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Rapid and accurate structural damage assessment after an earthquake is important for efcient emergency management. Te
widespread application of surveillance cameras provides a new possibility for improving the efciency of assessment. However, it
is still challenging to directly assess the structural seismic damage based on videos captured by indoor surveillance cameras during
earthquakes. In this study, we elaborate on the concept of estimating the structural natural frequency based on the relative pixel
displacement of inter-stories. Furthermore, we propose a strategy for post-earthquake structural damage assessment that in-
tegrates the computer vision and time-frequency analysis. Tis approach aims to navigate the difculties inherent in earthquake
damage assessment and improve emergency responses. Te relative pixel displacement between the camera and the fxed features
on the foor is extracted from videos by using the Harris corner detection and Kanade–Lucas–Tomasi algorithms. Te structural
natural frequency is estimated using the synchroextracting transform-enhanced empirical wavelet transform. Te natural fre-
quency shift-related seismic damage index is defned and calculated for damage assessment. A shake table experiment of a small-
scale steel model is conducted to verify the accuracy and feasibility of the approach, and the practicality of the proposed approach
is further verifed by utilizing the data from a full-scale reinforced concrete benchmarkmodel experiment.Te results demonstrate
that the approach can accurately and efciently evaluate the structural damage after an earthquake based on the video captured by
surveillance cameras during the earthquake.Te error of the acquired damage index is less than 0.1. We will apply more advanced
algorithms in the future to alleviate this problem.

1. Introduction

Seismic hazards pose a substantial risk to the safety of
structures located in earthquake-prone regions [1, 2] and can
cause severe social and economic losses in densely populated
cities [3, 4]. After an earthquake, a rapid and accurate as-
sessment of the true seismic damage to structures is crucial for
post-disaster relief [5–7]. Te seismic fragility and vulnera-
bility models are often used to evaluate the probabilistic
seismic risk of structures [8]. To improve the accuracy of
prediction, an updated empirical model for structural seismic
vulnerability assessment was proposed using the survey data
obtained from the Yushu earthquake [9]. Additionally, as an
alternative to the traditional seismic vulnerability model,
a surrogate model based on an artifcial neural network was
also investigated [10]. To assess the damage condition of

a structure after an earthquake, it is necessary to collect the
on-site data and establish the relationship between the col-
lected data and the damage status of the structure [11, 12].
Existing methods for on-site seismic damage assessment can
be broadly divided into two types depending on the type of
data collected: assessment based on visual inspection and
assessment based on vibration monitoring [13].

Traditional visual inspection-based assessment methods
primarily rely on the observable characteristics of the damage
structures post-earthquake to evaluate the extent of the
damage [14, 15]. Te most common form is manual in-
spection, in which the structural damage is assessed by trained
specialists on site [16, 17]. However, the manual inspection
process can be inefcient, costly, and dangerous, and the
assessment results can be highly subjective depending on the
personal decisions of surveyors [18]. In light of these
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limitations, researchers have proposed acquiring images of
post-earthquake structures by using imaging devices (such as
handheld cameras [19], unmanned aerial vehicles [20], and
satellites [21]) to reduce costs and improve the efciency of
seismic damage assessment. A robot with a vision system was
applied to estimate the residual displacement of structural
joints via engineered landmarks in non-line-of-sight condi-
tions [22]. Other researchers utilized the deep learning-based
computer vision technology to evaluate the structural damage
[23, 24]. An improved convolutional neural network was
proposed for identifying and locating the seismic damage
from the images of reinforced concrete columns [25]. While
techniques for visual inspection-based assessments have
signifcantly advanced over time, the correlation between the
external appearances of a structure and its actual condition
remains somewhat unclear [11]. Additionally, the impact of
structural surface decorations or coating on the evaluation
results is a factor that cannot be overlooked. Tis potential
infuence has yet to be thoroughly researched.

In contrast to visual inspection approaches, vibration
monitoring-based methods operate on a clearer physical
mechanism [26, 27], primarily performing the structural
damage assessment based on the damage indexes extracted
from the structural vibration response [28, 29]. In general, the
vibration responses of structures are obtained by a monitoring
system through sensors (such as accelerometers, displacement
sensors, and inclinometers) distributed along the structure
[30, 31]. A time-varying system identifcation approach based
on the adaptive unscented Kalman fltering was presented and
employed to identify the time-varying stifness of prefabricated
segmental columns under earthquake excitations by using the
measured accelerations and displacements [32]. A modal as-
surance distribution-based instantaneous dynamic parameter
identifcation method was proposed for the structural integrity
assessment [33]. However, practical applications are often
limited due to the high cost of installation and maintenance of
such monitoring systems [34, 35]. Tus, there are a large
number of buildings that are not instrumented by monitoring
systems. On the other hand, vision-based vibration measure-
ment is expected to solve the above problems due to its low cost
and high efciency [36, 37]. Te vibration responses of
a structure are usually recorded by stationary or movable
cameras outside the monitored structure [38, 39]. While less
expensive overall, there are still costs associated with the in-
stallation and maintenance of cameras [40, 41].

