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Traditional bridge health monitoring methods that necessitate sensor installation are not only costly but also time-consuming. In
contrast, utilizing smartphone data collected from vehicles as they traverse bridges ofers an efcient and cost-efective alternative.
Tis paper introduces a cutting-edge damage detection framework for indirect monitoring of bridge structures, leveraging
a substantial volume of acceleration data collected from smartphones in vehicles passing over the bridge. Our innovative approach
addresses the challenge of collecting and transmitting high-frequency data while preserving smartphone battery life and data plans
through the integration of compressed sensing (CS) into the crowdsensing-based monitoring framework. CS employs random
sampling and signal recovery from a signifcantly reduced number of samples compared to the requirements of the
Nyquist–Shannon sampling theorem. In the proposed framework, acceleration signals from vehicles are initially acquired using
smartphone sensors, undergo compression, and are then transmitted for signal reconstruction. Subsequently, feature extraction
and dimensionality reduction are performed usingMel-frequency cepstral coefcients and principal component analysis. Damage
indexes are computed based on the dissimilarity between probability distribution functions utilizing the Wasserstein distance
metric. Te efcacy of the proposed methodology in bridge monitoring has been substantiated through the utilization of
numerical models and a lab-scale bridge. Furthermore, the feasibility of implementing the framework in a real-world application
has been investigated, leveraging the smartphone data from 102 vehicle trips on the Golden Gate Bridge. Te results demonstrate
that damage detection using the reconstructed signals obtained through compressed sensing achieves comparable performance to
that obtained with the original data sampled at the Nyquist measurement sampling rate. However, it is observed that to retain
severity information within the signals for accurate damage severity identifcation, the compression level should be limited to 20%.
Tese fndings afrm that compressed sensing signifcantly reduces the data collection requirements for crowdsensing-based
monitoring applications, without compromising the accuracy of damage detection while preserving essential damage-sensitive
information within the dataset.

1. Introduction

Te implementation of intelligent solutions for condition
monitoring of infrastructure represents a pivotal stride to-
ward the realization of smart cities. Regular monitoring of
structures not only prevents potential loss of lives and wealth
due to sudden collapses but also enables proactive main-
tenance scheduling, leading to reduced maintenance and
life-cycle costs. Bridges, as a critical component of the public
transportation system, are deteriorating due to a variety of
factors. Tis type of degradation signifcantly impairs the

performance and service life of bridges [1–3]. As a result, it is
vital to create efective and efcient ways for the early de-
tection of deterioration and damage [2].

Te deteriorating state of infrastructure in the
United States and Canada, particularly with regard to
bridges constructed during the 1950s and 1960s, has raised
signifcant concerns [4]. Presently, nearly 9% of bridges in
the United States are classifed as structurally defcient, as
reported by the Federal Highway Administration (FHWA)
[5]. Similarly, the Canadian Infrastructural Report Card for
2019 estimates that around 40% of Canadian bridges fall into
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the “fair,” “poor,” or “very poor” condition categories [6].
Tis situation poses an elevated risk of potential failure for
these bridges, highlighting the crucial need for vigilant
monitoring and maintenance practices to ensure their
structural stability and long-term performance.

Traditional bridge health monitoring techniques typi-
cally involve the installation of sensors directly on the
structure, with subsequent analysis of the collected data to
detect damage [7–11]. Recent research on fxed-sensor-
based damage detection has emphasized Bayesian methods.
For example, Zhang et al. [12] proposed a novel damage
detection method based on a fundamental Bayesian two-
stage model and sparse regularization, demonstrating im-
proved performance due to the consideration of uncertainty.
Wang et al. [13] introduced a probabilistic data-driven
damage detection method using Sparse Bayesian Learning
(SBL) and validated its capabilities with feld monitoring
data from a cable-stayed bridge. In another work [14], the
authors applied an improved sparse Bayesian learning (iSBL)
scheme for high-precision data modeling, producing ac-
curate probabilistic predictions in both time and frequency
domains. Wang andWu [15] presented an improved explicit
connectivity Bayesian networks (ECBNs) for system re-
liability assessment, especially suitable for systems with rare
damage feld data, obtaining promising results. Despite their
accuracy and automation, these approaches involve sub-
stantial costs, time commitments, and potential bridge
closures due to sensor installations. Consequently, many
short- and medium-span bridges forego structural health
monitoring (SHM) systems due to practical, economic, and
installation constraints. To address these challenges, re-
searchers have explored indirect health monitoring methods
based on the concept of vehicle-bridge interaction.

Previous research has extensively explored the concept
of indirect bridge condition monitoring through vehicle-
assisted measurements. Yang et al. [16] were among the
pioneers in this feld, where they investigated the equation of
motion integrating the dynamic properties of both the ve-
hicle and bridge. Tey represented the acceleration of the
passing vehicle as a function of the bridge’s dynamic
characteristics. Subsequent studies by various researchers
worldwide have further contributed to indirect health
monitoring [17–20]. For instance, Bu et al. [21] proposed an
approach based on dynamic response sensitivity analysis
using acceleration measurements on the vehicle to detect
bridge damage. Teir method involved an iterative pro-
cedure using 3-parameter and 5-parameter vehicle models,
exposing damage in terms of fexural stifness reduction.
Numerical analyses demonstrated the efectiveness of their
approach in the presence of measurement noise and road
surface roughness. Talebi-Kalaleh and Mei [22] introduced
an innovative method for bridge modal analysis using
vehicle-mounted accelerometers. Tey mapped the crossing
vehicle contact-point responses to some virtual sensing
nodes on the bridge, applying an inverse problem solution
with cubic spline functions to accurately identify the mode
shapes of the bridge. Tey further improved accuracy with
an ARX-based signal prediction approach. Zhang et al. [23]
proposed an approach to extract the mode shape square

(MOSS) of a bridge from a passing vehicle. By exciting the
bridge using tapping devices while the vehicle passes, they
defned the damage feature as the diference in MOSS be-
tween intact and damaged bridges. Teir numerical analysis
and experiments demonstrated successful damage locali-
zation even in the presence of high-level noise. Matarazzo
and Pakzad [24] proposed structural identifcation using the
expectation maximization (STRIDE) method to address the
challenge of missing observations in modal analysis. Tey
successfully applied this technique to data collected from the
Golden Gate Bridge using mobile sensing, accurately
identifying 19 modes. In addition, Matarazzo and Pakzad
[25] introduced a dynamic sensor network (DSN) approach
to efciently store measurement data from a large number of
mobile sensing nodes. Tey also presented a truncated
physical model for data processing, demonstrating the ef-
fciency of DSN through examples of high-resolution mobile
sensing and big data processing. Despite notable advance-
ments in this feld, several challenges persist. Tese include
the limited interaction time between vehicles and bridges,
which can hinder the acquisition of sufcient information to
detect potential damages and assess their severity. In ad-
dition, sensitivity to ambient noise remains a concern, and
the requirement for knowledge regarding vehicle confgu-
rations and contact-point responses of the vehicles remains
a critical consideration.

Te rapid advancement of Internet of Tings (IoT)
technologies has facilitated the efortless installation of
sensors on smart devices such as electric vehicles and
cellphones, allowing the collection of large-scale real-time
data for SHM applications [26, 27]. Mei and Gul [28, 29]
introduced a crowdsensing-based methodology for damage
detection in bridges using data collected by a large number
of passing-by vehicles. Teir innovative framework was
validated through both numerical simulations and labora-
tory experiments, allowing them to establish a correlation
between damage severity and feature magnitude. Matarazzo
et al. [26] conducted a real-feld experiment to assess the
feasibility of crowdsensing-based bridge monitoring tech-
niques. Leveraging smartphone data from everyday vehicle
trips on both the Golden Gate Bridge and a concrete bridge,
which included controlled feld experiments and un-
controlled Uber rides, they could accurately determine the
critical modal properties of the bridges, such as natural
frequencies using the smartphone data from diferent
vehicle trips.

However, continuous data collection and transmission
with high sampling frequencies pose challenges, particularly
in terms of public participation due to potential smartphone
battery drain and data plan consumption [29]. Tis paper
introduces a novel crowdsensing-based framework that le-
verages mobile sensors, including smartphones or embed-
ded sensors in smart vehicles. Te framework employs
compressed sensing (CS) for data collection and indirect
monitoring of bridges, enhancing efciency by recovering
signals from fewer samples. By aggregating acceleration data
from numerous vehicles passing over a bridge, the frame-
work extracts features through Mel-frequency cepstral
analysis. It then estimates probability distributions and
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performs a comparative analysis between baseline and un-
known cases for damage detection, enabling continuous and
simultaneous bridge monitoring. Numerical analyses and
laboratory experiments validate the methodology, demon-
strating that damage detection using reconstructed signals
remains comparable to results obtained from original data,
even with signifcant compression levels. Te efectiveness of
the proposed method is further demonstrated through its
implementation and validation in a real-world scenario.
Smartphone data from 102 vehicles crossing the Golden
Gate Bridge is utilized, providing a practical and tangible
application of the methodology.

