior iteration and gets more complete and precise
labels to train the segmentation network in the current
iteration.

3.2. Activation Modulation and Recalibration Method. A
conventional CAM of a specifc category highlights the
discriminative regions used by multilabel classifcation
networks to determine that category. Given an input image
I ∈R3×H×W, global average pooling (GPA) is used to identify
the importance of the feature maps F(I) ∈RC×H×W (C is the
channel of the feature maps) extracted from the last con-
volution layer. Ten, the conventional CAM can be simply
obtained by computing a weighted sum matrix of the
extracted feature maps:

M(I) � w
T
NF(I), (1)

where M(I) ∈RN×H×W is the obtained CAMs and wT
N is the

weight of the fully connected layer for N classes.
However, the conventional CAMs are classifcation-

oriented and lack some minor but essential features for
the segmentation tasks. To solve this problem, Qin et al. [56]
proposed a novel AMR scheme for WSSS, which out-
performed state-of-the-art WSL-based methods on the
PASCAL VOC 2012 dataset. However, its efectiveness for
highlighting crack regions under the interference of edge-
like features has not been validated. As shown in Figure 2,

similar to previous studies, a spotlight branch based on
common CNNs is utilized to highlight the most discrimi-
native object regions and generate the corresponding
spotlight CAMs Ms. Besides that, the main contribution of
the AMR method is the implementation of a parallel
compensation branch, which leverages a spatial-channel
attention module to focus on those essential but easily
overlooked regions. Te obtained compensation CAMs Mc
are used to recalibrate the spotlight CAMs Ms to generate
the fnal weighted CAMs Mw [56]:

Mw(I) � ξMs(I) +(1 − ξ)Mc(I), (2)

where ξ is the recalibration coefcient.
During the training process, the AMR method is opti-

mized with a two-part combination loss Lall, which can be
expressed as

Lall � Lcls + Lcps. (3)

Te frst loss prat, Lcls, is the averaged classifcation loss
of the two branches and can be calculated as

Lcls �
1
2

L
s
cls + L

c
cls( , (4)

where Ls
cls and Lc

cls are the multilabel soft margin losses for
supervision on the spotlight branch and the compensation
branch, respectively.

Te second loss part, Lcps, aims to provide a cross
pseudosupervision on the spotlight branch and the com-
pensation branch. It can be regarded as the semantic sim-
ilarity regularization of each branch and can be represented
as

Lcps � Ms − Mc

����
����1. (5)

Tis paper aims to use the AMR method to generate
high-quality pseudolabels from image-level annotations.Te
whole generation process of the pseudolabels can be sum-
marized as follows. ResNet50 is used as the backbone to
design the multilabel classifcation branches of AMR, and
the spatial-channel attention module with the Gaussian
function is plugged into the compensation branch. Te
process then utilizes the image-level annotations to train the
AMR under the supervision of equation (3). After the
training is completed, the weighted CAMs can be obtained
by using the discriminative localization technique described
in equation (2). Finally, DenseCRF is used to process the
CAM probability map to obtain the synthetic labels used to
train the segmentation network.

3.3. Two-Stage U-Net Training. U-net [61] was originally
designed for semantic segmentation of biomedical images
with some edge-like features, which make it much more
straightforward for crack detection. Te adopted skip-
connection promotes the aggregation of spatial and se-
mantic information, which makes U-net outperform the
conventional FCN. Furthermore, U-net also performs well
while little training data are available. All the advantages
mentioned above make U-net a good ft for the detection of
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fatigue cracks. In this study, the original U-net architecture
was slightly modifed to meet the input and output image
size requirements. Te detailed operations for each layer are

listed in Table 1, where Conv represents the convolutional
operation; BN indicates the batch normalization operation;
ReLU is the ReLU activation function; Maxpooling

CAMs of patches Masks for Stage I training

Iteration 1 Iteration 2

Predicted masks during Stage II training

Iteration 1 Iteration 2

Segmentation
model

Refinement
module 

Masks after Stage I training Cropped patches

Segmentation
model 

Crop and annotation

Original images

Refined masks during Stage II training

AMR method

Stage II Stage I 

Pseudo-label generating

DenseCRF method

Image-level labels
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Lm Lb

Two-stage training
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Figure 1: Overview of the proposed method.
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Figure 2: Te framework of the AMR method [56]. (a) AMR. (b) AMM.
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represents the max pooling operation; TransConv represents
the deconvolution operation; Softmax is the Softmax acti-
vation function; Concat means the concatenation of the
encoder and decoder layers by skip connection.

To accelerate the network convergence and further
improve the performance of WSSS, the segmentation net-
work is proposed to be trained in a two-stage manner, which
can be summarized as follows. In the frst stage, U-net is
pretrained for certain epochs to learn all the essential in-
formation indicated by the initial pseudolabels. Tis training
stage aims to provide a basic segmentation performance and
facilitate network convergence in the following training
process. Although the AMR method is used, the initial
pseudolabels are still incomplete since they are generated by
the network only using image-level labels. To develop the
inference quality, the pretrained U-net is further trained in
a recursive manner in the second stage. It is expected that the
segmentation performance with noisy labels could be de-
veloped by itself via recursive training with a segmentation
refnement module.

3.4. Segmentation Refnement Module: Assimilation and
Connection. In the proposed method, a segmentation re-
fnement module is designed to provide continuously op-
timized labels in the recursive training of U-net. Te
refnement module aims to exploit the available morphology

information related to fatigue cracks and the surrounding
markers at their best. Te information is integrated in the
following two cues:

C1. Cracks and markers are generally separated.
Terefore, there are no discrete marker segments on the
crack path, and likewise, there are no discrete crack
segments on the marker path.

C2. Fatigue cracks mostly initiate near the substrate
surface, and in the propagation phase, the crack pen-
etrates the substrate surface, forming a continuous
damage path. Terefore, surface fatigue cracks are
usually continuous.

Te recursive training is enhanced by denoising the
network outputs using the morphology information. Fol-
lowing the above two cues, the labels can be improved by two
postprocessing algorithms between each iteration.