In an efort to curb costs, researchers have turned their
attention to the ubiquitous indoor surveillance cameras. Te
feasibility of using these devices to capture inter-story seismic
responses has been demonstrated, indicating a promising new
direction for cost-efective and efcient earthquake damage
assessment [40, 42, 43]. However, it is still challenging to
assess structural seismic damage based on the acquired
seismic response of inter-stories only from the pixels obtained
from the videos recorded by the cameras, because the seismic
response of the structure is usually a nonstationary signal.

To quantify the severity of damage of a structure, the
selection of an appropriate damage index is essential.
Commonly used damage indices are calculated based on the
inter-story drift ratio [44], vibration mode [33, 42], or natural

frequency [45]. However, for structural seismic damage as-
sessment based on surveillance cameras, the unit of structural
displacement is the pixel rather than the meter. Te pixel
needs to be calibrated to the physical length of a given target in
the image [46]. It is impractical to perform calibration for all
responses after an earthquake, and thus, the inter-story drift
ratio-based damage indices (such as maximum or residual
inter-story drift ratio) cannot be directly available and used
for damage assessment [44]. In addition, videos captured by
diferent cameras distributed along the structure are often not
precisely synchronized. Te asynchronous acquisition is
detrimental to the extraction of structural vibration mode,
and therefore, the vibrationmode-related damage indices also
cannot be used for damage assessment [33, 42]. Natural
frequency-based damage indices are not afected by signal
amplitude and can be obtained from only one vibration
signal. Consequently, damage indices based on natural fre-
quencies might be a viable approach in structural seismic
damage assessment using surveillance cameras.

Te commonly used natural frequency-based seismic
damage index is the natural frequency shift before and after an
earthquake, and it has been utilized for structural seismic
damage assessment [45]. However, the acquisition of the
natural frequency shift often requires modal testing and
analysis of the structure before and after the earthquake, which
is time-consuming and costly. In recent years, the advance-
ment of modern signal processing techniques and system
identifcation theory has brought time-frequency analysis
technology into the spotlight [47]. Tis technique, which
estimates the shift in natural frequency based solely on
a structural nonstationary seismic response, has been in-
creasing usage thanks to its innovative approach and prom-
ising results [48]. Tese methods mainly can be divided into
wavelet transform-based methods and Hilbert transform
(HT)-based methods [49, 50]. For the methods based on the
wavelet transform, the frequency shift is typically identifed by
extracting the frequency ridges from the wavelet scalogram
[51, 52]. However, the selection of wavelet bases has a large
impact on the analysis results. Tomitigate the potential impact
of suboptimal wavelet selection, adaptive time-frequency
analysis methods like empirical mode decomposition
(EMD) [53, 54], based on Hilbert transform (HT), were in-
troduced. Tese methods frst extract single-component sig-
nals from the original multicomponent signal. Subsequently,
the shifts in various orders of natural frequency are obtained
by using HT. However, the EMD is not sufcient or rigorous
enough in mathematical proofs. Furthermore, a new method
called empirical wavelet transform (EWT) [55] was proposed,
and it was enhanced by the synchroextracting transform (SET)
[56] to identify the natural frequency of a time-varying system
by using accelerometers [57]. Drawing inspiration from the
previous research [57], this study estimates the shift in
structural natural frequency by using a SET-enhanced EWT
method. Tis approach utilizes pixel-based inter-story struc-
tural responses as captured by surveillance cameras.

Tis study presents a novel approach to assess structural
damage induced by earthquakes by combining the capa-
bilities of surveillance cameras with computer vision and
time-frequency analysis technologies. Te structural seismic
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responses were extracted from the video by using a marker-
free computer vision technique. Te damage state was
assessed according to the shift in structural natural fre-
quency, which was estimated by using a time-frequency
analysis technique. Te accuracy and feasibility of the ap-
proach were verifed through a shake table test conducted on
a small-scale steel model. Ten, the practicality of the ap-
proach was further confrmed using the experimental data
from a full-scale reinforced concrete model.