Te paper is structured as follows: Section 1 ofers an
introduction and reviews related work in the realm of bridge
condition monitoring. Section 2 provides a detailed expo-
sition of the proposed methodology, while Sections 3 and 4
delve into numerical investigations and laboratory experi-
ments, respectively. Te feasibility and real-world applica-
tion of the proposed method are explored in Section 5. Te
paper concludes with Section 6, providing a summary of the
key fndings and discussing potential avenues for future
research.

2. Methodology

Tis study employs a novel methodology that utilizes
compressed data obtained from crowdsourced acceleration
responses of a large number of passing vehicles, utilizing the
smartphones of the drivers to detect and quantify damage on
bridges. Te framework overview is illustrated in Figure 1.

In this methodology, acceleration signals from each
passing vehicle are collected using a random sampling
technique to reduce the number of measurement data points
while retaining the necessary information and minimizing
Internet data usage. Subsequently, the compressed data is
transmitted to a processing center via the Internet, where the
CS theory is employed to reconstruct the original high-
frequency signals from the compressed data.

To extract engineering features from the reconstructed
signals, Mel-frequency cepstral (MFC) analysis is employed.
In addition, principal component analysis (PCA) is used to
reduce the dimensionality of the extracted MFCCs while
preserving the most informative components. Probability
distribution functions (PDFs) of the extracted features are
computed separately for the baseline case (representing the
intact bridge) and the unknown cases (indicating a poten-
tially damaged bridge). Te damage index is computed by
quantifying the dissimilarity between the probability dis-
tributions of the baseline case and an unknown case using
the Wasserstein distance metric. Te index is then nor-
malized with respect to the baseline validation case to defne
a damage measure. A value greater than one on this index
indicates the presence of damage or anomalies in the bridge
structure.

2.1. Compressed Sensing. CS is a revolutionary technique in
signal processing that enables the efcient acquisition and
reconstruction of sparse or compressible signals from highly

incomplete random sets of measurements [30]. It challenges
the traditional Nyquist–Shannon sampling theorem by
leveraging the prior knowledge that most real-world signals
are sparse or can be represented sparsely in a certain domain.
In SHM, CS is mainly used in data loss applications. Bao
et al. [31] presented a literature review on the emerging use
of CS technology in SHM data management. Tey high-
lighted that CS ofers a new sampling theory for reducing
data acquisition by reconstructing sparse or compressible
signals from incomplete measurements. Te authors dis-
cussed various applications of CS in SHM, including ac-
celeration data, lost data recovery, acoustic emission data,
moving load distribution identifcation, and structure
damage identifcation. Teir investigation demonstrated the
promising potential of CS in SHM. Almasri et al. [32] ex-
plored the use of discrete cosine transform (DCT) as a data
compression technique for SHM data. Tey integrated
a time-frequency blind source separation technique with
DCT-based compression to assess its accuracy in modal
identifcation. Teir results, validated through numerical
and experimental studies, demonstrated that DCT can ef-
fectively compress vibration data containing damage sig-
natures and low energy modes. CS has also proven
invaluable in handling missing values within the spatio-
temporal response matrix of bridge structures in scenarios
involving mobile sensors instead of fxed ones. For instance,
Jana and Nagarajaiah [33] introduced a formation control
framework that harnesses data from multi-agent mobile
sensors to estimate the dense full-feld vibration response
matrix of the structure, utilizing the compressed sensing
algorithm in the spatial domain. Teir proposed method
successfully obtained highly accurate responses, demon-
strating the efcacy of compressed sensing in flling in
missing data within the spatial domain.

A sparse signal contains mostly zero or close to zero
elements. For instance, in an image, many pixel values may
be zero or have minimal intensity. CS aims to exploit this
sparsity during the sampling process to acquire the signal
more efciently [34]. Te acquisition process in CS involves
projecting the signal onto a lower-dimensional subspace
using a sensing matrix. Tis matrix, typically random or
pseudo-random, captures linear combinations of the orig-
inal signal. By reducing the signal’s dimensionality while
preserving essential information, CS achieves more efcient
acquisition. Consider a sparse signal x of length N, which
can be represented as a vector in some basis or transform
domain (e.g., Fourier, wavelet, etc.).

x � A−1
N X, (1)

where X (N × 1) is the discrete cosine transform co-
efcients of the original signal in the frequency domain,
and A−1

N is the inverse operator of the discrete cosine
transform (I-DCT) (N × N) that depends only on the time
step size and the number of samples. Te main reason for
using DCT in CS is that it tends to concentrate the signal
energy in a smaller number of coefcients compared to the
discrete Fourier transform (DFT). Tis property makes it
particularly suitable for data compression applications
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where retaining the most signifcant information is im-
portant. DCT has several advantages over other signal
processing tools [35]: (1) it has the ability to concentrate
energy in the lower frequencies, and (2) it can reduce the
blocking artifact’s efect that results from the boundaries
between subimages as they become visible. Owing to the

above two properties, the DCT provides a very good
compromise between information-packing ability and
computational complexity.

Te commonly used discrete cosine transform is DCT
Type-II, which is an orthonormal transform, and its inverse
operator is as follows [35]:
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Figure 1: Proposed framework for damage detection based on CS.
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. (2)

Te compressed measurement of x, denoted as y
(M × 1), is obtained through a linear transformation of the
original signal using a randomly generated sensing matrix,
Ψ, with dimensions M × N, where M≪N. Tis matrix
comprises entries of zeros and ones (a logical matrix), ad-
hering to a Gaussian distribution [36]. It is crucial to em-
phasize that the number of data points to be measured (M)

is contingent on the desired compression level. In addition,
matrix Ψ must be generated before initiating the mea-
surement process, and it needs to be provided as input to the
computer responsible for reconstructing the original signal
from the compressed data.

y � Ψx. (3)

Hence, the goal is to determine the unknown discrete
cosine transform of the original signal (X) based on the
given compressed measurement (y) by minimizing the
reconstruction error using the following equation:

min
X

ΨA−1
N X − y

����
����
2

+ c X‖ ‖1􏼔 􏼕. (4)

In the equation above, c represents the regularization
parameter, while X‖ ‖1 denotes the Manhattan norm, which
quantifes the sum of absolute values for the vector’s ele-
ments. By using any optimization package, we can fnd an
optimal estimate of X (i.e. 􏽢X). Ten, we can substitute it into
equation (1) to obtain the reconstructed signal with the same
size as the original signal (xrecon).

Te conventional algorithm for the CS method to re-
construct original signals with a higher sampling rate using
the compressed measurement is as follows (Algorithm 1):

2.2. Feature Extraction Using Mel-Frequency Cepstral
Analysis. Te application of Mel-frequency cepstral (MFC)
analysis for feature extraction in indirect health monitoring
was initially introduced in the domain of bridge health
monitoring by the authors in 2019 [28, 29]. Cepstral analysis
was chosen in the proposed method due to its capability to
extract information across a wide range of frequencies,
rather than focusing solely on peaks. Although conventional
cepstral analysis techniques assign equal weights to diferent
frequency ranges, MFC analysis assigns higher weights to
lower frequencies, making it more suitable for bridge
monitoring. Te design of Mel-frequency cepstral co-
efcients (MFCCs) was inspired by the human auditory
system’s response to auditory stimuli. Similar to the human
perception of sound, where the perceptual diference be-
tween 100Hz and 200Hz is much more signifcant than
between 10,000Hz and 10,100Hz, despite their equal linear
distances, the natural frequency of vibration for bridges
exhibits a similar characteristic.Te discrepancy in the lower
frequency range, which encompasses the majority of sig-
nifcant modes, tends to bemore substantial compared to the
diference in higher frequency ranges [28].

Te procedure for calculating MFCCs from signal x can
be summarized as follows:

(1) Perform the Fourier transform on the acceleration
data to convert the signal from the time domain to
the frequency domain, resulting in the signal’s power
spectrum (X).

(2) Apply a set of triangular flters (Hi(k)) to the power
spectrum (n flter in total). Each triangular flter is
defned as follows:

Hi(k) �

k − fi−1

fi − fi−1
, if  fi−1 ≤ k<fi,

fi+1 − k

fi+1 − fi

, if  fi ≤ k<fi+1,

0, otherwise,
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M f1( 􏼁 +(i − 1) ×
M fn( 􏼁 − M f1( 􏼁

n − 1
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(5)
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where Hi(k) and fi are the magnitude response and
center Hertz-scale frequency of the i-th triangular
flter, respectively. k is the frequency index, and n is
the total number of the selected frequencies.

(3) Calculate the Mel-scale and Hertz-scale frequencies
using the following mappings:

mi � M fi( 􏼁 � 5 ln 1 +
fi

5
􏼠 􏼡,

f � M
−1

mi( 􏼁 � 5 e

mi

5 − 1⎛⎝ ⎞⎠.

(6)

Here, mi denotes the corresponding evenly spaced
Mel-scale frequency [28].

4. Compute the logarithms of the powers (sum of the
products of triangular flters and power spectrum) at
each Mel-scale frequency using the following
equation (7):

logE(i) � log 􏽘
k

Hi(k) × |X(k)|
2⎛⎝ ⎞⎠; i � 2, 3, . . . , n − 1.