A1. An assimilation algorithm follows cue C1 to as-
similate the false-detected discrete segments into their
categories. AlgorithmA1 supports the proposed assimilation
process, as illustrated in Figure 3. Te input img is a syn-
thetic mask containing segmented crack and marker do-
mains. When U-net is used for pixel classifcation, given the
similar features between cracks and markers, they could be
misclassifed into each other, which results in the inter-
mingling of cracks and markers. Statistical analysis of the

Table 1: Detailed operations for each layer in U-net.

Layers Feature size Operation Filter size Filter number Stride Padding

Encoder

Input 3× 512× 512 Conv1 +BN+ReLU 3× 3× 3 64 1 1
L1 64× 512× 512 Conv2 +BN+ReLU 64× 3× 3 64 1 1
L2 64× 512× 512 Maxpooling 2× 2 — 2 —
L3 64× 256× 256 Conv3 +BN+ReLU 64× 3× 3 128 1 1
L4 128× 256× 256 Conv4 +BN+ReLU 128× 3× 3 128 1 1
L5 128× 256× 256 Maxpooling 2× 2 — 2 —
L6 128×128×128 Conv5 +BN+ReLU 128× 3× 3 256 1 1
L7 256×128×128 Conv6 +BN+ReLU 256× 3× 3 256 1 1
L8 256×128×128 Maxpooling 2× 2 — 2 —
L9 256× 64× 64 Conv7 +BN+ReLU 256× 3× 3 512 1 1
L10 512× 64× 64 Conv8 +BN+ReLU 512× 3× 3 512 1 1
L11 512× 64× 64 Maxpooling 2× 2 — 2 —
L12 512× 32× 32 Conv9 +BN+ReLU 512× 3× 3 1024 1 1
L13 1024× 32× 32 Conv10 +BN+ReLU 1024× 3× 3 1024 1 1

Decoder

L14 1024× 32× 32 TransConv1 + concate L11 1024× 2× 2 512 2 —
L15 1024× 64× 64 Conv11 +BN+ReLU 1024× 3× 3 512 1 1
L16 512× 64× 64 Conv12 +BN+ReLU 512× 3× 3 512 1 1
L17 512× 64× 64 TransConv2 + concate L8 512× 2× 2 256 2 —
L18 512×128×128 Conv13 +BN+ReLU 512× 3× 3 256 1 1
L19 256×128×128 Conv14 +BN+ReLU 256× 3× 3 256 1 1
L20 256×128×128 TransConv3 + concate L5 256× 2× 2 128 2 —
L21 256× 256× 256 Conv15 +BN+ReLU 256× 3× 3 128 1 1
L22 128× 256× 256 Conv16 +BN+ReLU 128× 3× 3 128 1 1
L23 128× 256× 256 TransConv4 + concate L2 128× 2× 2 64 2 —
L24 128× 512× 512 Conv17 +BN+ReLU 128× 3× 3 64 1 1
L25 64× 512× 512 Conv18 +BN+ReLU 64× 3× 3 64 1 1
L26 64× 512× 512 Conv19 + softmax 64×1× 1 3 1 0

Output 3× 512× 512
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predicted results reveals that the number of pixels being
false-detected as another category in a connected domain is
generally smaller than that being correctly detected. Based
on this, crack assimilation and marker assimilation are
designed to correct the misidentifed crack and marker
pixels, respectively. Each assimilation part consists of three
steps. For crack assimilation, frst, marker pixels imgmark are
stripped from the synthetic label copy imgwhole and con-
nected domains of markers CoDommark can be obtained.
Second, the marker pixels in each connected domain are
counted and further removed from imgwhole if the pixel
number exceeds the threshold Nth_mask. Te reason for the
removal procedure is that those larger connected domains
are less likely to be misidentifed, and the removal of them
facilitates the following assimilation process. Tird, con-
nected domains of the updated synthetic label copy
CoDomwhole are obtained, and each obtained domain is
checked to assimilate the misidentifed crack pixels into its
category by comparing the pixel numbers. Similar steps are
implemented for mask assimilation as well.

A2. A connection algorithm follows cue C2 to connect
discrete crack segments into a whole. Given the infuence of
uneven illumination inside dim bridge girders, some
background noise could be wrongly identifed as small crack
points during the segmentation process. Before the crack
connection, these misidentifed noises are fltered before-
hand according to the highlighted regions by CAMs. Al-
gorithm A2 supports the connection process, as shown in
Figure 4. Te proposed crack connection part consists of
three steps. First, crack segments are extracted from the
assimilatedmask imgwhole, and the corresponding connected
domains CoDomcrack are further found. Subsequently, the
extreme points ExtrmPtsi are found for each domain, which
is a list containing top-most, bottom-most, right-most, and
left-most points (Figure 4). After that, the Eulerian distance
between every extreme point of a connected domain and that

of every other contour is compared to obtain two endpoints
(Pt1, Pt2) with the least distance. Finally, the two endpoints
are connected using an assumed crack line in imgwhole.
During the recursive training process, the discrete crack
segments are gradually connected into a whole.

4. Experiment

4.1. Dataset and Experimental Setup

4.1.1. Dataset. Te original dataset employed in this paper
was granted by the organizing committee of the 1st In-
ternational Project Competition for Structural Health
Monitoring (IPC-SHM 2020) [62]. Specifcally, a total of 200
images with the size of 4,928× 3,264 or 5,152× 3,864 pixels
were provided, and these images were collected from steel
bridge girders under diferent camera parameters and en-
vironment conditions during routine inspection.Te dataset
acquisition details can be found at https://www.schm.org.cn/
#/IPC-SHM,2020/project1.

