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Tis study presents a sparse grid interpolation and ensemble Kalman flter (EnKF)-based Markov Chain Monte Carlo (MCMC)
method (SG-EnMCMC). Initiating with the formulation of a recursive equation for the state space vector, derived from the
structural dynamic equation, this study adopts a dimensionality reduction strategy. Tis approach involves a separation of
physical parameters and the state space vector.Te acquisition of physical parameters is accomplished through sampling, utilizing
sample moments to substitute population moments, thereby mitigating the need for computationally high-dimensional co-
variance matrix calculations. To further streamline the recursive equation of the state space vector, a sparse grid method is
employed for interpolation. Tis step simplifes the process while ensuring superior accuracy compared to the Extended Kalman
Filter (EKF) and Unscented Kalman Filter (UKF). Subsequent to this, acceptance rates and the fnal parameter posterior dis-
tribution within the MCMC framework are derived. Te efciency of the proposed method is assessed through validation in two
shaking table experiments.

1. Introduction

Civil engineering structures and infrastructures represent
intricate and vital structural systems that exert a signifcant
infuence on economic, commercial, and social aspects of life
[1, 2]. With the continuous advancements in civil engi-
neering technology, the architectural design objectives have
gradually shifted towards achieving high reliability, low cost,
and extended service life. To address stress-related issues and
mitigate the risk of disasters in complex structures, physical
models and simulation models have been widely employed.
However, during the operational lifespan of a building
structure, it encounters various stimuli, including earth-
quakes, strong winds, trafc, human activities, and other
external forces. Consequently, the structure’s performance
may fail to meet anticipated requirements, leading to
a phenomenon known as structural performance degrada-
tion over time [3, 4] and potentially resulting in severe
damage, catastrophic failure, and collapse [5, 6].

Furthermore, the reliability of structural analysis is
signifcantly afected by the complex variations in structural
strength and loads induced by these stimuli. Numerous
uncertain factors contribute to these uncertainties, including
epistemic uncertainty and aleatoric uncertainty [7]. Epi-
stemic uncertainty refers to the uncertainty associated with
theoretical models. Tis uncertainty arises from approxi-
mations and assumptions made in the physical model used
to characterize the structural system [8]. It also stems from
the idealization of material properties, connection forms,
boundary conditions, and external efects in simulation
models. Moreover, construction errors occurring during the
construction process and the weakening of component
strength due to aging further challenge the accurate rep-
resentation of the real structure within the theoretical model.
Aleatoric uncertainty relates to uncertainties in measured
data [9]. Despite the advancements in measurement tech-
nology, accurately capturing the structural response for
vibration measurement and modal analysis of engineering
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structures remains challenging [10]. Tis difculty is par-
ticularly pronounced for complex and large structures,
where efectively obtaining modal parameters remains
a signifcant obstacle. Moreover, the test data are susceptible
to noise pollution during the collection, transmission, and
storage processes due to the infuence of changing envi-
ronmental conditions and other factors [11]. In general,
uncertainties stemming from cognitive and accidental fac-
tors play substantial roles in shaping the reliability of
structural analysis, given their impact on theoretical models
and measured data, respectively.

Terefore, on the basis of considering the uncertainties,
the process of updating the physical or simulation model of
a structure emerges as a crucial issue and technical challenge
within the feld of structural dynamics analysis in civil
engineering [12–14]. Model updating serves as a structural
health monitoring (SHM) approach, wherein modal pa-
rameters are identifed and updated [15, 16] using vibration
signals measured during structural tests. Tis process in-
volves adjusting and optimizing the physical or simulation
model to ensure that the calculated response values of the
updated model align with the actual response values ob-
tained experimentally. By employing model updating
techniques, the objective is to enhance the accuracy and
reliability of the model, thereby ensuring that the structural
performance meets the desired requirements.

Model updating has become one of the most challenging
problems of structural safety control [17–19]. Conducting
research on structural model updating methods holds sig-
nifcant theoretical importance and practical meaning.
However, traditional model updating approaches primarily
employ deterministic methods, assuming that both mea-
sured data and the physical or simulation model are de-
terministic [20–22]. Tese methods often overlook the
uncertainties discussed earlier and estimate the physical
parameters of the model through nonprobabilistic means,
disregarding their random characteristics. Consequently, the
analysis results typically only refect the short-term struc-
tural condition.