(7)

(5) Extract the MFCCs by applying the discrete cosine
transform (DCT) to the logged powers:

MFCCj � 􏽘

n−1

i�2
logE(i) cos

π
n − 2

i −
3
2

􏼒 􏼓j􏼔 􏼕; j � 1, 2, . . . , n.

(8)

Te MFC analysis process is depicted in Figure 2,
providing an overview of the involved steps. For the purpose
of damage detection in bridges, a specifc number of MFCCs
can be employed [28]. In this study, we have selected 20 and
30 MFCCs for numerical and experimental investigations,
respectively. Te n-selected MFCCs are extracted from each
of the recorded acceleration signals (m signals in total),
which represent observations collected from diferent
passing vehicles at various time windows within the same
system, encompassing either a damaged case or the baseline.
Tese chosen MFCCs form the feature matrixU, resulting in
dimensions of m by n.

2.3. Anomaly Detection Using Extracted Features. In the
context of anomaly detection, the dissimilarity between the
probability density functions (PDFs) of a feature in two
diferent states can be used to defne anomalies. Figure 3
presents an illustrative example of anomaly detection using
bivariate features with a normal distribution.

After extracting the feature matrices through MFC
analysis of the crowdsensed acceleration data, n-dimensional
PDFs are computed based on these matrices for both the
k-th unknown case (Qk) and the baseline case (P). Tese
PDFs provide valuable insights into the statistical charac-
teristics of the observed data and serve as the basis for
quantifying anomaly detection and the identifcation of
structural damage. Figure 4 illustrates a sample pairwise
scatterplot of the frst 3MFCCs, demonstrating the statistical
pattern of the feature matrices for the baseline and a dam-
aged case, highlighting their applicability for anomaly de-
tection. An underlying assumption in this paper is that the
extracted feature matrix should exhibit stable distributions
when the bridge condition remains unchanged.

PCA is utilized to analyze the extracted feature matrices
and efectively reduce their dimensionality while identifying
the most signifcant components. Te distance between two
multivariate probability PDFs using the Wasserstein dis-
tance, also known as the Earth Mover’s distance [37], is
a fundamental concept in probability theory for quantifying
dissimilarity between probability measures. Te p-Wasser-
stein distance, where p≥ 1, is defned as follows:

For p ∈ [1,∞) and Borel probability measures P and Qk

on Rn with fnite p-moments, their p-Wasserstein distance
[37] is given by

Wp P,Qk( 􏼁 � inf
π∈Γ P,Qk( )

􏽚
Rn×Rn

|X − Y|
p
, dπ⎛⎝ ⎞⎠

1/p

. (9)

Here, samples X � (X1, . . . , Xn) are drawn from the
probability measure P, and samples Y � (Y1, . . . , Yn) are
drawn from the probability measure Qk. Both P and Qk are
probability measures (functions) defned on Rn, where n

represents the dimensionality of the data. Te symbol π
represents a joint probability measure on Rn × Rn. It is an
element of the set Γ(P,Qk), which consists of all possible
joint probability measures whose marginals are P andQk. In
other words, for any subset A ⊂ Rn, we have π(A × Rn) �

Input: Compressed measurement of y and sensing matrix Ψ
Output: Reconstructed signal with higher sampling rate (xrecon.)

Step 1: Determine the number of rows (M) and the number of columns (N) of matrix Ψ.
Step 2: Determine the inverse discrete cosine transform operator matrix A−1

N .
Step 3: Solve the optimization problem:
􏽢X � argminX[ ΨA−1

N X − y ‖ 2 + c
����

����X ‖ 1]

Step 4: Reconstruct the original signal using the estimated DCT of that:
xrecon. � A−1

N
􏽢X

ALGORITHM 1: Compressed sensing algorithm.
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P(A) and π(Rn × A) � Qk(A). Te p-Wasserstein distance,
denoted as Wp(P,Qk), measures the minimum cost of
transforming the distribution represented by P into the dis-
tribution represented by Qk. Tis cost is computed by mini-
mizing the integral expression over all feasible joint probability
measures π between the samplesX andY. Smaller values of the
metric indicate a closer resemblance, while larger values in-
dicate a greater degree of dissimilarity. It is worth noting that
the Wasserstein distance is always nonnegative and fnite. To
establish a normal range for the damage index, this measure
can be computed using the validation data for the baseline
structure initially. Ten, for an unknown case, the damage
index (DI) is defned by normalizing the measured value with
respect to the calculated baseline-validation value:

DI �
Wp P,Qunknown( 􏼁

Wp P,Qvalidation( 􏼁
. (10)

If the DI is approximately 1, it indicates no damage,
while values greater than 1 suggest the presence of anomalies
or damage in the structure.

3. Numerical Investigations

3.1. Model Setup. To validate the proposed method, a set of
numerical data is generated using the fnite element software
Abaqus. In this analysis, an undamped, simply supported
bridge ismodeled under amovingmass.Te bridge span is set
at 25meters, similar to the bridge described in Yang et al.’s
work [16]. Te bridge, constructed from reinforced concrete
with a density of 2400 kg/m3 and an elastic modulus of
27.5GPa, has a cross-sectional area of 2.0m2 and amoment of
inertia of 0.12m4. It is discretized into 16 elements, and its
frst three natural frequencies are determined as 2.08Hz,
8.33Hz, and 18.75Hz. Te vehicle-bridge interaction is
represented as a one-axle moving spring-mass system, as
illustrated in Figure 5. Te parameters for the base vehicle,
including the spring constant, mass, and speed, are defned
following the specifcations outlined by Yang et al. [16].

To simulate real-world scenarios involving the passage of
diverse vehicles across the bridge, various parameters of the
spring-mass model were adjusted.Tese parameters included
the mass, spring constant, and speed of the vehicle. Te mass
of the vehicle was selected from a range of 960, 1200, 1440,
1680, 1920, 2160, or 2400 kg. Te spring constant could be set
to 200, 250, 300, 350, 400, 450, or 500 kN/m. Te vehicle
speeds were chosen from a list of 28.8, 36, 43.2, 50.4, 57.6,
64.8, and 72 km/h. By combining all of the possible values for
these three parameters, a total of 7 × 7 × 7 � 343 simulations
were performed, each representing a unique set of vehicle

confgurations. In addition, each vehicle acceleration re-
sponse was replicated by adding artifcial random Gaussian
noise at 5 diferent times, each with a magnitude of 5%.Tus,
for each damaged case of the bridge, there were a total of
343 × 5 � 1715 recorded acceleration data from the passing
vehicle. It is important to note that the 1715 recorded data
were separately generated for each damaged case and baseline
scenario. Furthermore, by incorporating various confgura-
tions of mass and frequency, the study encompasses a com-
prehensive range of vehicle-to-bridge mass ratios, spanning
from 0.8% to 2%. Te natural frequencies of the vehicles also
cover a broad spectrum, ranging from 9.13 to 22.82Hz. Tis
inclusive approach serves to thoroughly test the robustness of
the framework under diverse conditions.

Considering the fact that diferent types of vehicles,
albeit with a similar distribution, would cross the bridge at
diferent times, only 50% of the 1715 data entries were
randomly sampled for each damage case, while the
remaining 50% of each case was not used. For the intact case,
the 1715 data entries were randomly sampled twice, with
50% being used as the baseline and the other 50% for val-
idation purposes. Te validation data was crucial for nor-
malization in anomaly detection. Te details of the vehicle
simulations and data sampling can be found in Table 1.

Te extensive numerical data allowed for the thorough
evaluation of the proposed damage assessment algorithm
under various damage scenarios and vehicle confgurations.
Te inclusion of artifcial Gaussian noise and random
sampling ensured the reliability and robustness of the
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Figure 2: Overview of the MFCC analysis process [28].
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validation process. It is important to note that the original
data obtained from a step-by-step dynamic analysis in
Abaqus has a sampling rate of 100Hz. However, to ensure
a fair comparison between the results of the compressed data
and the original data, the data generated by the software is
uniformly downsampled to match the Nyquist–Shannon
sampling theorem, which states that the sampling rate must
be at least twice the frequency to be captured in the signal. In

this case, the downsampling rate is set to twice the frequency
of the third mode, which is approximately 40Hz (2 × 18.75).

It is worth noting that, in the numerical simulations, road
surface roughness is deliberately excluded to assess the per-
formance of the method under ideal conditions. However, the
impact of road roughness is inherently considered in the ex-
perimental investigations, providing amore realistic evaluation
of the method’s efectiveness in actual scenarios later on.
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3.2. Damage Cases. To validate the proposed anomaly de-
tection framework, fve specifc damage scenarios were taken
into account, in addition to a baseline case representing the
intact structure. Te baseline case, denoted as DC0, repre-
sents an undamaged bridge. In DC1a and DC1b, stifness
reductions of 15% and 30% were, respectively, applied to the
mid-span of the bridge. Similarly, in DC2a and DC2b,
stifness reductions of 15% and 30% were respectively ap-
plied to the quarter-span of the bridge. It is important to
note that these damage cases were simulated by reducing the
elastic modulus of the corresponding structural elements. In
DC3, the support conditions at both ends were changed
from hinged to fxed. Figure 6 illustrates the visual repre-
sentation of these damaged cases.