Based on the original dataset, two subdatasets were
further generated to train and evaluate the proposed
method. Te frst subdataset, called the AMR dataset, aims
to train the AMR branches for generating high-quality
pseudolabels. Tus, AMR-dataset is a multilabel image
classifcation dataset. 80 high-resolution images were
selected from the original dataset and resized to multi-
pliers of 512. Tese resized images were further cropped
into small patches of 512 × 512 pixels. Te cropping
process was performed to improve the training and testing
efciency and has been widely adopted in previous
studies. Considering the category-imbalance problem, the
fnal generated AMR-dataset contains 800 images with
cracks, 800 images with markers, and 800 background
images, which all have manually annotated image-level
labels.

imgwhole imgmark CoDommarkInput image

Assimilated imgwhole CoDomwhole Updated imgwhole CoDommark[i] > Nth_mask

Figure 3: Example images of the proposed assimilation process. For illustration purpose, only the crack assimilation process is shown here.
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Te remaining 120 images in the original dataset were
randomly divided into three subsets: the training set, the
validation set, and the testing set using a split ratio of 6 : 2 : 2.
Terefore, the second subdataset, called the U-net-dataset,
was constructed for training and evaluating the segmenta-
tion network. During training, the original high-resolution
images were resized and cropped into small patches of
512× 512 pixels, and the trained AMR was used to produce
their corresponding synthetic labels. Note that there is no
element overlap between the AMR-dataset and the U-net-
dataset, thus avoiding overestimating the AMR
performance.

4.1.2. Evaluation Metrics. In evaluating the segmentation
performance of the proposed method, three key metrics are
employed. Annotation time measures the labeling efciency
before model training, ofering insights into the pretraining
annotation workload and cost-efectiveness. After model
training, the model’s prediction accuracy is assessed using
the mean Intersection-over-Union (mIoU) metric, a stan-
dard measure of segmentation performance. Furthermore,
the novel efciency metric (Images/s) quantifes the pre-
diction speed of the trained model, refecting the number of
images processed per second. Tis comprehensive set of
metrics provides a thorough evaluation, addressing anno-
tation costs, segmentation accuracy, and computational
efciency, ofering a well-rounded perspective on the ef-
fectiveness of the proposed segmentation approach.

4.1.3. Training Confguration. For producing attention
maps, the AMR classifcation branches were trained for 20
epochs with a batch size of 16 images and an initial learning
rate of 0.001. A stochastic gradient descent algorithm was
leveraged for network optimization using a 0.0001 weight

decay. Some data augmentations were also implemented on
the training samples to improve the training efciency. After
obtaining the pseudolabels, the U-net segmentation network
was trained in a two-stage manner, which frst pretrained the
network for 50 epochs using the initial pseudolabels and
then further developed the segmentation performance using
a recursive network training for 50 iterations. Te initial
learning rate was 0.0001, and the weighted cross-entropy loss
was used to approach the unbalanced data. All the tasks
described were performed on a workstation (CPU: double
Intel® Xeon® CPU E5-2680 v4 @ 2.40GHz, RAM: 64GB,
GPU: ASUS GeForce RTX 2060 D6 12G).

4.2. Study of the Annotation Workload. An experiment was
designed to contrast the annotation workload of the pro-
posed weakly supervised method with that of traditional
fully supervised methods. In this experiment, our method
employed image-level annotation, which simply involved
placing diferent categories of images into diferent category
folders. For the fully supervised method, three main rep-
resentative pixel-level annotation tools were selected to
scrutinize the annotation workload: Adobe® Photoshop
(PS), LabelMe [63], and an online annotation tool
EasyDL [64].

As illustrated in Figure 5, PS utilizes the magic wand and
lasso tools, especially efective for objects in sharp contrast to
the background. LabelMe, an open-source Python tool,
extracts annotations with control points along object
boundaries. EasyDL, an algorithm-assisted tool, requires
users to add or remove anchor points, automatically iden-
tifying object and background regions for pixel-level labels.

Twenty images from the dataset were selected for the
annotation workload experiment. Each experiment was
repeated three times under consistent conditions by in-
dividuals with varying profciency levels. Te recorded

ExtrmPtsEndpoints

Input image

ExtrmPtsEndpoints

Input image

Connected imgwhole Assumed crack lines

CoDomcrackimgwhole imgcrack

Figure 4: Example images of the proposed connection process.
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annotation time characterized the overall workload, and the
results for diferent annotation methods are summarized in
Figure 6.

Figure 6 reveals that LabelMe exhibits the highest an-
notation time, attributed to the complexity of placing
boundary control points. In contrast, PS, utilizing the magic
wand tool, proves quicker than LabelMe. Among pixel-level
tools, EasyDL records the lowest annotation time and de-
viation. However, EasyDL’s pixel-level annotation time is
approximately seven times longer than annotating image-
level labels. Tese results suggest the signifcantly reduced
annotation workload of our weakly supervised method
compared to conventional fully supervised methods.

4.3. Comparison between AMR and Grad-CAM for CAM
Generation. Te paper proposes using AMR in Section 3.2
to generate efective CAMs for providing semantic and
localization cues in segmentation. To assess the AMR’s ef-
fectiveness in activating complete object regions, a com-
parison was conducted with the state-of-the-art method,
gradient-weighted Class Activation Mapping (grad-CAM)
[65]. Grad-CAM used gradient information to assign

weights to feature maps extracted from the last convolu-
tional layer of ResNet50 in this study. Tis process allowed
the creation of CAMs without the need for retraining,
preserving the existing model structure and parameters. A
set of thresholds th� {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} was
defned to convert CAMs into synthetic labels. For semantic

Interface: Extracted regions: Pixel-level labels:

(a)

Interface: Extracted regions: Pixel-level labels:

(b)

Interface: Extracted regions: Pixel-level labels:

(c)

Figure 5: Interface and labeling process of three diferent pixel-level annotation tools: (a) PS, (b) LabelMe, and (c) EasyDL.
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Figure 6: Comparison of the annotation time using diferent
methods.
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class k, if the value of CAM A
x,y

k ≥ thn, the class of these
pixels at the spatial location (x, y) was annotated as k,
otherwise background.

Table 2 shows the comparison of IoU metrics on the
training subset of the built U-net-dataset for diferent th
values. “Crack,” “Marker,” and “Background” denote IoUs
corresponding to these three diferent classes, and “All”
denotes the mean values of IoUs for the three classes,
namely, mIoU. Te results of the grad-CAM were repro-
duced using their publicly available implementation, and all
the results in Table 2 were obtained without DenseCRF
postprocessing. Te results indicate that the adopted AMR
produces more accurate CAMs than grad-CAM for all
diferent thresholds. Te performance of our proposed
CAMs is generally improved by about 2%, and when th�

{0.5, 0.6}, “All” achieves the best results. Figure 7 shows
typical examples of the CAM results obtained using AMR
and grad-CAM, and it can be observed that the former
provides more complete activation regions than the latter.
Tese results demonstrate that the implementation of AMR
inWSSS of fatigue cracks is promising, but given the limited
training data, the authors recommend further validation
when more data are available.