To address this limitation, the focus of model updating
research has shifted towards uncertainty updating. Un-
certainty is updated using probabilistic approaches, con-
sidering the measured data and fnite element calculation
results as random variables. Bayesian model updating has
emerged as one of the most popular techniques employed
across various felds [18, 23–25] due to its ability to in-
corporate prior information while analyzing uncertainties.
By adopting Bayesian methods, the advantages of prior
knowledge can be efectively utilized, leading to improved
uncertainty characterization in structural model updating.

Bayesian model updating approach ofers a coherent and
rigorous probabilistic framework for systematically char-
acterizing and quantifying uncertainties arising from ma-
terial properties and modeling errors for a robust structural
prediction [4, 26–28]. In the framework of Bayesian model
updating approach, the identifcation of structural model
parameters is viewed from the perspective of probability
statistics as a problem of solving the optimal model under
the quantitative infuence of model errors and measurement

noises [29]. Afterwards, the structural model is updated to
better describe the structural properties and facilitate ef-
fective decisions by taking into account dynamic response
measurements [30, 31]. Te Bayesian model parameter
identifcation method was frst proposed by Collins et al.
[32]. Beck and Katafygiotis [27] built a more comprehensive
and rigorous framework for Bayesian model updating and
defned the concept of system identifcations. Recently,
numerous studies of Bayesian model updating have been
developed on analyzing both numerical examples and real-
world applications [33–35]. Te schematic diagram of
Bayesian model updating is shown in Figure 1.

In the context of Bayesian model updating, a critical
challenge lies in constructing the likelihood function. As
models are often presented in numerical form rather than
functional form, establishing a direct connection between
physical parameters and the output variables of structural
measurements (referred to as structural features below) can
be difcult. Te Kalman flter (KF) is one of the most widely
used methods [36–38]. Developed from Bayesian fltering,
the Kalman flter recursively identifes state space parame-
ters of linear systems, updates the parameters using mea-
sured values, and obtains the likelihood function to achieve
optimal estimation (fltering). However, most structural
parameters and responses targeted for modifcation are
nonlinear, whereas the standard Kalman flter equation is
only applicable to linear systems [39]. To overcome this
limitation, an extension known as the Extended Kalman
Filter (EKF) [40] is proposed, considering the advantages of
Kalman Filtering (KF) in the context of recursive Bayesian
estimation. Te EKF is combined with local linearization
techniques within the KF framework. However, it is worth
noting that for strong nonlinear systems, EKF can be sus-
ceptible to flter divergence, primarily due to the cumulative
impact of rounding errors [41]. To address the limitations
associated with strong nonlinearity, various nonlinear fl-
tering methods have been developed, eliminating the need
for the computation of Jacobian matrices. Examples of such
methods include the Unscented Kalman Filter (UKF) [42],
the Central Diference Filter (CDF) [43], and the Cubature
Kalman Filter (CKF) [44]. Nevertheless, these methods
exhibit reduced convergence when dealing with systems
characterized by pronounced nonlinear and non-Gaussian
characteristics. With the advancement of computer capa-
bilities, the Particle Filter (PF), constructed by combining
the Sequential Monte Carlo simulation method (SMC) and
recursive Bayesian concepts, has garnered increased atten-
tion [45, 46].Te PFmethodology involves two fundamental
steps: prediction and update. In contrast to the KF, which
employs sequential importance sampling in the prediction
step and resampling in the update step, the PF demonstrates
superior fltering accuracy compared to existing nonlinear
fltering algorithms such as EKF and UKF. Additionally,
EKF and UKF require Gaussian distribution noise, while PF
is more fexible and can accommodate non-Gaussian noise
distributions [47]. However, PF is challenged by inherent
issues related to particle degradation and diminishing
particle diversity. Additionally, the accuracy of PF fltering is
contingent on the system state dimension and the number of
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particles, making its parameter settings less universal for
diverse applications. In addition to PF, EnKF (Ensemble
Kalman Filter), proposed by Evensen [48], combines re-
cursive Bayesian principles with ensemble prediction con-
cepts. EnKF utilizes the SMC method to generate an initial
sample set representing the state statistics. It then applies the
system state transition function to each sample within the
initial set [49]. Te current state estimate is subsequently
computed by evaluating the mean value and covariance of
the sample set after the state transition. Data assimilation
techniques are incorporated in EnKF implementation,
mitigating the adverse impact of measurement noise ran-
domness on fltering accuracy. EnKF extends the Kalman
fltering method to address challenges associated with non-
Gaussian and nonlinear dynamics that are difcult to lin-
earize. Tis method has been developed for geophysical
applications and has demonstrated robustness in scenarios
characterized by substantial modeling and measurement
errors [50]. EnKF is particularly notable for its computa-
tional efciency, surpassing PF in this regard [51].