Te rest of the study is organized as follows: Section 2
presents the theoretical foundation of the proposed
method. Sections 3 and 4 describe the experimental setups
and results of the small-scale model and full-scale model
shake table experiments. Section 5 shows the conclusion
and future work.

2. Methodology

Te schematic diagram of the proposed structural seismic
damage assessment strategy is shown in Figure 1, where
ul(l � 1, 2, 3, ...) is the meter displacement of the lth story
with respect to the ground; δl (l � 1, 2, 3, ...) is the inter-story
meter displacement of the lth story; Δxj

l (l � 1, 2,

3, ..., and j � 1, 2, 3, ...) is the inter-story pixel displacement
of the jth feature point of the lth story extracted from the
video; CFOV refers to the camera feld of view; and ROI
indicates the region of interest. First, images were captured
using the existing indoor surveillance cameras during an
earthquake. Next, the structural inter-story pixel displace-
ment responses were extracted from the videos using
computer vision techniques. Ten, the natural frequency
shift of the structure was estimated by using the time-
frequency analysis techniques. Finally, the structural dam-
age was assessed according to the calculated damage index. It
is worth noting that surveillance cameras mounted on
ceilings, walls, or other locations are all applicable to this
method. For the sake of presentation, it is assumed that the
camera is mounted on the ceiling throughout the following.

2.1. Structural Inter-Story Pixel Displacement Response
Extraction. Te schematic diagram of structural inter-story
seismic response extraction is shown in Figure 1. First,
a rectangular box was used to manually select the ROI in the
frst frame of the video. Te ROI is defned as a region of the
image that involves distinctive feature points fxed to the foor.
Te purpose of the ROI selection is to ensure that subsequent
tracked feature points are not lost due to occlusion. Ten, the
feature points in the ROI are detected. Considering that there
are no pre-installed marker points in practice, a typical
marker-free feature detection algorithm (i.e., Harris corner
detection algorithm [58]) is adopted. More specifcally, the
features in the ROI are automatically detected based on the
magnitude of the pixel gradient in diferent directions. Finally,
the pixel displacement of diferent feature points is auto-
matically computed based on the diference between the ROI
in adjacent frames using a classic optical fow algorithm (i.e.,
Kanade–Lucas–Tomasi algorithm [59]). Te structural inter-
story pixel displacement of the lth story Δxl(t) can be

obtained by averaging the motions of diferent feature points
according to the following equation:

Δxl(t) �
1
m



m

j

Δxj

l (t), (1)

wherem is the number of detected feature points, and t is the
time variable. Te whole response extraction process is
automated except for the selection of ROI and does not
require any specifc markers.

2.2. Structural Natural Frequency Shift Estimation. Te
fowchart for the estimation of structural natural frequency is
shown in Figure 2. First, the single-mode responses are
extracted from the acquired multimode inter-story response
by using the SET-enhanced EWTmethod. Ten, the natural
frequency of the structure is estimated from the instantaneous
frequency of the extracted single-mode response by using the
HT and the Savitzky–Golay fltering (SGF) [60]. After the
above signal processing, the natural frequency of the structure
can be generally extracted from the seismic response of the
structure. Te details of the estimation process will be in-
troduced in the following section.

2.2.1. Extraction of the Single-Mode Response. EWT is
a widely used adaptive signal decomposition method. Te
traditional EWT method consists of two steps: (1) de-
termining the frequency boundaries between the diferent
single-mode signals and (2) constructing the fltering bank
to extract the single-mode signals [55]. However, it is dif-
fcult to use only the traditional Fourier spectrum to de-
termine the fltering boundary for the nonstationary signal.
To tackle this issue, the SET is introduced to determine the
fltering boundaries. Te SET is based on the short-time
Fourier transform (STFT) and can generate an energy-
concentrated, time-frequency representation of the signal
[56]. Te EWTallows us to determine frequency boundaries
between diferent modes based on the resulting time-
frequency representation derived from the SET [57].

For an n degree of freedom shear-type building during
a strong earthquake, the equation of motion can be
expressed as follows:

M(t)€u(t) + C(t) _u(t) + K(t)u(t) � f(t), (2)

where M(t), C(t), and K(t) represent the time-variant mass,
damping, and stifness matrices of the structure during the
earthquake, respectively. u(t) � [u1(t) u2(t) ... un(t)]T, _u(t),
and €u(t) denote the displacement, velocity, and acceleration
response vectors of the structure. f(t) is the external earth-
quake excitation vector.