4.4. Ablation Study. Te confguration of the proposed
method contains three main components: the AMR-based
CAM generation, a segmentation refnement module, and
the proposed two-stage training. To investigate the efec-
tiveness of each component, ablation studies were con-
ducted and the corresponding results are listed in Table 3.
Te mIoU metric during training was compared for each
experiment confguration, as shown in Figure 8. For con-
fgurations C1, C3, and C4, they have the same mIoU trend
in the frst 50 epochs and overlap each other before 50 in
Figure 8. Some example images according to the two-stage
training phase are illustrated in Figure 9, where ground truth
refers to the true labels for the input images in this study.

In the ablation studies, direct segmentation training
based on the initial pseudolabels (Confguration C1) was
adopted as the baseline. As shown in Table 3 and Figure 9,
the initial pseudolabels are very coarse and the performance
of the baseline was 71.9%. By applying the two-stage training
with the segmentation refnement module, the segmentation
performance improves gradually during the recursive
training (50∼100 iterations in Figure 8) and fnally achieves
76.5%. Tis demonstrates that our method is efective.

Experiments were extensively conducted to verify the
efectiveness of the proposed two-stage training by com-
paring the performance of confgurations C2 and C4. For the
direct training method, it started from improving initial
pseudolabels using the segmentation refnement module and
then used these refned labels to train the segmentation
network for 100 epochs. Figure 8 shows the comparison
results. With the iterations, the performance only increases
at the beginning and stabilizes at a low mIoU, while in the
proposed two-stage training, the performance continues to
increase at the second stage and reaches a much higher
mIoU. Tis result demonstrates that our two-stage training

method is efective. Tis training scheme progressively
mines common object features from previous masks and
then expendsmore reliable object regions with the assistance
of the segmentation refnement module; thus, the perfor-
mance can increase rapidly to a quite satisfactory result.

In some cases, the initial pseudolabels produced by AMR
are still incomplete. To mine the whole regions of objects,
a segmentation refnement module is incorporated into the
recursive training. To evaluate the efectiveness, an experi-
ment was conducted on the training framework without
refnement (confguration C3) and the performance was
compared with that of confguration C4. From Figure 8,
without the refnement module, some misidentifed object
regions may grow gradually, and thus the performance
decreases continuously during the recursive training. Fig-
ure 9 shows how the prediction improves with iterations
according to the refnement module. By exploiting the
available morphology information, some false-detected
segments are assimilated into their correct categories
(Figures 9(b) and 9(d)), and the broken cracks are gradually
connected into a whole (Figures 9(a), 9(c) and 9(e)). Tese
results demonstrate the efectiveness of our proposed seg-
mentation refnement module.

Te performance diferences among confgurations C1
to C4 are intricately linked to the recursive training process
and the role of the segmentation refnement module.
Troughout recursive training, the model’s predictions from
the previous iteration serve as training labels for the next
iteration. In the absence of segmentation refnement, as
observed in C3 (Figure 8), errors accumulated during it-
erative training can amplify, causing a gradual decline in
performance. On the contrary, confguration C4, leveraging
segmentation refnement, undergoes an iterative correction
process. Tis module guides the model through training
cycles, progressively rectifying errors and enhancing per-
formance. Tis iterative refnement proves pivotal in
steering the model toward improved predictions, countering
the cumulative degradation seen in C3. However, in con-
fguration C2, where the segmentation refnement module
optimizes initial pseudolabels only once at the beginning of
training, its impact is more restrained. Tis limited opti-
mization, compared to the continuous refnement in C4,
restricts the model’s exposure to refned and contextually
rich labels, resulting in a more modest improvement, as
shown in Table 3.

4.5. Comparison of the Trained Segmentation Performance.
Te proposed method was further compared with fully
supervised methods and some other weakly-supervised
methods. Te fully supervised learning was directly con-
ducted on the manually labeled ground-truth data of the
pixel level. Te other weakly supervised segmentation fol-
lowed the workfow that frst generated pseudolabels and
then used the synthetic labels to directly train the seg-
mentation network. Other than the proposed U-net, several
popular architectures were chosen as alternative segmen-
tation networks to provide a more comprehensive com-
parison. All of the models were trained to converge using the
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same training parameters, and the trained models were
evaluated according to the test set. Te evaluation metrics
are listed in Table 4.

As shown in Table 4, the weakly supervised methods are
obviously lower than the fully supervised methods in terms
of mIoU, which is attributed to the incompleteness of the
initial pseudolabels. Compared with the FCN-based
methods, U-net achieves better prediction performance.
Tis is due to the fact that U-net has a fner upsampling
process with more channels, and rather than being simply
added as in FCN, the same-level encoder and decoder parts
are concatenated in U-net. Although soft attention is
implemented at the skip connections in attention U-net
(AttU-net), the mIoU metrics of AttU-net and U-net are
very close under both fully supervised and weakly supervised
learning confgurations. For the current test samples, our
method with U-net achieves a higher mIoU value than the

other weakly supervised methods and is only slightly lower
than the U-net-based fully supervised method by 1.6%.
Besides, the higher efciency value obtained by our method
indicates its capability to handle more images in a given
time frame.

A comparison of segmentation results for typical damage
images is shown in Figure 10. In Figures 10(a) and 10(b),
image patches with diferent background colors under
normal conditions are used to test the trained models. All
models provide good prediction results for them. However,
the FCN-based prediction is relatively rough, which may be
owing to the lack of enough localization information during
the upsampling process. Figures 10(c) and 10(d) show
prediction results for very thin cracks, and our method
makes better predictions than the other weakly supervised
methods whose inferences of fatigue cracks are incomplete.
To evaluate our model’s robustness to surface interference,

Table 2: Comparison of the accuracy in terms of IoU (%) for CAMs generated by AMR and grad-CAM on the training subset of the built
U-net dataset.