As evident in Table 2, the modal analysis of the damaged
bridge highlights that quarter-span damage scenarios exhibit
a slightly higher severity compared to mid-span damage
cases, as evidenced by their higher impact on the funda-
mental natural frequency. Moreover, the case involving
a change in support conditions is considerably more severe
than the others, as it induces a substantial alteration in the
bridge’s fundamental natural frequency. Tis observation
will be further discussed in Section 3.4.

3.3. Compressed Sensing Scenarios. In practical applications
of compressed sensing for data collection, specifc random
data points from the response signal are recorded without
the need for downsampling. In essence, only the measure-
ment matrix and the compressed measurements need to be
stored. However, in this study, the original signals recorded
at a higher frequency are artifcially downsampled to mimic
CS behavior in real-world applications. Tree distinct
compression levels are considered (CL� 20%, 50%, and
80%). For instance, a compression level of 80% indicates that
only 20% of the original data, sampled at the Nyquist fre-
quency of 40Hz, is randomly downsampled, retaining only
20% of the initial data for use as input in the subsequent
anomaly detection phase.Te numerical validation is carried
out using Python, with the complete methodology imple-
mented across various compression levels, and each com-
pression level is executed 30 times to have a robust analysis.
Te procedural steps for the algorithm are as follows
(Algorithm 2):

3.4. Interpretation of Results. Tis subsection presents the
damage indexes calculated using the proposed methodology
using the data generated from the numerical models for each

of the damage cases (DC1, DC2, and DC3) and across
diferent compression levels (0%, 20%, 50%, and 80%).
Furthermore, the section commences by presenting the
results of signal reconstruction, emphasizing the efective-
ness of CS in extracting crucial vibration information from
signals.

3.4.1. Signal Reconstruction Using Compressed Sensing.
Te performance of CS in reconstructing the original signals
using the compressed ones is conducted on an acceleration
signal recorded from a random vehicle crossing the intact
bridge. Tis signal corresponds to a vehicle with a mass of
1200 kg, a spring constant of 500 kN/m, and a traveling
speed of 36 km/h. Figure 7 displays the reconstruction re-
sults obtained from the original signal sampled at 40Hz
(Nyquist frequency) for varying compression levels of 20%,
50%, and 80%. It can be observed that even with only 20% of
the data points (equivalent to an 80% compression level), the
reconstruction of the original acceleration signal remains
highly accurate. It is evident that a higher percentage of data
points, corresponding to the lowest compression level, re-
sults in superior signal reconstruction. Te R2 values,
computed to assess the ft of reconstructed data against the
original data are 0.996, 0.989, and 0.957 for compression
levels of 20%, 50%, and 80%, respectively. In summary, using
50% of the data points for reconstruction yields a satisfactory
level of accuracy in comparison to this signal. Tese results
demonstrate the potential of CS to accurately capture es-
sential information from acceleration signals sampled at the
Nyquist frequency with much fewer data points.

3.4.2. Damage Detection Results for Mid-Span Cases.
Figure 8 illustrates the damage index calculated formid-span
damage cases across diferent compression levels. To ensure
result consistency, the damage index was computed for 30
independent runs for each damage case. As depicted in the
fgure, for case DC1b, the results from all runs, along with
their means, clearly indicate the presence of damage in the
bridge. On the other hand, detecting the presence of damage
in the lighter damage scenario (DC1a) becomes slightly
challenging at higher compression levels (50% and 80%) as it
is mixed with the validation case results. Nevertheless, the
mean results derived from the 30 runs still efectively in-
dicate the presence of damage and capture the underlying
pattern of information within the compressed data. It is
worth noting that damage detection based on the original
signals distinctly highlights the damage with higher indexes.

Table 1: Vehicle simulation parameters.

Simulation Mass (kg) Spring constant (kN/m) Speed (km/h) Repetitions
1 960 200 28.8 5
2 960 200 36.0 5
3 960 200 43.2 5
. . . . . . . . . . . . . . .

341 2400 500 57.6 5
342 2400 500 64.8 5
343 2400 500 72.0 5
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However, as anticipated, increasing the compression level,
which results in the loss of more information from the
vibration signals, leads to a decrease in the damage index for
both cases, gradually approaching the validation case (intact
structure).

In summary, for the 30% damage level (DC1b), the
higher damage indexes obtained compared to DC1a
suggest that the severity of damage can be discerned even
from the compressed data. In addition, it is evident that
with higher compression levels, the variance of damage
indexes calculated from diferent runs diminishes. Tis
trend can be attributed to the intuition that with more
information, the anomaly detection task becomes

somewhat more consistent. Finally, the presented fgures
consistently demonstrate the reproducibility of the
method, as the results align across multiple runs. Tis
consistency further underscores the reliability and ro-
bustness of the proposed method, which adeptly extracts
damage features even from a mere 20% of the original data
in the mid-span damage case.

3.4.3. Damage Detection Results for Quarter-Span Cases.
Similar observations can be concluded from Figure 9,
representing the results obtained for quarter-span damage
cases across diferent compression levels. According to the

Table 2: Damage cases considered in the numerical modeling and corresponding fundamental natural frequencies of the bridge.

Damage case Location Stifness reduction Bridge fundamental frequency
(Hz)

DC1a Mid-span 15% 2.06
DC1b Mid-span 30% 2.03
DC2a 1/4 span 15% 2.04
DC2b 1/4 span 30% 1.98
DC3 Boundary condition change — 4.72

Input: Acceleration signals for the baseline and an unknown case
Output: Damage index for the unknown case
Data Compression: Acquire and compress the acceleration signals of vehicles passing over the bridge, considering a specifed
compression level for both cases.
Reconstruction of Original Signals: Reconstruct all original signals using the CS theory.
for each run (Run number < 30) do
Signal Selection: Randomly select 50% of the baseline signals as a baseline set. Use the remaining signals as a validation set.

Similarly, select only 50% of the recorded signals for the unknown case.
Feature Extraction: Extract feature matrices using MFCC analysis from the selected signals in both cases separately.
PCA: Apply PCA to reduce dimensionality and obtain principal components of the feature matrices separately.
Probability Distribution Functions: Calculate the multivariate probability distribution of the projected features for both cases.
Dissimilarity Measure between the PDFs: Calculate theWasserstein distance between the probability distribution of the baseline

and the unknown case.
end
Average Wasserstein distance: Calculate the average Wasserstein distance over the 30 runs.
Damage Index: Normalize the average Wasserstein distance value with respect to the average from the validation set.
Output: Output the normalized damage index for the unknown case.

ALGORITHM 2: Numerical investigation procedure.

DC1: Damage at mid-span

DC2: Damage at quarter-span

DC3: Changing support conditions

DC0: Intact structure

Figure 6: Illustration of the considered damage scenarios.
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fgure, the proposed methodology efectively detects damage
at the quarter-span location. Even at higher compression
levels (e.g., CL� 80%), where the distribution of the damage
indexes starts to overlap with the baseline validation case for
the 15% damage level, the average values still indicate the
presence of damage.

Te ability to accurately detect damage in this case, even
under compressed conditions, demonstrates the robustness
of the proposed method and its potential applicability in
damage detection scenarios without losing important in-
formation while saving memory for data collection. Te
severity of the damage can be identifed well, similar to the
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Figure 7: Comparison between the original signal (sampled at 40Hz) and the reconstructed signal for diferent compression levels, recorded
by a randomly selected vehicle while crossing the intact bridge (numerical). (a) Compression level� 20%. (b) Compression level� 50%.
(c) Compression level� 80%.
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Figure 8: Damage index for mid-span damage cases (DC1a and DC1b) at diferent compression levels (numerical data).
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pattern of the original data, even when using only 20% of the
data. Tis observation becomes more apparent in the 30%
damage intensity case. In conclusion, storing only 80% of the
original signals (sampled at Nyquist frequency) does not
compromise the damage detection results for this case ei-
ther, and we can still retain enough information in the
signals for damage detection.

3.4.4. Damage Detection Results for the End Supports Change
Case. Figure 10 displays the results of the damage indexes
calculated for the baseline-validation case and the DC3
damage case, where the support conditions were changed
from hinge to fxed.Te damage index is signifcantly higher
for the DC3 case compared to the previous cases (about
5 times greater), indicating a substantial change in the
structure’s stifness. It can be observed that the damage index
results for the DC3 case consistently show the same trend
across 30 runs, which underscores the reliability of the
proposed method in detecting such structural changes. In
contrast to the previous cases, this consistency is maintained
even at higher compression levels (e.g., CL� 80%). Te
pattern of information loss, resulting in smaller values for
the damage indexes with increasing compression levels
similar to those of the previous cases, is more evident in
this case.