Transforming (2) into spatial modal coordinates yields

€qi(t) + 2d0i(t) _qi(t) + ω2
0i(t)qi(t) �

f
∗
i (t)

M
∗
i (t)

, (i � 1, 2, . . . , n),

(3)

where M∗i (t) � φT
i (t)M(t)φi(t) and f∗i (t) � φT

i (t)f(t) are
generalized mass and generalized load of the ith mode shape,
φi(t) is the ith mode shape, qi(t) is the ith modal coordinate,
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and ω0i(t) and d0i(t) are the ith natural frequency and
damping coefcient of the structure, respectively.

According to the modal decomposition theory, the inter-
story multimode pixel displacement at the lth story Δxl(t)

extracted from the video can be expressed as follows:

Δxl(t) �
1
sl

δl(t)

�
1
sl

ul − ul−1( 

�
1
sl



n

i�1
φli(t)qi(t) − φ(l−1)i(t)qi(t) 

�
1
sl



n

i�1
Δφli(t)qi(t)

� 

n

i�1
Δxli(t),

(4)

where l� 1, 2, . . ., n. Te value of u0 is constantly equal to 0.
sl is the unit conversion factor from pixel to meter for the lth
story. φli(t) is the coefcient at the lth degree of freedom of
the ith mode shape.

According to the analytic signal theory, the analytic
signal Qi(t) of the qi(t) can be expressed as follows:

Qi(t) � qi(t) + jH qi(t)  � Ai(t) · ejωi(t)dt
, (5)

where Ai(t) and ωi(t) are the instantaneous amplitude and
frequency of the ith modal response, H[ ] denotes the HT,
and j is the imaginary unit.

Furthermore, the analytic signal ΔXli(t) of the Δxli(t)

can be expressed as follows:

ΔXli(t) � Δxli(t) + jH Δxli(t)  �
1
sl

Δφli(t)Ai(t) · ejωi(t)dt
.

(6)

According to the defnition of the instantaneous fre-
quency (i.e., the derivative of phase versus time), the in-
stantaneous frequency of the ith modal response qi is equal
to the instantaneous frequency of Δxli.

Te STFT expression G(t,ω) of the multimode signal
Δxl can be expressed as follows:

G(t,ω) ≈ 
n

i�1
Ai(t) · g ω − ωi(t)(  · e

jωi(t)dt
, (7)

where g( ) represents the fast Fourier transform.
Te instantaneous frequency trajectory IFT(t,ω) for the

G(t,ω) can be obtained as follows:

IFT(t,ω) � −j ·
ztG(t,ω)

G(t,ω)
. (8)

Te energy-concentrated, time-frequency representation
Te(t,ω) obtained by using the SET can be expressed as

Te(t,ω) � G(t,ω) · δ(ω − IFT(t,ω)), (9)

where δ(ω − IFT(t,ω)) is defned as

δ(ω − IFT(t,ω)) �
1, ω � IFT(t,ω),

0, else.
 (10)

According to (9), an energy-concentrated, time-
frequency representation can be obtained, and the fre-
quency boundaries between diferent modes can be de-
termined. Te fltering boundaries for each single-mode
signal in the EWT can be defned by an interval
Ωi � [ωi−1′ ,ωi

′]. Additionally, a transient phase with a width
of 2τi is defned for each ωi

′. More details can be found in
reference [57].

Te corresponding empirical scaling function and the
wavelet function can be determined as

ϕi(ω) �

1, if   |ω|≤ωi
′ − τi,

cos
π
2
β

1
2τi

|ω| − ωi
′ + τi(   , if  ωi

′ − τi ≤ |ω|≤ωi
′ + τi,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

ψi(ω) �

1, if  ωi
′ + τi ≤ |ω|≤ωi+1′ − τi+1,

cos
π
2
β

1
2τi+1

|ω| − ωi+1′ + τi+1(   , if  ωi+1′ − τi+1 ≤ |ω|≤ωi+1′ + τi+1,

sin
π
2
β

1
2τi

|ω| − ωi
′ + τi(   , if  ωi

′ − τi ≤ |ω|≤ωi
′ + τi,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)
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where τi � cωi
′, 0< c< 1, and β( ) is the auxiliary function for

the Meyer wavelet [55].
Ten, the EWT analysis can be conducted. Te detail

coefcients WΔx(i, t) and the approximation coefcients
WΔx(1, t) can be obtained as

WΔxl
(i, t) � Δxl(τ)ψi(τ − t)dτ � F

−1 Δxl(ω)ψi(ω)( ,

(13)

WΔxl
(1, t) � Δxl(τ)ϕ1(τ − t)dτ � F

−1 Δxl(ω)ϕ1(ω) .