Treshold
AMR Grad-CAM

All Crack Marker Background All Crack Marker Background
0.2 41.07 10.09 36.77 76.36 39.29 9.62 34.30 73.94
0.3 47.42 13.97 44.13 84.16 45.81 13.22 41.73 82.47
0.4 53.30 18.13 52.52 89.26 52.12 17.53 50.47 88.34
0.5 58.32 22.53 59.71 92.72 57.65 22.41 58.24 92.31
0.6 58.70 25.34 56.71 94.06 57.16 25.31 52.50 93.66
0.7 53.51 26.19 40.32 93.86 51.41 24.98 35.73 93.51
0.8 45.85 23.28 20.20 93.17 44.65 21.66 19.16 93.12

Input image: AMR: Input image: AMR:Grad-CAM: Grad-CAM:

Figure 7: Examples of CAMs generated by AMR and grad-CAM methods on the training subset of the built U-net dataset.

Table 3: Results of the ablation study.

Confguration Pseudolabel Direct training Segmentation
refnement Two-stage training

mIoU on
validation set

(%)
C1 ✓ ✓ 71.9
C2 ✓ ✓ ✓ 72.3
C3 ✓ ✓ 51.4
C4 ✓ ✓ ✓ 76.5
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Configuration C1 (100 epochs)
Configuration C2 (100 epochs)
Configuration C3 (50 epochs + 50 iterations)
Configuration C4 (50 epochs + 50 iterations)
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Figure 8: Change of mIoU on the validation set during the training process. Confgurations C1, C3, and C4 have the samemIoU trend in the
frst 50 epochs and thus overlap each other before 50.

Input image: Ground truth: Pseudo label: Epoch 50: Iteration 10: Iteration 20: Iteration 30: Iteration 40: Iteration 50:

(a)
Input image: Ground truth: Pseudo label: Epoch 50: Iteration 10: Iteration 20: Iteration 30: Iteration 40: Iteration 50:

(b)
Input image: Ground truth: Pseudo label: Epoch 50: Iteration 10: Iteration 20: Iteration 30: Iteration 40: Iteration 50:

(c)
Input image: Ground truth: Pseudo label: Epoch 50: Iteration 10: Iteration 20: Iteration 30: Iteration 40: Iteration 50:

(d)
Input image: Ground truth: Pseudo label: Epoch 50: Iteration 10: Iteration 20: Iteration 30: Iteration 40: Iteration 50:

(e)

Figure 9: Example segmentation results during the two-stage training process with the proposed refnement module.

12 Structural Control and Health Monitoring



the image patch with cracks on a contaminated surface is fed
into the trained models, as shown in Figure 10(e). Our
proposed model is able to discriminate stains with minor
errors, but its prediction of fatigue cracks is not as accurate
as that of the fully supervised methods. As shown in
Figure 10(f ), the crack-like weld edges are correctly iden-
tifed as background by all models, and among the weakly
supervised methods, the proposed method provides more
satisfactory results. However, the models fail in some cases
with confusing construction lines and tiny markers, as il-
lustrated in Figure 10(g).

Overall, the promising nature of our proposed method is
demonstrated by the higher mIoU results compared to other
weakly supervised methods, and the accurate segmentation
outcomes achieved for typical damage image patches,
showcasing its potential for efective crack detection.

4.6. Assessment of Model Performance under Complex Real-
Bridge Conditions. Section 4.5 shows the promising per-
formance of our proposed method. However, only cropped
image patches with sizes of 512× 512 pixels are visually il-
lustrated in Figure 10. In this section, the trained model
performance is further visualized using original images with
the size of 4,928× 3,264 or 5,152× 3,864 pixels. Tese larger
images are deemed to better capture and refect the com-
plexity inherent in real-bridge environments, ofering
a comprehensive assessment of the trained model’s strengths
and limitations. Four typical real-bridge conditions are
considered as follows.

4.6.1. Ideal Inspection Conditions. Under ideal inspection
conditions, where the crack background is clean and free of
distractions, and the crack markers are neatly applied, the
model’s performance is evaluated. In Figure 11, the seg-
mentation results demonstrate the accurate detection of
cracks with varying widths. Our method also successfully
extracts most of the crack markers; only very few pen strokes
are identifed as cracks, as indicated by the dashed-line
frames. Tis can be attributed to the resemblance of pen
strokes to cracks in terms of color and shape. Overall, these
fndings provide a baseline understanding of the model’s
accuracy and segmentation quality under optimal
conditions.

4.6.2. Varying Lighting Conditions. Te results presented in
Figure 12 reveal that our proposed method successfully
detects and extracts the position and morphological

information of cracks under varying lighting conditions.
However, the dynamic nature of lighting introduces slight
errors in the model’s performance, as indicated by the
dashed-line frames. For instance, in Figure 9(a), the smooth
top plate-fllet weld appears brighter than the surrounding
base material due to refections. Along the boundaries where
the weld intersects with areas of varying brightness, crack-
like features are occasionally formed, leading to mis-
classifcations by the algorithm. Similarly, in Figure 9(c), the
presence of shadows creates a contrast with the bright
background, resulting in several pixels along the boundaries
being unfortunately identifed as cracks. However, in
Figure 9(d), where dim lighting conditions are present, the
model successfully avoids misclassifcations near shadow
boundaries, attributing to the lack of strong contrasts and
intensity-gradient changes. Moreover, in Figure 12(b), the
proposed method efectively identifes most of the crack and
marker regions even under dim lighting conditions.

4.6.3. Cluttered Backgrounds. Te prediction performance
of our method is further assessed under the challenging
condition of cluttered backgrounds. In Figure 13, genuine
cracks and markers are accurately identifed. Figure 13(a)
shows the detection of some background pixels as cracks at
primer color transition areas, attributed to visual com-
plexities caused by gradients and borders between diferent
primer colors. In Figure 13(b), occasional false detections of
cracks occur due to complex thin and light markings that
visually resemble cracks. Figure 13(c) demonstrates in-
stances where some dot-like stains are sometimes mis-
classifed as markers due to their visual similarity. Finally, in
Figure 13(d), the needle-like stains are identifed as cracks as
expected, given their elongated and thin characteristics
resembling crack-like features so much. To mitigate the
above minor errors, the authors recommend calculating the
area of connected components in the predicted mask and
removing some false positives corresponding to smaller
connected component areas, such as the smaller dot-like
stains. Despite these challenges, our model performance
remains satisfactory overall.