Despite the signifcant progress made by scholars in the
related felds mentioned above, several challenges persist. In
the traditional methods regarding KF, uncertain structural
parameters are typically incorporated into the state space
vector. Terefore, the sizes of both the state space vector and
the state space equation become considerably large. Addi-
tionally, the state equation tends to exhibit high nonlinearity
concerning the extended state vector [52]. Tis situation can
pose challenges, as the inclusion of numerous unknown
parameters and the nonlinearity of the state equation may
result in identifcation divergence [52]. For the issue of high
dimensionality of state space vectors, this paper considers
the updated physical parameters separately from the
structural state space vector, reducing the parameter di-
mensions. For the estimation of the updated physical pa-
rameters, the MCMC method is introduced. As for the state
equation, Taylor series expansion [53] is used for lineari-
zation in EKF and UKF. EKF utilizes the frst-order Taylor
expansion of nonlinear functions to approximate nonlinear

functions, which has a poor efect on strongly nonlinear
systems [54]. UKF addresses the limitations of the EKF by
approximating the Gaussian probability density function
using sigma points, but the fltering accuracy is generally
limited to the third order at most [55, 56]. In this paper, the
sparse grid interpolation method is employed to calculate
recursive equations of state space vectors based on state
equations. It can achieve Taylor precision of any order by
changing the number of one-dimensional integral points.
Subsequently, EnKF is employed to identify the state space
vectors, while the MCMC method is utilized to calculate the
likelihood function associated with the structural physical
parameters. Building upon this, Bayesian inference is ap-
plied to derive the posterior distribution, providing a com-
prehensive probabilistic characterization of the identifed
parameters and their uncertainties.

Te remainder of this paper is organized as follows.
Section 2 presents the methodology. Sections 3 and 4 present
two shaking table experiments to demonstrate the efec-
tiveness of the proposed method. Te fnal research fndings
are given in Section 5.

2. Methodology

2.1. State Space Models. For a multi degrees of freedom
(MDOF) structure, the equation of motion is

M €x (θ) + F[x, _x, θ] � Bf, (1)

where M denotes the structural mass matrix. In general, the
accurate estimation of the mass of a structure is available, so
M is considered to be known.Te vectors x, x, and €x denote
the displacement, velocity, and acceleration, respectively,
while θ represents the uncertain physical parameter. f de-
notes the external excitation, and B denotes the corre-
sponding location matrix. F[x, _x, θ] is the nonlinear
resilience vector. For the frame structure, F[x, _x, θ]

� C _x(θ) + Kx(θ), where C, K represent the damping and
stifness matrices, respectively.

Simulation
model

Numerical
model

Prior
distribution

Likelihood
function

Measured
structure

Posterior
distribution

ŷ=f (θ (t), F (t), t)

Figure 1: Schematic diagram of Bayesian model updating.
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In the conventional EKF, the identifcation process in-
volves simultaneous estimation of uncertain physical pa-
rameters and the state space vector by constructing an

extended state space vector X � xT, _x
T
, θT

􏽮 􏽯
T

[52].

Consequently, the state equation can be deduced from
equation (1):

_X � M
− 1

− C _x(θ)
_x

0
Kx(θ) + Bf􏼢 􏼣􏼨 􏼩 + w � g 􏽢Xk, 􏽢θk, fk􏼐 􏼑 + w. (2)

where w denotes the zero-mean noise vector, and the
subscript k denotes time t� k×Δt with Δt representing the
time step. In the following text, the time will be denoted by
the subscript k. Tus, the state space model can be expressed
as [57]

􏽥Xk+1 � 􏽢Xk + 􏽚
(k+1)Δt

kΔt
g 􏽢Xk, 􏽢θk, fk􏼐 􏼑dt. (3)