(14)

Te single-mode response extracted from the multimode
response can be described as

Δxl1(t) � WΔxl
(1, t)∗ ϕ1(t), (15)

Δxli(t) � WΔxl
(i, t)∗ψi(t). (16)

2.2.2. Estimation of the Natural Frequency. Te ω0i and d0i

of the structure can be regarded as lower-order polynomials
of Ai. Specifcally, ω0i and d0i behave as a low-pass flter,
while qi behaves as a high-pass flter. According to the
Bedrosian theorem of the HT, the following can be obtained:

H d0i(t) _qi(t)  � d0i(t)H _qi(t)  � d0i(t) _Qi(t), (17)

H ω2
0i(t)qi(t)  � ω2

0i(t)H qi(t)  � ω2
0i(t)Qi(t), (18)

€Qi(t) + 2d0i(t) _Qi(t) + ω2
0i(t)Qi(t) �

Fi(t)

M
∗
i

, (19)

where Fi(t) � f∗i (t) + jH[f∗i (t)].
Furthermore, (19) can be rewritten as follows by

substituting the frst two derivatives of Qi.

Qi(t)
€Ai(t)

Ai(t)
− ω2

i (t) + ω2
0i(t) + 2d0i(t)

_Ai(t)

Ai(t)
+ j 2

_Ai(t)

Ai(t)
ωi(t) + _ωi(t) + 2d0i(t)ωi(t)   �

Fi(t)

M
∗
i

. (20)

Te instantaneous frequency ωi(t) of the qi(t) can be
obtained by solving (20), (57), and (61).

ω2
i (t) � ω2

0i(t) −
Fi(t)qi(t) + H Fi(t) H qi(t) 

Mi q
2
i (t) + H qi(t) ( 

2
 

, (21)

where the frst term ω2
0i is a low-frequency component, while

the second term is a high-frequency component. Te ith
natural frequency ω0i can be estimated by fltering out the
high-frequency component from ωi.

Te SGF is a data smoothing technique that utilizes local
least-squares polynomial approximation [60]. It has been
validated in the feld of digital signal processing for its
excellent high-frequency noise reduction capabilities, as well
as its ability to preserve the shape of the signal [62]. In this
study, the SGF is applied to flter out the high-frequency
components from the ωi to get the estimated ω0i, which can
be expressed as follows:

ω0i(t) ≈ F t|βopt ,where βopt

� argmin 
τ�M

τ�−M

ωi(t + τ) − F(τ)( 
2⎧⎨

⎩

⎫⎬

⎭,

F(τ) � 
i�r

i�0
βiτ

i
� β0 + β1τ + · · · + βrτ

r
,

(22)

where F(τ) is a polynomial function, r and βi are the order
and coefcient,M is the SGF span, and βopt is the coefcient
acquired by using the least-square ft.

After obtaining the estimated natural frequency ω0i, the
natural frequency shift is approximated by the ratio of the
maximum to the minimum of the acquired natural
frequency.

2.3. Structural Damage Assessment. To facilitate the as-
sessment of structural damage, given the minimal contri-
bution of higher-order vibrations in low-rise structures, only
the frst modal response is extracted in the following
analysis. Te natural frequency shift-based structural
damage index [45, 50] was defned as

D � 1 −
fa1
fb1

 

2

, (23)

where fb1 is the frst natural frequency of the structure
before the earthquake; fa1 is the frst natural frequency of the
structure after the earthquake. Te value of D is less than 1,
and the larger the value of D, the more severe the structural
damage.

In this study, the damage index can be approximated as

D ≈ 1 −
min ω01(t)( 

max ω01(t)( 
 

2

, (24)

where ω01(t) is the estimated frst natural frequency of the
structure.

A reasonable criterion regarding the correspondence
between damage indices and damage states is important for
structural damage assessment. To illustrate the feasibility of
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the proposed method, a criterion based on the principles of
the performance-based earthquake design is introduced
[50]. Te range of the damage index for reinforced concrete
structures is shown in Table 1.