4.6.4. Obstacles or Confusions Caused by Irrelevant Objects.
Figure 14 showcases the model’s performance when faced
with obstacles or confusions caused by irrelevant objects.
While genuine cracks and markers are accurately detected,
there are some prediction errors. In Figures 14(a) and 14(b),

Table 4: Comparison of the evaluation metrics on the test set.

Supervision Method mIoU on test set (%) Efciency (images/s)

Full
FCN-8s 74.9 12
U-net 77.9 20

AttU-net 77.0 13

Weak

FCN-8s 68.2 12
U-net 71.1 20

AttU-net 71.9 13
Our method 76.3 20

AttU-net means attention U-net.
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curved hole edges serve as obstacles, and the prediction
results difer due to varying primer colors. Te strong
intensity-gradient change between the black curved hole
edge and the light background primer color in Figure 14(a)
makes it more susceptible to being erroneously detected as
cracks compared to Figure 14(b) with a darker primer color.
In Figures 14(c) and 14(d), rare scenarios involving

irrelevant objects, such as transparent tapes, sensor boxes,
and electronic wires, reveal instances where these edges are
sometimes mistaken as cracks or markers. Tese mis-
classifcations arise due to the visual similarity between these
objects and genuine cracks/markers, the presence of texture
resembling cracks/markers, and the limited exposure of the
model to such scenarios during training (only Figures 14(c)

Input image: Ground truth: Our method:F-FCN: F-U-net: F-AttU-net: W-FCN: W-U-net: W-AttU-net:

(a)

Input image: Ground truth: Our method:F-FCN: F-U-net: F-AttU-net: W-FCN: W-U-net: W-AttU-net:

(b)

Input image: Ground truth: Our method:F-FCN: F-U-net: F-AttU-net: W-FCN: W-U-net: W-AttU-net:

(c)

Input image: Ground truth: Our method:F-FCN: F-U-net: F-AttU-net: W-FCN: W-U-net: W-AttU-net:

(d)

Input image: Ground truth: Our method:F-FCN: F-U-net: F-AttU-net: W-FCN: W-U-net: W-AttU-net:

(e)

Input image: Ground truth: Our method:F-FCN: F-U-net: F-AttU-net: W-FCN: W-U-net: W-AttU-net:

(f )

Input image: Ground truth: Our method:F-FCN: F-U-net: F-AttU-net: W-FCN: W-U-net: W-AttU-net:

(g)

Figure 10: Example segmentation results generated by diferent networks under full or weak supervision: (a, b) normal condition, (c, d) tiny
crack, (e) contaminated surface, (f ) weld line edges, and (g) misidentifed example. F and W represent fully supervised and weakly
supervised, respectively.
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and 14(d) have transparent tapes and sensor boxes in the
dataset), resulting in a lack of contextual information for
accurate diferentiation.

Given that this study aims to enhance the accuracy of
traditional WSL-based crack segmentation and reduce the

annotation burden of FSL-based methods, the proposed
method successfully achieves this goal, as evidenced by
comparable mIoU and visualized segmentation results,
along with reduced annotation time compared to previous
studies [13, 33, 42, 48, 66]. Overall, the proposed method

Input image: Predicted mask :

(a)

Input image: Predicted mask :

(b)

Input image: Predicted mask :

(c)

Input image: Predicted mask :

(d)

Figure 11: Original-image segmentation results for idea inspection conditions: (a) subtle crack, (b) fne crack, (c) medium crack, and (d)
coarse crack.
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demonstrates satisfactory overall performance under ideal
or complex real-bridge conditions. Te presence of minor
misclassifcations and errors, particularly in challenging
scenarios involving cluttered backgrounds and obstacles or

confusions of irrelevant objects, can be mitigated through
the augmentation of training data and the inclusion of more
diverse scenarios, which would enhance the model’s ability
to diferentiate genuine cracks from confounding factors.

Input image: Predicted mask :

Reflection

(a)

Input image: Predicted mask :

(b)

Shadow

Input image: Predicted mask :

(c)

Shadow

Input image: Predicted mask :

(d)

Figure 12: Original-image segmentation results under varying lighting conditions: (a) refection scenario, (b) dim environment, (c) shadow
under bright condition, and (d) shadow under dim condition.
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Input image: Predicted mask :

Varying 
primer 
colors

(a)

Input image: Predicted mask :

tiny and light 
markers

(b)

Input image: Predicted mask :

dot-like stains

(c)

Input image: Predicted mask :

needle-like 
stains

(d)

Figure 13: Original-image segmentation results under the condition of cluttered backgrounds: (a) varying primer colors, (b) confusing
markings, (c) dot-like stains, and (d) needle-like stains.
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Input image: Predicted mask :

(a)

Curved 
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Input image: Predicted mask :

(b)

Transparent tape

Wire

Input image: Predicted mask :

(c)

Wire

Sensor box

Input image: Predicted mask :

(d)

Figure 14: Original-image segmentation results when faced with irrelevant objects: (a, b) curved hole-edge, (c) transparent edge, and (d)
sensor box and wire.
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5. Conclusions

Tis paper introduced an improved WSL-based semantic
segmentation method for accurate fatigue crack detection in
steel bridge girders. Te proposed method utilized the an-
notation map refnement (AMR) technique to generate
high-quality initial pseudolabels, overcoming the limitation
of highlighting only discriminative regions in conventional
WSL-based methods. Tese pseudolabels were then used to
train the segmentation model in a two-stage approach. First,
the model learned essential semantic and localization in-
formation from the initial labels. Ten, the model was
further refned iteratively using a segmentation refnement
module equipped with postprocessing algorithms.