Considering the accelerometers deployed in the struc-
ture to measure acceleration, the observation can be for-
mulated as follows:

yk+1 � DM
− 1

F _xk, xk, θ􏽨 􏽩 + Bfk􏼐 􏼑 + vk,

� h 􏽢Xk, 􏽢θk, fk􏼐 􏼑 + vk,
(4)

where yk+1 is the measured acceleration response, and the
observation operator h(·) denotes the observation yk for the
system state 􏽢Xk by mapping from the model space to the
observation space. D represents the matrix associated with
the accelerometer locations, while vk is the zero-mean
Gaussian white noise with a covariance matrix Rk [58].
Te state space vector and the corresponding covariance
matrix can be updated as

Kk+1 � 􏽥Pk+1H
T
k+1 Hk+1

􏽥Pk+1H
T
k+1 + Rk+1􏼐 􏼑

− 1
,

􏽢Xk+1 � 􏽥Xk+1 + Kk+1 yk+1 − h 􏽢Xk, 􏽢θk, fk􏼐 􏼑􏼐 􏼑,

􏽢Pk+1 � I − Kk+1Hk+1( 􏼁􏽥Pk+1.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

where Kk+1 is the Kalman gain.

2.2. Ensemble Kalman Filter. However, the calculation of
EKF and UKF requires the analysis of the covariance matrix,
but the calculation of the high-dimensional covariance
matrix is computationally expensive and challenging to
apply to complex real-world structures. To address this issue,
the Ensemble Kalman Filter (EnKF) ofers an alternative
approach by utilizing sample moments to estimate the co-
variance matrix. Tis method efectively reduces the com-
putational burden associated with computing the full
covariance matrix in high-dimensional systems, allowing for
a more robust treatment of non-Gaussian and nonlinear
system behavior [59].

Here, a brief overview of the EnKF is presented. In EnKF,
the state distribution is approximated using an ensemble,
which represents a sample from the distribution. By utilizing
this ensemble representation, dimension reduction is
achieved, making it computationally feasible to handle even
very high-dimensional systems [36]. Essentially, EnKF can
be conceptualized as an approximation of the KF, ofering
a more practical solution for complex, high-dimensional
scenarios [60].

penkf xk ∣ y1: k− 1( 􏼁 � N xk; 􏽢μk, 􏽢Σk􏼐 􏼑. (6)

Assume that the ensemble 􏽢X
(1)

k , . . . , 􏽢X
(N)

k is a sample
from the fltering distribution at time t� k×Δt. Similar to
the KF, the EnKF comprises a forecast step and an update
step at every time point t [61]. For each ensemble, we
perform the steps in Section 2.1 according to equations (3)
and (4).

􏽥X
(i)

k+1 � 􏽢X
(i)

k + 􏽚
(k+1)Δt

kΔt
g 􏽢X

(i)

k , 􏽢θ
(i)

k , fk􏼒 􏼓dt, (7)

y
(i)
k+1 � DM

− 1
F _xk, xk, θ􏽨 􏽩 + Bfk􏼐 􏼑 + vk � h 􏽢X

(i)

k , 􏽢θ
(i)

k , fk􏼒 􏼓 + vk. (8)

Ten, compute estimates of the forecast mean and
variance:
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􏽥μk+1 �
1
n

􏽘

N

i

􏽥X
(i)

k+1,

􏽥
􏽘
k+1

�
1

n − 1
􏽘

N

i

􏽥X
(i)

k+1 − 􏽥μk+1􏼒 􏼓
2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

Te Kalman gain matrix can be derided as
Kk+1 � 􏽥􏽐k+1H

T
k+1(Hk+1

􏽥􏽐k+1H
T
k+1 + Rk+1)

− 1.

􏽢X
(i)

k+1 � 􏽥X
(i)

k+1 + Kk+1 yk+1 − h 􏽢X
(i)

k , 􏽢θ
(i)

k , fk􏼒 􏼓􏼒 􏼓. (10)

In the EnKF method, the need to compute covariance di-
rectly at each step is circumvented. Instead, both the prior
and the posterior distributions are represented with a set of
samples.

2.3. Proposed SG-EnMCMC Method. By defning the 2d-

dimensional state vector X � xT, _x
T

􏽮 􏽯
T
, equation (2) can be

expressed as

_X �
_x

M
− 1

[− C _x(θ) − Kx(θ) + Bf]

⎧⎨

⎩

⎫⎬

⎭ + w � g 􏽢X
(i)

k , 􏽢θ
(i)

k , fk􏼒 􏼓 + w. (11)

Tus, the recurrence of X is given by
􏽥X

(i)

k+1 � 􏽢X
(i)

k + 􏽒
(k+1)Δt
kΔt g( 􏽢X

(i)

k , 􏽢θ
(i)

k , fk)dt. Since the expres-
sion for the state space model has a high-dimensional in-
tegral, this paper adopts the sparse grid interpolation
method for simplifcation.