3. Small-Scale Model Verification

3.1. Experimental Setup. To validate the feasibility of the
proposed method, a shake table test for a small-scale model
of a two-story steel frame structure was designed. Te ex-
perimental setup is shown in Figure 3. To stay within the
limits of the loading capacity of the shake table and the
available space in the laboratory, the total height of the
model is 1.1m, and the heights of stories one and two are
0.6m and 0.5m, respectively. Te cross-sectional di-
mensions of each column are 3mm× 20mm. Each rigid
foor has a size of 500mm× 500mm× 5mm and a mass of
10 kg. To simulate the real indoor situation, small-scale
models of furniture were fxed on the foors, as shown in
Figure 3. Two cameras were rigidly fxed on the ceilings and
perpendicular to the foor below. Te resolution and frame
rate of the cameras are 640× 480 pixels and 120 fps, re-
spectively. In addition, to verify the accuracy of the mea-
sured response through computer vision techniques, the
accurate dynamic response of the model during the ex-
periment was measured at a sampling frequency of 120Hz
using the position-sensing system. Te position sensor
markers are fxed on the side of each foor. Te shake table is
a Quanser XY Shake Table III produced by the Quanser
company. Te cameras are RYS720P Global Shutters from
Shenzhen RongyangSheng Electronic Technology Corpo-
ration. Te position-sensing system is the NDI Optotrak
Certus produced by the Northern Digital Incorporated.

Springs are utilized in the experiment to simulate the
damage sustained by the structure during the earthquake.Te
springs were frstly tightened obliquely on a certain foor of
the model. Ten, the springs were suddenly unloaded at
a certain moment when the seismic acceleration was large to
simulate the stifness degradation caused by the seismic
damage. To ensure safety, protective sleeves were installed for
each spring. Considering the feasibility of the operation, the
springs were installed only on the frst foor, and three dif-
ferent conditions of the structure (DS 1, DS 2, and DS 3) were
tested. Diferent conditions of the structure were achieved by
changing the number of springs. Te natural frequencies of
the structures before and after the seismic load were obtained
by using the sweep frequency excitation (Table 2). Te frst
natural frequency decreases after the earthquake. Te seismic
action applied by the shake table was the earthquake named
NGA_no_1105_HIK000, which can be obtained from the
website (https://ngawest2.berkeley.edu), as shown in Figure 4.
Due to the limitations of the shake table, the peak acceleration
of ground motion was adjusted to 0.1 g.

3.2. Verifcation of the Structural Inter-Story Response.
Te structural inter-story pixel displacements were obtained
through the procedure described in Section 2.1. As shown in
Figure 5, the region of the fxed small-scale model of the

furniture was set as the ROI, and the feature points in the
ROI were automatically detected using the Harris corner
detection algorithm. Subsequently, the Kana-
de–Lucas–Tomasi algorithmwas utilized to track the motion
of feature points, and the inter-story displacement, in terms
of pixels, can be obtained. To verify the accuracy of the
structural response measured by computer vision tech-
niques, the displacement was calibrated into meters by
multiplying a unit conversion factor s, which can be acquired
according to (24). Te diagram of unit conversion is shown
in Figure 6, and the P, p, and s in the schematic are
99.52mm, 148 pixels, and 0.672mm/pixel, respectively.

s �
P

p
, (25)

where s is the unit conversion factor from pixel to meter, P is
the length (meters) of the target, and p is the pixel length of
the target.

Te position sensor cannot measure the response of the
structure during the spring unloading process due to the
occlusion by personnel. Tus, the response of the structure
without springs was selected to verify the accuracy. Te
comparison between the structural responses measured via
the computer vision and as measured by the position sensor
is shown in Figure 7. Te relative errors of the maximum
inter-story displacement of the frst and second stories of the
structure are 0.21% and 0.36%, respectively. Furthermore,
the main peak frequencies of the inter-story displacement
responses obtained by the two approaches are consistent.
Te consistency indicates the dynamic response of the
structure can be accurately measured using the method
described in this study. As observed from the spectrum of
the responses, a camera with 120 fps is sufcient to capture
the structural response.

3.3. Damage Index Calculation of the Small-Scale Model.
After verifying the accuracy of the measured structural re-
sponse, the natural frequency of the structure can be esti-
mated from the response using the procedure described in
Section 2.2. First, the structural responses in terms of
inter-story pixel displacement were obtained via the cameras,
as shown in Figures 8 and 9. Ten, the energy-concentrated,
time-frequency representation of the response was obtained
by using the SET, and the bandwidth of the frst modal re-
sponse was determined as shown in Figures 8 and 9. Te
ranges of the frequency bands for the frst-order modal re-
sponses are listed in Table 3. Next, the frst modal response
was extracted from the measured response through the EWT.
Te extracted frst modal responses are shown in Figures 10
and 11. Lastly, the instantaneous frequency of the frst modal
response was calculated using the HT, and the frst natural
frequency was then estimated through the application of the
SGF (Figures 10 and 11).Te order of the polynomial rwas set
to 3, and the spanM was set to 5999 in the SGF. It can also be
seen that the error of the calculated instantaneous frequency
of the response due to Gibbs’ phenomenon [63], which refers
to an overshoot induced by a jump discontinuity, can be also
eliminated by SGF.
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Figure 3: Te experimental setup of the shake table test for the small-scale model: (a) side view of the model; (b) front view of the model;
(c) the position sensor; (d) overall diagram of the experimental setup.