3.4.5. Comparison of the Damage Detection Results. Tis
section ofers a comprehensive comparison, providing an
overview of the distribution and variability of the damage
indexes across diferent compression levels and damage
scenarios. Figure 11(a) presents the mean damage index
results for mid-span and quarter-span damage cases at
diferent compression levels, along with error bars repre-
senting one standard deviation around the means. In the
absence of signal compression (CL� 0%), the fgure in-
dicates that structural damage at quarter-span locations
manifests with slightly greater severity than observed inmid-

span damage cases. Tis observed pattern aligns with the
behavior evident in the fundamental natural frequency of the
bridge for all the damage scenarios, as detailed in Table 2.
However, as the compression level increases and important
damage-related information is lost in the compressed sig-
nals, distinguishing between mid-span and quarter-span
damage becomes progressively more challenging. Tis
trend reverses after reaching a compression level between
20% and 50%. Despite this, even at higher compression levels
(e.g., 50% or 80% of the original data), the presence of
damage remains easily identifable due to the sufcient
diference from the baseline-validation case. Tis highlights
the efectiveness of the CS-based anomaly detection method
in detecting damage presence in all scenarios, albeit con-
tradicting the Nyquist–Shannon theorem. It is important to
note that the proposed method aims to identify the existence
and severity of damage from the compressed signals rather
than focusing on damage localization. Te reduced variance
in the damage index values for highly compressed data
(CL� 80%), compared to the original data, is attributed to
the utilization of a smaller dataset in the CS approach.

Figure 11(b) illustrates the line plot with error bars for
the damage index resulting from changes in boundary
conditions. Increasing the compression level leads to a linear
decrease in the damage indexes, primarily due to the loss of
damage-sensitive information as the sampling data points
decrease below what’s required by the Nyquist–Shannon
theorem. Similar patterns and trends are observed in the
boundary condition change case compared to other damage
scenarios. However, the damage indexes for the boundary
condition change case are considerably higher than those for
the other damage cases. Tis substantial diference can be
attributed to the signifcant alteration in the vibrational
characteristics of the structures due to the boundary con-
dition change.

By comparing the fgures for all damage cases, it can be
concluded that the optimal compression level depends on
the severity of the damage. For severe damage cases, higher
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Figure 9: Damage index for quarter-span damage cases (DC2a and
DC2b) at diferent compression levels (numerical data).
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Figure 10: Damage index for the change in the end supports case
(DC3) at diferent compression levels (numerical data).
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compression levels (less information) can be utilized.
Moreover, in the context of the numerical model explored in
this section, a 20% compression level can still provide all the
necessary information for damage identifcation and
quantifcation, making it a practical choice for SHM ap-
plications based on moving sensors.

4. Laboratory Experiments

4.1. Experiment Setup. To validate the proposed method
using real sensor-recorded signals, a laboratory-scale, simply
supported bridge (depicted in Figure 12) was employed. Te
bridge deck was constructed usingW44 hot-rolled steel, with
a modulus of elasticity of 200GPa. Tis bridge had a span of
2meters, a width of 330mm, and a thickness of 6.35mm. To
assess the efectiveness of the proposed method in damage
detection, artifcial damages were introduced to the exper-
imental bridge model, following a similar approach to the
numerical investigation. Figure 13 provides an overview of
the fve damage scenarios implemented in the experiments.

Te damage scenarios involve various stifness re-
ductions. DC1a and DC1b represent reductions at the mid-
span, while DC2a and DC2b represent reductions at the 1/4
span. In addition, DC3 involves a change in the boundary
conditions at both ends of the bridge. Table 3 illustrates the
specifc dimensions of the cuts for each damage case. To
simulate the stifness reductions, precise cuts are made in the
steel bridge. For example, DC1a includes a 24.8mm ×

250mm cut centered at the mid-span on each side. Similarly,

DC2a involves a comparable cut positioned at a distance of
0.5m from one end. To achieve a 30% stifness reduction,
DC1b and DC2b incorporate 49.5mm × 250mm cuts on
each side of the bridge. It is important to note that steel fat
bars of the same size as the cut area are loosely attached to
the bridge using hot glue to compensate for the mass re-
duction caused by the cuts. For DC3, each end of the bridge
is mounted on a short I-beam using four bolts to implement
the boundary condition change.

Emphasizing the inherent distinctions between the lab-
scale bridge model and the numerical model is crucial, as
they serve diferent purposes within the scope of this study.
Modal analysis of the experimental bridge, as indicated by
the fundamental natural frequencies in Table 3, reveals that
the damage in the mid-span exhibits greater severity than
that in the quarter-span, attributed to a slightly closer po-
sitioning of the quarter-span cut towards the mid-span in
the experimental bridge model. Tis distinction is vital to
bear in mind when analyzing the results of experimental
damage detection and drawing comparisons with outcomes
derived from the numerical model. Te model vehicle used
in the experiments consists of two aluminum plates. Two G-
Link-200 wireless accelerometers are mounted on the sides
of the top plate, and a Galaxy S5 smartphone is positioned at
the center of the top plate. Te wireless accelerometers have
a sampling frequency of 128Hz, while the smartphone has
a sampling frequency of 100Hz during the test.Te collected
data from the two wireless accelerometers is averaged.
Various parameters of the model vehicle are considered to
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Figure 11: Variations of the damage detection results for all damage scenarios at diferent compression levels (numerical data). (a) Damage
at mid-span and quarter-span. (b) Change in end supports (DC3).
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replicate real-world scenarios. Te springs in the model
vehicle are replaceable, allowing for diferent spring con-
stants to be used. Te spring constant is changed among fve
diferent values: 155, 288, 425, 615, and 726N/m. In addi-
tion, the weight of the model vehicle can be adjusted by
placing additional masses on the top plate. It is changed
among fve diferent levels: 0.898, 0.988, 1.084, 1.170, and
1.270 kg. Furthermore, the speed of the model vehicle can be
controlled by programming the Arduino board of the robot,
and it varies among three diferent values: 0.25, 0.33, and
0.40m/s. Te inclusion of a diverse range of values for both
the vehicles’ mass and spring constant contributes to a broad
spectrum of vehicle-to-bridge mass ratios, spanning from
2.73% to 3.86%. Te natural fundamental frequencies of
these vehicles vary from 11.05 to 28.43Hz. To ensure sta-
tistical signifcance and reliability, each test is repeated three

times for each model vehicle confguration. Combining all
the parameter changes and repeated tests, there are a total of
225 tests conducted for each bridge state. Tis extensive
range of vehicles serves as a reliable evaluation of the
framework’s robustness to diverse mechanical properties,
demonstrating its insensitivity to variations in vehicle
characteristics. Table 4 presents the diferent combinations
of vehicle parameters and their corresponding test numbers.

Before conducting the main tests, an impact test is
performed to identify the frst three modal frequencies of the
bridge, which are identifed as 3.71, 14.9, and 33.4Hz.
Following the numerical data approach, the initial data
collected from both the wireless accelerometer and smart-
phone sensors is uniformly downsampled to the Nyquist
frequency of 70Hz, approximately twice the third natural
frequency of the experimental model. To ensure diversity in

SmartphoneEnd support

Test vehicle

Suspension system

Bridge deck

Accelerometers

Figure 12: Test setup.

Damage at mid-span

Damage at quarter-span

Figure 13: Created artifcial damage in the bridge.

Table 3: Damage scenarios considered in the laboratory experiments and their corresponding fundamental natural frequencies of the
bridge.

Damage case Location Stifness reduction Cut dimensions Bridge fundamental frequency
(Hz)

DC1a Mid-span 15% 24.8mm× 250mm 3.62
DC1b Mid-span 30% 49.5mm× 250mm 3.52
DC2a 1/4 span 15% 24.8mm× 250mm 3.66
DC2b 1/4 span 30% 49.5mm× 250mm 3.61
DC3 Boundary condition change — — 8.40
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the vehicle selection for diferent damage cases, 50% of the
data entries from the vehicle pool are randomly sampled.
Similar to the numerical analysis, 50% of the tests on the
intact bridge are reserved as the baseline case, while the
remaining 50% are used for validation. For the other damage
cases, only 50% of the tests are selected for damage detection.
Tis approach refects real-world scenarios where the exact
same set of vehicles passing across the bridge at diferent
times is unlikely. However, since the sets of vehicles are
sampled from the same pool of confgurations, they are
expected to follow similar distributions. Te sampling
process introduces randomness. Terefore, to ensure ro-
bustness and verify the method’s efectiveness, the method is
implemented 30 times with diferent samples included.

To assess the CS-based anomaly detection method’s
performance, various compression levels (0%� original
data, 20%, 50%, and 80%) are utilized to randomly down-
sample the initial data obtained from both smartphones and
accelerometers. Tis downsampling replicates compressed
sensing applications in practice. Te compressed datasets
serve as inputs for the anomaly detection framework.

4.2. Experimental Results. Te experimental results are
presented in two main sections to validate the method’s
efectiveness at diferent compression levels. Tese com-
parisons utilize both wireless accelerometers and smart-
phone sensors. Te results for each individual run, as well as
the mean of 30 runs, are provided in the plots. It is important
to note that the smartphone data underwent initial pre-
processing and cleaning procedures before analysis.