Experimental evaluations compared the proposed
method with diferent labeling tools and state-of-the-art
techniques, demonstrating faster image-level annotation
and the superiority of AMR in generating more accurate and
complete object regions, leading to an improvement for
pseudolabels in Intersection over Union (IoU) accuracy by
approximately 2%. Ablation studies confrmed the efec-
tiveness of the main components, and comparisons with
traditional WSL-based and FSL-based methods revealed
superior performance by the proposed method. Te visu-
alizations of real-bridge conditions showcased the model’s
ability to accurately detect genuine cracks and markers.
However, further optimization, including data augmenta-
tion, is needed to enhance performance under challenging
conditions. Overall, our method achieves comparable in-
ference results to FSL-based approaches while signifcantly
reducing annotation workload. Further validation is rec-
ommended to assess its efectiveness in more diverse sce-
narios, and future research should focus on studying the
efect of segmentation network structures and integrating
the proposed method with more advanced networks to
enhance its performance.
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O. Büyüköztürk, “Autonomous structural visual inspection
using region-based deep learning for detecting multiple
damage types,” Computer-Aided Civil and Infrastructure
Engineering, vol. 33, no. 9, pp. 731–747, 2018.

[11] C. V. Dung, H. Sekiya, S. Hirano, T. Okatani, and C. Miki, “A
vision-based method for crack detection in gusset plate
welded joints of steel bridges using deep convolutional neural
networks,” Automation in Construction, vol. 102, pp. 217–229,
2019.

[12] W. Nash, T. Drummond, and N. Birbilis, “Quantity beats
quality for semantic segmentation of corrosion in images,”
2018, https://arxiv.org/abs/1807.03138.

[13] X. W. Ye, T. Jin, Z. X. Li, S. Y. Ma, Y. Ding, and Y. H. Ou,
“Structural crack detection from benchmark data sets using
pruned fully convolutional networks,” Journal of Structural
Engineering, vol. 147, no. 11, Article ID 4721008, 2021.

[14] Z. Dong, J. Wang, B. Cui, D. Wang, and X. Wang, “Patch-
based weakly supervised semantic segmentation network for
crack detection,” Construction and Building Materials,
vol. 258, Article ID 120291, 2020.

Structural Control and Health Monitoring 19

https://arxiv.org/abs/1807.03138


[15] D. Zhang, K. Song, J. Xu, H. Dong, and Y. Yan, “An image-
level weakly supervised segmentation method for no-service
rail surface defect with size prior,” Mechanical Systems and
Signal Processing, vol. 165, Article ID 108334, 2022.

[16] Q. Li and X. Liu, “Novel approach to pavement image seg-
mentation based on neighboring diference histogram
method,” Congress on Image and Signal Processing, vol. 2,
2008.

[17] H. D. Cheng and M. Miyojim, “Automatic pavement distress
detection system,” Information Sciences, vol. 108, no. 1–4,
pp. 219–240, 1998.

[18] H. Oliveira and P. L. Correia, “Automatic road crack seg-
mentation using entropy and image dynamic thresholding,”
in Proceedings of the European Signal Processing Conference,
Glasgow, UK, August 2009.

[19] I. Abdel-Qader, O. Abudayyeh, and M. E. Kelly, “Analysis of
edge-detection techniques for crack identifcation in bridges,”
Journal of Computing in Civil Engineering, vol. 17, no. 4,
pp. 255–263, 2003.

[20] T. Nishikawa, J. Yoshida, T. Sugiyama, and Y. Fujino,
“Concrete crack detection by multiple sequential image fl-
tering,” Computer-Aided Civil and Infrastructure Engineering,
vol. 27, no. 1, pp. 29–47, 2012.

[21] T. Yamaguchi, S. Nakamura, R. Saegusa, and S. Hashimoto,
“Image-based crack detection for real concrete surfaces,”
IEEJ Transactions on Electrical and Electronic Engineering,
vol. 3, no. 1, pp. 128–135, 2008.

[22] S. K. Sinha and P.W. Fieguth, “Automated detection of cracks
in buried concrete pipe images,” Automation in Construction,
vol. 15, no. 1, pp. 58–72, 2006.

[23] M. Song and D. Civco, “Road extraction using SVM and
image segmentation,” Photogrammetric Engineering and Re-
mote Sensing, vol. 70, no. 12, pp. 1365–1371, 2004.

[24] Q. Zou, Y. Cao, Q. Li, Q. Mao, and S. Wang, “CrackTree:
automatic crack detection from pavement images,” Pattern
Recognition Letters, vol. 33, no. 3, pp. 227–238, 2012.

[25] F. Liu, G. Xu, Y. Yang, X. Niu, and Y. Pan, “Novel approach to
pavement cracking automatic detection based on segment
extending,” in Proceedings of the 2008 International Sympo-
sium on Knowledge Acquisition and Modeling, Wuhan, China,
December 2008.

[26] W. Huang and N. Zhang, “A novel road crack detection and
identifcation method using digital image processing tech-
niques,” in Proceedings of the 2012 7th International Con-
ference on Computing and Convergence Technology, ICCCT,
Seoul, Republic of Korea, December 2012.

[27] Q. Li, Q. Zou, D. Zhang, and Q. Mao, “FoSA: F∗ Seed-
growing Approach for crack-line detection from pavement
images,” Image and Vision Computing, vol. 29, no. 12,
pp. 861–872, 2011.

[28] H. B. Yun, S. Mokhtari, and L. Wu, “Crack recognition and
segmentation using morphological image-processing tech-
niques for fexible pavements,” Transportation Research Re-
cord, vol. 2523, no. 1, pp. 115–124, 2015.

[29] Y. Hu and C. X. Zhao, “A novel LBP based methods for
pavement crack detection,” Journal of Pattern Recognition
Research, vol. 5, no. 1, pp. 140–147, 2010.

[30] M. Petrou, J. Kittler, and K. Y. Song, “Automatic surface crack
detection on textured materials,” Journal of Materials Pro-
cessing Technology, vol. 56, no. 1–4, pp. 158–167, 1996.

[31] K. Y. Song, M. Petrou, and J. Kittler, “Texture crack de-
tection,” Machine Vision and Applications, vol. 8, no. 1,
pp. 63–75, 1995.

[32] M. R. Jahanshahi, S. F. Masri, C. W. Padgett, and
G. S. Sukhatme, “An innovative methodology for detection
and quantifcation of cracks through incorporation of depth
perception,” Machine Vision and Applications, vol. 24, no. 2,
pp. 227–241, 2013.