Table 1: Te range of damage index for diferent damage states for reinforced concrete structure [50].

Damage state Description of the
damage state Damage index

Essentially no damage Te load-bearing components are intact, and some non-load-bearing components
are slightly damaged 0.00∼0.10

Slight damage Individual load-bearing components have slight residual deformation, and
individual non-load-bearing components are obviously damaged 0.10∼0.20

Moderate damage Most of the load-bearing components have slight residual deformation, and some of
them are obvious 0.20∼0.50

Heavy damage Most of the load-bearing components are seriously damaged or partially collapsed 0.50∼0.75
Collapse Most of the load-bearing components are collapsed 0.75∼1.00
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To verify the feasibility of the proposed approach, the
damage indices were calculated according to the estimated
frst natural frequency of the structure. Te results of the
calculated damage indices are listed in Table 4 and Table 5.
Te error of the damage index is defned as the diference
between the damage index estimated by the proposed
method and the one obtained by the modal test. Te max-
imum error of the damage index is 0.097, and the damage
indices obtained by using the structural response of the frst
and second stories are consistent. Tis indicates that the
proposed approach can obtain the natural frequency-based
damage index with only one camera.Te error of the damage
index is mainly attributed to the measurement error in the
pixel displacement and the estimation error in the in-
stantaneous frequency.

4. Full-Scale Model Verification

4.1. Experimental Setup. To further confrm the practica-
bility and efectiveness of the proposed method, the method
was applied to evaluate the damage state of a full-scale
reinforced concrete building model. In contrast to the
sudden reduction of the structural stifness in Section 3, the
seismic damage accumulation of the structure during
the earthquake can be considered in this experiment. Te
model is from the building nonstructural components and
systems (BNCS) project [64] and has fve stories, as shown in
Figure 12. Te shake table test of the full-scale model
consisted of two phases: base isolated phase and fxed base
phase. Te model was severely damaged in the second phase
of the test named FB-5: DEN67. Te seismic action applied
by the shake table in this test followed the earthquake
recorded by the TAPS Pump Station during the Denali
earthquake. Te peak acceleration of the ground motion was
scaled to be 0.64 g. According to white noise excitation tests,
the frst natural frequency of the structure before and after
the earthquake is 0.84Hz and 0.62Hz, respectively.
According to Table 1, the damage index is 0.455, which
corresponds to moderate damage.Te camera Q6 (1280× 720
resolution at 25 fps), which was located on the second foor,
was used in this study. More detailed information can be
found on the website (https://www.designsafe-ci.org/data/
browser/public/nees.public/NEES-2009-0722.groups).

4.2. Damage Assessment of the Full-Scale Model. Te entire
assessment procedure for the full-scale model is similar to
that for the small-scale model. First, the ROI was selected and
the feature points were detected using the surveillance video
during the earthquake, as shown in Figure 13. Te structural
response was obtained by tracking the feature point, which
was observed to remain stationary relative to the foor, as
shown in Figure 14. Ten, the energy-concentrated, time-
frequency representation of the response was obtained by
using the SET, as shown in Figure 14. Te range of the
frequency band for the frst modal response is 0.43Hz to
1.00Hz. Next, the frst modal response was extracted from
the measured response by using the EWT (Figure 15). Fi-
nally, the instantaneous frequency of the frst modal response
was calculated by using the HT, and the frst natural fre-
quency was estimated through the SGF (Figure 15).Te order
of the polynomial r was set to 3, and the span M was set to
1499. Te maximum and minimum of the estimated frst
natural frequency were 0.82Hz and 0.60Hz, respectively.Te
resulting damage index was 0.465, which corresponds to
moderate damage and is consistent with the result of the
white noise tests [64].

Table 2: Te settings of structural conditions in the small-scale model experiment.

Damage states fb1 (Hz) fa1 (Hz) Damage index

DS 1 1.18 1.18 0.000
DS 2 1.30 1.18 0.176
DS 3 1.42 1.18 0.309

10 20 30 40 500
Time (s)

-0.1

-0.05

0

0.05

0.1

Ac
ce

le
ra

tio
n 

(m
/s

2 )

Figure 4: Seismic action applied by the shake table in the small-
scale model experiment.