4.2.1. Damage Detection Results. By comparing the results
obtained from wireless sensors for mid-span and quarter-
span damage scenarios, as depicted in Figures 14 and 15, it
becomes evident that in the experimental model, mid-span
damage exhibits a higher degree of severity compared to
quarter-span damage. Tis diference is particularly pro-
nounced at the 30 percent damage level. Moreover, similar
to the results obtained from the numerical model, higher
damage levels consistently yield higher damage index values
in the experimental setup, demonstrating the consistency
and efciency of the proposed damage metric.

Te impact of compression ratios on the real data can be
visualized through Figures 14(a) and 15(a), along with
Figures 14(b) and 15(b). As these fgures are observed,
a discernible trend emerges in which an increase in the
compression ratio leads to a gradual loss of structural in-
formation within the signals. Consequently, lower damage
index values are obtained, confrming the inverse relationship

between CR and data quality. Notably, this trend emphasizes
the importance of the optimal compression range between
50% and 80%, where damage-sensitive information is pre-
served without compromising data fdelity.

Te comparison between smartphone data and wireless
sensor data, as presented in Figures 14 to 16, reveals that
smartphone data exhibits sparser patterns and yields lower
damage indices when compared to wireless sensor data. Tis
underscores the fact that wireless sensors can capture fner
structural details. Despite this disparity, smartphone data
remains a viable and cost-efective option for damage de-
tection tasks, eliminating the need for costly commercial
sensors.

Examining the impact of boundary conditions, as
depicted in Figure 16(a), particularly the transition from
a hinge to a fxed boundary condition, provides insightful
observations. Unlike the results of the numerical model, this
transition does not signifcantly elevate the observed damage
index for this scenario when compared to the results ob-
tained from the simply supported bridge model with damage
at mid-span or quarter-span. Tis observation can be at-
tributed to the nonideal hinge boundary condition inherent
in the simply supported experimental model and the in-
complete transition to the ideal fxed support. Consequently,
the efect of transitioning from hinge to fxed in the lab
experiments appears to resemble a damage level slightly
exceeding 30 percent within the span of the simply sup-
ported bridge.

Furthermore, the relationship between compression
levels and damage severity can be observed in Figures 14 and
15. Tese fgures illustrate that for both mid-span and
quarter-span damage scenarios, compression levels of up to
20% efectively capture and convey information regarding
damage severity. It is noteworthy that the 30% damage
scenario consistently yields higher damage index values
compared to the 15% damage scenario, although some
overlap is discernible in the case of quarter-span damage
scenarios acquired via smartphone data.

Finally, an increase in the compression level results in
a reduction in variance among damage index values across
the 30 runs, as observed. Tis trend, consistent with our
numerical modeling observations, can be attributed to the
fact that higher compression levels may reduce the number
of damage-sensitive features within the signals, ultimately
decreasing sparsity and variance in the signal distributions.

In conclusion, the experimental fndings underscore the
efectiveness of compressing signals sampled at Nyquist
frequencies up to 20% in retaining critical information re-
lated to damage severity. Tis approach not only preserves
data integrity but also enhances data collection and trans-
mission efciency, ofering valuable insights for structural
health monitoring and damage detection applications.

4.2.2. Comparison of Damage Detection Results and Teir
Variance. In this section, the distribution and variability of
the damage indexes across various compression levels and
damage scenarios are investigated, as obtained from both
wireless and smartphone sensors. Figure 17 depicts the

Table 4: Vehicle parameters and test combinations.

Test Spring constant (N/m) Weight (kg) Speed (m/s)
1 155 0.898 0.25
2 155 0.898 0.33
3 155 0.898 0.40
. . . . . . . . . . . .

75 726 1.270 0.40

Structural Control and Health Monitoring 15



results derived from wireless and smartphone sensors data
for the 15% and 30% damage scenarios at bothmid-span and
quarter-span locations (DC1 and DC2), as well as the
boundary condition change case (DC3). Based on the signals
recorded by the wireless accelerometer sensor, Figure 17(a)
presents the mean damage indexes for the mid-span and
quarter-span damage cases at diferent compression levels. It
is evident that the mean damage indexes for mid-span
damage scenarios (DC1a and DC1b) exhibit higher values
than their quarter-span cases (DC2a and DC2b) up to
a compression level between 20% and 50%.Tis observation
refects the heightened damage severity in mid-span
damage cases.

In addition, as previously mentioned, the greater severity
of damage is discernible from the higher damage indexes
calculated for the 30% damage level for both mid-span and

quarter-span cases. Tis suggests that, based solely on the
mean of the 30 runs, the optimal compression level can be
chosen between 20% and 50%. However, considering the
variation in results, it is advisable to opt for a 20% com-
pression level to retain the information regarding damage
severity within the signals. It is worth noting that, while the
proposed method may miss out on severity information in
signals at an 80% compression level, it can still identify the
presence of damage in all damage scenarios. Tis implies
that even 20% of the data points required by the
Nyquist–Shannon theorem are sufcient for damage de-
tection using the proposed methodology.

Regarding the variability of results, a consistent pattern
emerges where an increase in the compression level leads to
lower variance among the damage indexes obtained from the
30 independent runs. Tis observation aligns with the
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Figure 14: Damage detection using wireless accelerometer and smartphone sensor data for mid-span damage cases (DC1a and DC1b).
(a) Wireless accelerometer. (b) Smartphone sensor.
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Figure 15: Damage detection using wireless accelerometer and smartphone sensor data for the quarter-span damage cases (DC2a and
DC2b). (a) Wireless accelerometer. (b) Smartphone sensor.
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Figure 16: Damage detection using wireless accelerometer and smartphone sensor data for the boundary condition change case (DC3).
(a) Wireless accelerometer. (b) Smartphone sensor.
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Figure 17: Continued.
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numerical fndings and can be attributed to the fact that
higher compression levels may reduce the number of
damage-sensitive signal features, ultimately decreasing
sparsity and variance within the signal distributions.
Comparable patterns and trends are observed in the
boundary condition change case (Figure 17(c)) compared to
the other damage scenarios. Despite the higher damage
indexes for this case, increasing the compression level tends
to decrease the damage index, yet damage remains clearly
identifable even at a compression level of 80% for this case.

To assess the capabilities of smartphone sensors in
damage detection, which is a primary focus of this study,
Figures 17(b) and 17(d) present comparative results based
on smartphone sensors. Similar to the wireless sensor re-
sults, mid-span damage cases appear more severe than
quarter-span damage cases when considering only the mean
results. However, to retain information about damage se-
verity within the signals, the optimal compression level can
be chosen between 20% and 50%. It should be noted that the
damage indexes are smaller, and the variability of results
based on smartphone sensors is higher than those based on
wireless sensors, indicating that wireless accelerometers can
extract more sensitive vibration information from the bridge
than smartphone sensors. However, this may depend on the
type of sensor used in the smartphone.

5. Case Study: The Golden Gate Bridge

To validate and assess the feasibility of implementing the
compressed sensing framework in real-life applications, we

employed a publicly accessible dataset of smartphone ac-
celerations. Tis dataset was obtained from 102 vehicle trips
crossing the Golden Gate Bridge. Te Golden Gate Bridge,
located in California, USA, is a long-span suspension bridge
with a main span length of 1280meters (see Figure 18 for
more details). Te natural frequencies of its frst four modes
are 0.106, 0.132, 0.170, and 0.216Hz, respectively [39].

5.1. Introduction of the Dataset. Te dataset employed in the
case study originates from a controlled feld test conducted
by Matarazzo et al. [26]. Tey conducted 102 trips across the
bridge, recording data using iPhone 5 smartphones equip-
ped with the Sensor Play App. Data collection occurred
during morning and afternoon rush-hour periods over fve
consecutive days (June 18–22, 2017). Each acceleration
signal was resampled to 100Hz. Two sedan-style vehicles
were used, a Nissan Sentra for the frst ffty trips, and a Ford
Focus for the remaining ffty-two, with speeds defned at 32,
40, 48, 56, and 64 km/h.

5.2. Implementation of the Framework. Te dataset utilized
for this study focuses solely on the intact bridge since it is
impractical to induce damage to real bridges. Consequently,
the investigation of the feld data centers on implementing
compressed sensing in crowdsensing-based bridge moni-
toring applications. In addition, we examine the sensitivity
of the damage index at diferent compression levels, ex-
clusively studying its application to intact bridges. Out of the

2.75

3.00

2.50

2.25

2.00

1.75

1.50

1.25

1.00

D
am

ag
e I

nd
ex

0 20 50 80
Compression Level (%)

Damage Cases
DC0
DC3

(c)

2.2

2.4

2.0

1.8

1.6

1.4

1.2

1.0

0.8

D
am

ag
e I

nd
ex

0 20 50 80
Compression Level (%)

Damage Cases
DC0
DC3

(d)

Figure 17: Variations of the damage detection results for all damage scenarios at diferent compression levels. (a) and (c) represent results
from the commercial accelerometer, while (b) and (d) are from the smartphone accelerometer. (a) Damage at mid-span and quarter span
(accelerometer). (b) Damage in mid-span and quarter-span (smartphone). (c) Change in supports (accelerometer). (d) Change in end
support (smartphone).
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Figure 18: Scenic overview of the golden gate bridge (adopted from [38]).
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102 acceleration datasets obtained from two diferent ve-
hicles at various speeds, 50% of the signals are allocated for
training the framework (ftting the baseline). Te remaining
data serves as an unknown case (validation set) for damage
index calculations. Given the intact nature of the bridge
throughout all trips, a damage index very close to one is
anticipated. To assess the framework’s robustness to the
training set, the random selection of the training set among
the 102 trips is repeated 30 times.