Te sparse grid theory, initially proposed by mathe-
matician Smolyak, serves as a numerical approach for in-
tegrating or interpolating high-dimensional functions [62].
Its core concept involves approximating the target model
through a linear combination of multidimensional layered
basis functions [63]. Te Smolyak rule facilitates the es-
tablishment of a solution model for high-dimensional
problems by utilizing the tensor product of various series
basis functions in each dimension [64, 65]. In the 2d-
dimensional case, the integral of interest is interpolated
on an anisotropic grid Ωl on Ω� [0, 1]2d with diferent, but
equidistant mesh size hl � (hl1

, . . . , hl2d
) � 2− l � (2− l1 , . . . ,

2− l2d ), where l � (l1, . . . , l2d) ∈ N2d denote the grid re-
fnement level. Terefore, the grid Ωl consists of points

θl,j � θl1 ,j1
, . . . , θl2d,j2d

􏼐 􏼑, (12)

where θlt,jt
� jt · hlt

� jt · 2− lt and jt � 1, . . . , 2lt − 1, jt odd,
and t ∈ 1, . . . , 2d{ }. To construct a hierarchical basis for
interpolating g( 􏽢Xk, 􏽢θk, fk), the hat function ϕ(θ) is used to
defne for each grid point xlt,jt

, a basis function ϕlt,jt
(θlt,jt

).
ϕ(θ) and ϕlt,jt

(θlt,jt
) are given as follows:

ϕ(θ) �
1 − |θ|, if  θ ∈ [− 1, 1],

0, otherwise.

⎧⎪⎨

⎪⎩

ϕlt,jt
(θ) � ϕ

θ − jt · hlt

hlt

􏼠 􏼡,

(13)

with ϕlt,jt
(θlt,jt

) � 1 and support [θlt,jt
− hlt

, θlt,jt
+ hlt

] � [(ij
− 1)hlt

, (ij + 1)hlt
]. Te corresponding 2d-dimensional basis

function ϕl,i(x) is expressed as the product of the basis
functions: ϕl,i(x) :� 􏽑

2d
t�1 ϕlt,it

(xt). To order the basis
functions, the hierarchical diference spaces is

Wl ≔ span ϕlt,jt
: jt ∈ It􏽮 􏽯, It � 1≤ jt ≤ 2

lt − 1, jt odd, 1≤ t≤ 2d􏽮 􏽯. (14)

Te sum of the hierarchical diference spaces results in
the function space [66].

Vl � a
l1

k1�1
· · · a

l2d

k2d�1
Wk, (15)

where |l |∞ � max1≤t≤d lt. Consider a special case, which is
an isotropic space Vn :� V(n,...,n) � ⊕ |l |∞≤2d Wl. In other
words, l1 � l2 � · · · � l2d. Te full Cartesian grid Vn has

(2n + 1)2d grid points. However, the approach for generating
a sparse grid is to exclude the subspaces within the full grid
space that contribute little [66]:

Vn � a
⌊l|1≤ n+2d− 1

Wl. (16)

Unlike the full grid approach, which imposes restrictions
on the maximum grid refnement levels across dimensions,
the sum of these is restricted in the sparse grid. Te sparse
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grid employs a linear combination of low-level tensor
products of univariate quadrature rules to approximate
complex integrals [67, 68], and the number of points re-
quired is

| Vn | � 􏽘
⌊l|1≤n+2d− 1

2⌊l− 1|1 � 􏽘
n+2d− 1

j�2d

2j− 2d
· 􏽘
⌊l|1�i

1 � 􏽘
n+2d− 1

j�2d

2j− 2d
·

j − 1,

2d − 1.

⎛⎝ ⎞⎠ � 2n
·
(n + 2d − 1)!