The detected feature point
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Figure 5: Te selected ROI and the detected feature points on the
frst frame of the video in the small-scale model experiment.
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Figure 8: Te acquired structural inter-story pixel displacement responses of the frst story and their energy-concentrated time-frequency
representation from SET: (a, b) DS 1; (c, d) DS 2; (e, f ) DS 3.
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Figure 9: Continued.
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Figure 9: Te acquired structural inter-story pixel displacement responses of the second story and their energy-concentrated time-
frequency representation from SET: (a, b) DS 1; (c, d) DS 2; (e, f ) DS 3.
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Table 3: Te range of the frequency bands for the frst-order modal responses.

Damage states
Te response of
the frst story

(Hz)

Te response of
the second story

(Hz)
DS 1 0.76 to 1.35 0.75 to 1.37
DS 2 0.95 to 1.67 0.95 to 1.78
DS 3 0.96 to 2.04 1.04 to 2.04
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Figure 10:Te extracted frst modal response of the frst story and the estimated frst natural frequency of the structure: (a, b) DS 1; (c, d) DS
2; (e, f ) DS 3.
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Figure 11:Te extracted frst modal response of the second story and the estimated frst natural frequency of the structure: (a, b) DS 1; (c, d)
DS 2; (e, f ) DS 3.

Table 4: Te results of the damage index calculation using the response of the frst story.

Damage states max(ω01(t)) (Hz) min(ω01(t)) (Hz)
Damage index Te error of the

damage indexProposed method Modal test

DS 1 1.21 1.15 0.097 0.000 0.097
DS 2 1.29 1.16 0.191 0.176 0.015
DS 3 1.40 1.13 0.349 0.309 0.040

Table 5: Te results of the damage index calculation using the response of the second story.

Damage states max(ω01(t)) (Hz) min(ω01(t)) (Hz)
Damage index Te error of the

damage indexProposed method Modal test

DS 1 1.21 1.15 0.097 0.000 0.097
DS 2 1.28 1.15 0.193 0.176 0.017
DS 3 1.41 1.13 0.358 0.309 0.049
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Figure 12: Full-scale building in the BNCS project.
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Figure 13: Te selected ROI and the detected feature points on the frst frame of the video in the full-scale model experiment.
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Figure 14: Te acquired structural inter-story pixel displacement response (a) and its energy-concentrated time-frequency representation
from SET (b).
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5. Conclusion and Future Work

Tis study presents an efcient and efective strategy to
accurately assess post-earthquake structural damage. Te
approach was developed based on computer vision and
time-frequency analysis techniques and applied to data from
existing surveillance cameras. Te relative seismic response
of inter-stories was extracted from the video by using
a marker-free computer vision-based method. Subsequently,
the natural frequency shift of the structure was estimated by
using HT-based time-frequency analysis. Te damage index
related to the frst natural frequency shift was then calculated
and used for the damage assessment. Te feasibility of the
approach was verifed via shake table experiments. Te main
conclusions are as follows:

(1) Te inter-story seismic response of the structure can
be accurately acquired by using surveillance cameras
and computer vision techniques under favorable
illumination conditions. Te relative error of the
maximum inter-story displacement of the structure
is less than 0.4%.

(2) Te natural frequency shift of the structure can be
estimated by employing the SET-enhanced EWT
method, HT, and SGF.Te error of the damage index
using the estimated frequency shift was less than 0.1.

(3) Te damage state of a structure can be directly
evaluated solely by analyzing the relative pixel dis-
placement response of the structure with natural
frequency-based damage assessment theory.

Te proposed strategy for assessing structural damage
induced by earthquakes capitalizes on existing surveillance
cameras to achieve accurate assessment. Tis method can
serve as an alternative solution for post-earthquake struc-
tural damage assessment in situations where sensor moni-
toring systems are not in place. Despite the encouraging
results, there are still some open research challenges in
future research. Tese challenges include the following:

(1) Te quality of the images collected in the experiment
is good, but the images acquired in the actual seismic
scenario are adversely afected by factors such as
insufcient illumination and occlusion. Tus, the
computer vision-based algorithms to extract struc-
tural inter-story pixel displacement need further
improvement.

(2) Te external images of the structure hold rich in-
formation about structural damage. Consequently,
the integration of visual inspection-based assess-
ments with vibration monitoring-based assessments
represents the next crucial area of exploration.

(3) Due to laboratory constraints, the feasibility of the
proposedmethod is verifed only in one-dimensional
shake experiments, and the potential applicability of
the proposed method in two- and three-dimensional
seismic scenarios will be pursued in future studies.

(4) Te development of advanced algorithms for pixel
displacement measurement and instantaneous fre-
quency estimation will also be a focus of future
research to further reduce the damage index error.
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