5.3. Interpretation of Results. Figure 19 illustrates the sta-
tistical distribution of the frst three features (MFCCs) for
the training set (baseline) and the unknown set (validation).
A notable change in the probability density function (PDF)
of both baseline and validation cases is observed when
transitioning from CL� 0% to CL� 80%. However, a clear
consistency between the two sets prevails, with low dis-
similarity indicating an absence of damage within the bridge.
Te validation case closely follows the baseline pattern.
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Figure 19: Comparison between the frst three extracted features (MFCCs) for the baseline and validation sets at diferent compression
levels. (a) Compression level� 0%. (b) Compression level� 20%. (c) Compression level� 50%. (d) Compression level� 80%.
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Figure 20: Exploration of true negative and false positive results in damage detection under two distinct threshold settings. (a)
Treshold� 1.05. (b) Treshold� 1.10.
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Te damage index proposed in this study quantifes
damage intensity. In a real-world implementation, to trigger
an alarm for the existence of damage in bridges, one can set
an intact/damaged threshold. Tis threshold, while chal-
lenging to determine, can be optimized by comparing the
baseline set and validation sets using data collected during
a specifc period when the bridge was intact. Figure 20
demonstrates the impact of two diferent threshold values
(1.05 and 1.10) on true and false alarms. Increasing the
threshold from 1.05 to 1.10 reduces false alarms (false
positive predictions) from around 20% to less than 5%,
highlighting the importance of a sufciently small threshold.

As previouslymentioned, introducing synthetic damage to
real bridges is unfeasible. Terefore, evaluating the damage
detection capabilities of the proposed framework poses
a challenge, prompting a laboratory experiment in this re-
search project. To comprehend the implementation challenges
of the proposed compressed-sensing-based damage detection,
a comparison between the results of the intact (validation) case
from laboratory experiments (using smartphone data) and the
feld test is benefcial. Figure 21 reveals a close match in the
variation of the validation case between both experiments.
Similar to the results from the lab experiments, an increase in
compression level augments result variation. However, as
highlighted in sections 3 and 4, higher compression levels may
lead to overlooking damage-sensitive features and cause in-
terference in pinpointing the damage location.

In conclusion, the feld experiments successfully eval-
uated the feasibility of implementing the proposed damage
detection framework. Te study demonstrated the consis-
tency of the introduced damage index in real-world appli-
cations, accounting for environmental and operational
efects, as well as diferent vehicle speeds and properties.

6. Conclusion

Tis paper introduces a novel methodology for damage de-
tection on bridges, leveraging the use of smartphones to
collect acceleration responses from passing vehicles. Te
collected data is then subjected to data compression and
transmission, followed by signal reconstruction using CS
theory. Subsequently, MFC analysis is employed to extract
pertinent engineering features from the recovered signals,
further reduced through PCA. PDFs are computed for both
baseline and unknown cases, enabling the calculation of
a damage index based on their dissimilarity measured
throughWasserstein distance.Tis integrated approach ofers
an efcient and cost-efective solution for crowdsensing-
based bridge health monitoring.

To validate the methodology, comprehensive numerical
investigations were conducted on a simply supported bridge
model using fnite element simulations in Abaqus. Various
damage scenarios, including alterations to the elastic
modulus and boundary conditions of structural elements,
were considered, all while introducing a controlled 5% ar-
tifcial noise level into the simulation results. Te perfor-
mance of the proposed method was evaluated by calculating
damage indexes across diferent damage cases and com-
pression levels. Te numerical results convincingly dem-
onstrated the method’s efcacy in identifying structural
damage. Remarkably, even at a compression level of 80%
compared to the original data sampled at the Nyquist–
Shannon frequency, the method consistently detected the
existence of damage, highlighting its robustness.Te derived
damage indexes provided valuable insights into the presence
and severity of the damage, exhibiting consistency and re-
producibility across multiple runs.
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levels.

Structural Control and Health Monitoring 21



It is noteworthy that the proposed framework has in-
sensitivity to both speed and mechanical properties of the
passing vehicle, which conventionally contribute to addi-
tional peaks in the Fourier transform of the vehicle’s re-
sponse, referred to as the driving frequency and fundamental
frequency of the vehicle. Tis robustness is closely tied to the
framework’s incorporation of PCA following the extraction
of the frequency domain features (MFCCs) from the re-
sponses of all passing vehicles in the dataset. Trough this
process, the framework adeptly flters out the driving fre-
quencies and natural frequencies of the vehicles, under-
scoring its efcacy in mitigating the impact of speed-related
variations.

To thoroughly validate the efcacy of the proposed
method, experimental investigations were conducted on
a simply supported bridge model. Artifcial damage sce-
narios, such as stifness reductions and changes in boundary
conditions, were introduced to simulate practical situations.
Data collected from both wireless accelerometers and
smartphone sensors during these tests confrmed the
method’s efectiveness in damage detection. While accu-
rately assessing the severity of damage poses challenges in
certain scenarios due to factors like ambient noise and the
limitations of smartphone sensors, the method reliably
detected damage even at the 80% compression level.

To assess the method’s real-world applicability and
implementation, the framework was tested using actual
smartphone data collected from the intact state of the
Golden Gate Bridge. Te results demonstrated that the
proposed compressed sensing-based method can be seam-
lessly integrated into real-life crowdsensing-based moni-
toring applications. Te introduced damage index on the
validation set yielded a value close to one, indicating the
intact state of the bridge. Furthermore, the observed vari-
ation in damage indexes across diferent compression levels
mirrored the patterns observed in laboratory applications,
underscoring the reliability of the proposed framework.

However, it is crucial to acknowledge the inherent
limitations of this methodology. Challenges stemming from
traditional indirect health monitoring problems, such as
road profle roughness, limited vehicle-bridge interaction
(VBI) time, and environmental efects, may impact the
framework’s performance. Tese factors introduce addi-
tional uncertainties and variations in the collected accel-
eration data, potentially afecting the accuracy of damage
detection. In addition, accurately distinguishing the severity
of damage can be challenging in some cases due to factors
such as ambient noise and smartphone sensor limitations.

Future research endeavors will be dedicated to com-
prehending and addressing the aforementioned challenges,
aiming to enhance the reliability of the proposed method-
ology. A systematic investigation of the road roughness
should be further conducted. In practice, to reduce the
infuence of environmental and operational efects, the
framework can be complemented with other monitoring
data sources, such as weather information or temperature.
Te integration of such additional data can ofer a more
comprehensive understanding of the bridge’s condition,
accounting for potential external factors that may impact

damage detection. Moreover, a promising avenue for future
investigation involves inducing controlled damage on
bridges slated for demolition. Before and following the
introduction of damage, extensive vehicle trips should be
done on both the intact and damaged bridges. Tis dataset
holds signifcant promise for evaluating the efcacy of the
proposed methodology in detecting structural damage un-
der real-world conditions.

Data Availability

Te data that support the fndings of this study are available
from the corresponding author upon reasonable request.

Conflicts of Interest

Te authors declare that there are no conficts of interest.

Acknowledgments

Tis research was supported in part by the Natural Sciences
and Engineering Research Council of Canada (NSERC)
through the Discovery Grant (RGPIN-2022-04160) and
Alliance Grant (ALLRP 576826–22). We gratefully ac-
knowledge Matarazzo et al. for providing the source data
used in this study. Teir contributions facilitated our re-
search and enabled the validation of our fndings.

References

[1] C.-W. Kim, K.-C. Chang, S. Kitauchi, and P. J. McGetrick, “A
feld experiment on a steel gerber-truss bridge for damage
detection utilizing vehicle-induced vibrations,” Structural
Health Monitoring, vol. 15, no. 2, pp. 174–192, 2016.

[2] Q. Mei and M. Gül, “Novel sensor clustering–based approach
for simultaneous detection of stifness andmass changes using
output-only data,” Journal of Structural Engineering, vol. 141,
no. 10, 2015.

[3] M. Gul and F. N. Catbas, “Structural health monitoring and
damage assessment using a novel time series analysis meth-
odology with sensor clustering,” Journal of Sound and Vi-
bration, vol. 330, no. 6, pp. 1196–1210, 2011.

[4] Parsons Brinckerhof Engineering and Industrial Heritage,
“Nchrp project 25-25, task 15: a context for common historic
bridge types,” Privileged document, Te National Cooperative
Highway Research Program, Transportation Research Council,
National Research Council, Ottawa, Canada, 2005.

[5] Federal Highway Administration, “Defcient bridges by
highway system,” 2016, https://www.fhwa.dot.gov/bridge/
nbi/no10/defbr16.cfm.