[33] C. Dong, L. Li, J. Yan, Z. Zhang, H. Pan, and F. N. Catbas,
“Pixel-level fatigue crack segmentation in large-scale images
of steel structures using an encoder–decoder network,”
Sensors, vol. 21, no. 12, p. 4135, 2021.

[34] Y. Xu, Y. Bao, J. Chen,W. Zuo, andH. Li, “Surface fatigue crack
identifcation in steel box girder of bridges by a deep fusion
convolutional neural network based on consumer-grade
camera images,” Structural Health Monitoring, vol. 18, no. 3,
pp. 653–674, 2019.

[35] S. Quqa, P. Martakis, A. Movsessian, S. Pai, Y. Reuland, and
E. Chatzi, “Two-step approach for fatigue crack detection in
steel bridges using convolutional neural networks,” Journal of
Civil Structural Health Monitoring, vol. 12, no. 1, pp. 127–140,
2022.

[36] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional
networks for semantic segmentation,” in Proceedings of the
2015 IEEE conference on computer vision and pattern recog-
nition, CVPR, June 2015.

[37] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” 2014, https://
arxiv.org/abs/1409.1556.

[38] C. Szegedy, V. Vanhoucke, S. Iofe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,”
in Proceedings of the 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR, June 2016.

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the 2016 IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR, June 2016.

[40] C. V. Dung and L. D. Anh, “Autonomous concrete crack
detection using deep fully convolutional neural network,”
Automation in Construction, vol. 99, pp. 52–58, 2019.

[41] X. Li, T. Lai, S. Wang et al., “Weighted feature pyramid
networks for object detection,” in Proceedings of the 2019
IEEE Intl Conf on Parallel and Distributed Processing with
Applications, Big Data and Cloud Computing, Sustainable
Computing and Communications, Social Computing and
Networking, ISPA/BDCloud/SocialCom/SustainCom,
December 2019.

[42] J. Li, Z. Jin, and J. Shu, “Deep learning-based fatigue cracks
detection in bridge girders using feature pyramid networks,”
Research Square, 2021.

[43] Z. Liu, Y. Cao, Y. Wang, and W. Wang, “Computer vision-
based concrete crack detection using U-net fully convolu-
tional networks,” Automation in Construction, vol. 104,
pp. 129–139, 2019.

[44] J. Shi, J. Dang, M. Cui et al., “Improvement of damage seg-
mentation based on pixel-level data balance using vgg-unet,”
Applied Sciences, vol. 11, no. 2, p. 518, 2021.

[45] L. Zhang, J. Shen, and B. Zhu, “A research on an improved
Unet-based concrete crack detection algorithm,” Structural
Health Monitoring, vol. 20, no. 4, pp. 1864–1879, 2021.

[46] X. Cui, Q. Wang, J. Dai, Y. Xue, and Y. Duan, “Intelligent
crack detection based on attention mechanism in convolution
neural network,” Advances in Structural Engineering, vol. 24,
no. 9, Article ID 1369433220986638, 2021.

[47] Z. M. P. H. Q. Li, “One-step deep learning-based method for
pixel-level detection of fne cracks in steel girder images,”
Smart Structures and Systems, vol. 29, no. 1, pp. 153–166, 2022.

20 Structural Control and Health Monitoring

https://arxiv.org/abs/1409.155
https://arxiv.org/abs/1409.155


[48] Z. Li, H. Zhu, and M. Huang, “A deep learning-based fne
crack segmentation network on full-scale steel bridge images
with complicated backgrounds,” IEEE Access, vol. 9,
pp. 114989–114997, 2021.

[49] S. Kim, L. T. Nguyen, K. Shim, J. Kim, and B. Shim, “Pseudo-
label-free weakly supervised semantic segmentation using
image masking,” IEEE Access, vol. 10, pp. 19401–19411, 2022.

[50] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba,
“Learning deep features for discriminative localization,” in
Proceedings of the 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR, June 2016.

[51] Y. Wei, H. Xiao, H. Shi, Z. Jie, J. Feng, and T. S. Huang,
“Revisiting Dilated Convolution: a simple approach for
weakly- and semi-supervised semantic segmentation,” in
Proceedings of the 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Salt Lake City, UT, USA, June
2018.

[52] A. Kolesnikov and C. H. Lampert, “Seed, expand and con-
strain: three principles for weakly-supervised image seg-
mentation,” in Proceedings of the Computer Vision ECCV
2016, pp. 695–711, Amsterdam, Te Netherlands, October
2016.

[53] J. Ahn and S. Kwak, “Learning pixel-level semantic afnity
with image-level supervision for weakly supervised semantic
segmentation,” in Proceedings of the 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pp. 4981–4990, Salt Lake City, UT, USA, June 2018.

[54] Y. T. Chang, Q. Wang, W. C. Hung, R. Piramuthu, Y. H. Tsai,
and M. H. Yang, “Weakly-supervised semantic segmentation
via sub-category exploration,” in Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 8988–8997, Seattle, WA, USA, June 2020.

[55] J. Lee, E. Kim, S. Lee, J. Lee, and S. Yoon, “FickleNet: weakly
and semi-supervised semantic image segmentation using
stochastic inference,” in Proceedings of the 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 5262–5271, Long Beach, CA, USA, June 2019.

[56] J. Qin, J. Wu, X. Xiao, L. Li, and X. Wang, “Activation
modulation and recalibration scheme for weakly supervised
semantic segmentation,” AAAI Conference on Artifcial In-
telligence, vol. 36, no. 2, pp. 2117–2125, 2022.

[57] A. Khoreva, R. Benenson, J. Hosang, M. Hein, and B. Schiele,
“Simple does It: weakly supervised instance and semantic
segmentation,” in Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu,
HI, USA, July 2017.

[58] Y. Li, Y. Liu, G. Liu, and M. Guo, “Weakly supervised se-
mantic segmentation by iterative superpixel-CRF refnement
with initial clues guiding,” Neurocomputing, vol. 391,
pp. 25–41, 2020.

[59] H. Choi, G. Koo, B. J. Kim, and S. W. Kim, “Weakly su-
pervised power line detection algorithm using a recursive
noisy label update with refned broken line segments,” Expert
Systems with Applications, vol. 165, Article ID 113895, 2021.
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