[6] Canadian Construction Association, Canadian Public Works
Association, Canadian Society for Civil Engineering, and
Federation of CanadianMunicipalities, “Informing the future:
assessing the health of our communities’ infrastructure. ca-
nadian infrastructural rep. card 2019,” Technical report,
Canadian Infrastructure Report Card (CIRC), Ottawa, Can-
ada, 2019.

[7] R. Niyirora, W. Ji, E. Masengesho, J. Munyaneza,
F. Niyonyungu, and R. Nyirandayisabye, “Intelligent damage
diagnosis in bridges using vibration-based monitoring ap-
proaches and machine learning: a systematic review,” Results
in Engineering, vol. 16, Article ID 100761, 2022.

22 Structural Control and Health Monitoring

https://www.fhwa.dot.gov/bridge/nbi/no10/defbr16.cfm
https://www.fhwa.dot.gov/bridge/nbi/no10/defbr16.cfm


[8] Z. Deng, M. Huang, N. Wan, and J. Zhang, “Te current
development of structural health monitoring for bridges:
a review,” Buildings, vol. 13, no. 6, p. 1360, 2023.

[9] L. Sun, Z. Shang, Y. Xia, S. Bhowmick, and S. Nagarajaiah,
“Review of bridge structural health monitoring aided by big
data and artifcial intelligence: from condition assessment to
damage detection,” Journal of Structural Engineering, vol. 146,
no. 5, Article ID 04020073, 2020.

[10] M. Flah, I. Nunez, W. Ben Chaabene, and M. L. Nehdi,
“Machine learning algorithms in civil structural health
monitoring: a systematic review,” Archives of Computational
Methods in Engineering, vol. 28, no. 4, pp. 2621–2643, 2021.

[11] X. Zheng, D.-H. Yang, T.-H. Yi, and H.-N. Li, “Development
of bridge infuence line identifcation methods based on direct
measurement data: a comprehensive review and comparison,”
Engineering Structures, vol. 198, Article ID 109539, 2019.

[12] F.-L. Zhang, D.-K. Gu, X. Li, X.-W. Ye, and H. Peng,
“Structural damage detection based on fundamental bayesian
two-stage model considering the modal parameters un-
certainty,” Structural Health Monitoring, vol. 22, no. 4,
pp. 2305–2324, 2023.

[13] Q.-A. Wang, Y. Dai, Z.-G. Ma et al., “Towards probabilistic
data-driven damage detection in shm using sparse bayesian
learning scheme,” Structural Control and Health Monitoring,
vol. 29, no. 11, 2022.

[14] Q.-A. Wang, Y. Dai, Z.-G. Ma et al., “Towards high-precision
data modeling of shm measurements using an improved
sparse bayesian learning scheme with strong generalization
ability,” Structural Health Monitoring, vol. 23, no. 1,
pp. 588–604, 2024.

[15] Q. Wang and Z. Wu, “Structural system reliability analysis
based on improved explicit connectivity bns,”KSCE Journal of
Civil Engineering, vol. 22, no. 3, pp. 916–927, 2018.

[16] Y. B. Yang, C. W. Lin, and J. D. Yau, “Extracting bridge
frequencies from the dynamic response of a passing vehicle,”
Journal of Sound and Vibration, vol. 272, no. 3-5, pp. 471–493,
2004.

[17] A. Malekjafarian, F. Golpayegani, C. Moloney, and S. Clarke,
“A machine learning approach to bridge-damage detection
using responses measured on a passing vehicle,” Sensors,
vol. 19, no. 18, p. 4035, 2019.

[18] H. Shokravi, H. Shokravi, N. Bakhary, M. Heidarrezaei,
S. S. Rahimian Koloor, and M. Petru, “Vehicle-assisted
techniques for health monitoring of bridges,” Sensors,
vol. 20, no. 12, p. 3460, 2020.

[19] A. Malekjafarian, R. Corbally, and W. Gong, “A review of
mobile sensing of bridges using moving vehicles: progress to
date, challenges and future trends,” Structures, vol. 44,
pp. 1466–1489, 2022.

[20] K. Gkoumas, M. C. Galassi, D. L. Allaix et al., “Indirect
Structural Health Monitoring (iSHM) of Transport In-
frastructure in the Digital Age,” MITICA (Monitoring
Transport Infrastructures with Connected and Automated
Vehicles) Workshop Report, Publications Ofce of the Euro-
pean Union, Luxembourg, 2023.

[21] J. Q. Bu, S. S. Law, and X. Q. Zhu, “Innovative bridge con-
dition assessment from dynamic response of a passing ve-
hicle,” Journal of Engineering Mechanics, vol. 132, no. 12,
pp. 1372–1379, 2006.

[22] M. Talebi-Kalaleh and Q. Mei, “A mobile sensing framework
for bridge modal identifcation through an inverse problem
solution procedure and moving-window time series models,”
Sensors, vol. 23, no. 11, p. 5154, 2023.

[23] Y. Zhang, L.Wang, and Z. Xiang, “Damage detection bymode
shape squares extracted from a passing vehicle,” Journal of
Sound and Vibration, vol. 331, no. 2, pp. 291–307, 2012.

[24] T. J. Matarazzo and S. N. Pakzad, “Structural identifcation for
mobile sensing with missing observations,” Journal of Engi-
neering Mechanics, vol. 142, no. 5, Article ID 04016021, 2016.

[25] T. J. Matarazzo and S. N. Pakzad, “Truncated physical model
for dynamic sensor networks with applications in high-
resolution mobile sensing and bigdata,” Journal of Engi-
neering Mechanics, vol. 142, no. 5, Article ID 04016019, 2016.

[26] T. J. Matarazzo, D. Kondor, S. Milardo et al., “Crowdsourcing
bridge dynamic monitoring with smartphone vehicle trips,”
Communications Engineer, vol. 1, no. 1, p. 29, 2022.

[27] J. Liu, S. Chen, M. Bergés et al., “Diagnosis algorithms for
indirect structural health monitoring of a bridge model via
dimensionality reduction,” Mechanical Systems and Signal
Processing, vol. 136, Article ID 106454, 2020.

[28] Q. Mei and M. Gül, “A crowdsourcing-based methodology
using smartphones for bridge health monitoring,” Structural
Health Monitoring, vol. 18, no. 5-6, pp. 1602–1619, 2019.

[29] Q. Mei, “Application of compressed sensing on
crowdsensing-based indirect bridge condition monitoring,”
in Proceedings of the Canadian Society of Civil Engineering
Annual Conference 2022, R. Gupta, M. Sun, S. Brzev et al.,
Eds., pp. 123–132, Springer International Publishing, berlin,
Germany, 2023.

[30] E. J. Candes and T. Tao, “Decoding by linear programming,”
IEEE Transactions on Information Teory, vol. 51, no. 12,
pp. 4203–4215, 2005.

[31] Y. Bao, H. Li, and J. Ou, “Emerging data technology in
structural health monitoring: compressive sensing technol-
ogy,” Journal of Civil Structural Health Monitoring, vol. 4,
no. 2, pp. 77–90, 2014.

[32] N. Almasri, A. Sadhu, and S. ray chaudhuri, “Toward com-
pressed sensing of structural monitoring data using discrete
cosine transform,” Journal of Computing in Civil Engineering,
vol. 34, no. 1, Article ID 04019041, 2020.

[33] D. Jana and S. Nagarajaiah, “Full-feld vibration response
estimation from sparse multi-agent automatic mobile sensors
using formation control algorithm,” Sensors, vol. 23, no. 18,
p. 7848, 2023.

[34] R. E. Carrillo, A. B. Ramirez, G. R. Arce, K. E. Barner, and
B. M. Sadler, “Robust compressive sensing of sparse signals:
a review,” EURASIP Journal on Applied Signal Processing,
vol. 2016, no. 1, p. 108, 2016.

[35] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine
transform,” IEEE Transactions on Computers, vol. 23, no. 1,
pp. 90–93, 1974.

[36] H. Bai, A. Wang, andM. Zhang, “Compressive sensing for dct
image,” in 2010 International Conference on Computational
Aspects of Social Networks, pp. 378–381, Taiyuan, China,
September 2010.

[37] C. Villani, Optimal Transport: Old and New, vol. 338,
Springer-Verlag, Berlin, Germany, 2009.

[38] K. Hetter, “10 secrets of the golden gate bridge,” 2018, https://
edition.cnn.com/travel/article/golden-gate-bridge-secrets-
california/index.html.

[39] S. N. Pakzad and G. L. Fenves, “Statistical analysis of vibration
modes of a suspension bridge using spatially dense wireless
sensor network,” Journal of Structural Engineering, vol. 135,
no. 7, pp. 863–872, 2009.

Structural Control and Health Monitoring 23

https://edition.cnn.com/travel/article/golden-gate-bridge-secrets-california/index.html
https://edition.cnn.com/travel/article/golden-gate-bridge-secrets-california/index.html
https://edition.cnn.com/travel/article/golden-gate-bridge-secrets-california/index.html