(2d − 1)!n!
, (17)

which is much less than that of the full grid (2n + 1)2d. When
l� 3, the diference between a full grid and a sparse grid is
illustrated in Figure 2

Tus, the interpolate of g( 􏽢Xk, 􏽢θk, fk) can be represented
by

􏽚
(k+1)Δt

kΔt
g 􏽢X

(i)

k , 􏽢θ
(i)

k , fk􏼒 􏼓dt ≈ u 􏽢θ
(i)

k􏼒 􏼓 � 􏽘
|l|1≤n+2d− 1

􏽘
j∈Il

cl,j · ϕl,j
􏽢θ

(i)

k􏼒 􏼓, (18)

where ϕl,j is the basis function and cl,j denotes the hierar-

chical surpluses. Like the process of deriving ϕl,j(
􏽢θ

(i)

k ), cl ,j in
one dimension is frst considered and given by

cl ,j � f θl ,j􏼒 􏼓 −
f θl ,j − hl􏼒 􏼓 + f θl ,j + hl􏼒 􏼓

2
� f θl ,j􏼒 􏼓 −

f θl ,j − 1􏼒 􏼓 + f θl ,j +1􏼒 􏼓

2

� f θl ,j􏼒 􏼓 −

f θ
l − 1, j − 1􏼐 􏼑/2

􏼠 􏼡 + f θ
l − 1, j +1􏼐 􏼑/2

􏼠 􏼡

2
,

(19)

where 1≤ l ≤ lt. Take a semicircle, for example, the in-
terpolation process is illustrated in Figure 2(b). Figure 2(b)
and equation (19) specify the change from level l − 1 to level
l. For simplifcation, equation (19) is rewritten as cl ,j

� [− 1/2 1 − 1/2]l ,j f. Ten, the d-dimensional hierarchical
surplus can be generalized as follows:

cl,j � 􏽙
d

t�1
−
1
2
1 −

1
2

􏼔 􏼕
lt,jt

⎞⎠f.⎛⎝ (20)

By adjusting the mesh size h, the sparse mesh interpolation
here can achieve any accuracy, higher than EKF and UKF.
Ten, the state space model and the variance matrix can be
derived as

􏽥X
(i)

k+1 � 􏽢X
(i)

k + 􏽘
|l|1≤n+d− 1

􏽘
j∈Il

cl,j · ϕl,j
􏽢θ

(i)

k􏼒 􏼓,

􏽥μk+1 �
1
n

􏽘

N

i

􏽥X
(i)

k+1

􏽦
􏽘
k+1

�
1

N − 1
􏽘

N

i

􏽥X
(i)

k+1 − 􏽥μk+1􏼒 􏼓
2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

Te recursive estimation can be rewritten as
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Kk+1 �
􏽦
􏽘
k+1

H
T
k+1 Hk+1

􏽦
􏽘
k+1

H
T
k+1 + Rk+1

⎛⎝ ⎞⎠

− 1

,

􏽢X
(i)

k+1 � 􏽥X
(i)

k+1 + Kk+1 yk+1 − h 􏽢X
(i)

k , 􏽢θ
(i)

k , fk􏼒 􏼓􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(22)

Hence the fltering density is approximated by

penkf xk ∣ y1: k, 􏽢θk􏼐 􏼑 � N xk; 􏽢μk, 􏽢Σk􏼐 􏼑, (23)

where 􏽢μk � 1/n􏽐
N
i

􏽢X
(i)

k , 􏽢Σk � 1/n − 1􏽐
N
i ( 􏽢X

(i)

k − 􏽢μk)2. As the
number of ensemble members N⟶∞, penkf (xk ∣ y1: k, 􏽢θk)

converges to the true fltering distribution in a linear

Gaussian state space model [69]. For a linear state model and
fnite N, the EnKF approximates the KF by substituting the
mean and variance with their sample equivalents [70].

Based on EnKF, the likelihood estimate can be written in
a sequential form:

L(θ) � p y1 ∣ x1( 􏼁p x1( 􏼁􏽙

T

k�2
p yk ∣ y1: k− 1, xk( 􏼁p xk | xk− 1, θk− 1( 􏼁. (24)

From equation (8), an EnKF approximation of
p(yk ∣ y1: k− 1, xk) is

p
N
enkf yk ∣ y1: k− 1, xk( 􏼁 � N H􏽢μk + DM

− 1
Bfk; P􏽥μk, P

􏽦
􏽘

k

P′ + S⎛⎝ ⎞⎠, (25)

which can be calculated for t� 1, . . ., T, with the notation
p(y1 ∣ x1)p(x1) � p(y1 ∣ y1: 0, x1)p(x1 ∣ x0, θ0). Tus, the
overall approximation is given by 􏽢L

N

enkf (θk) � 􏽑
T
k�1

pN
enkf (yk ∣ y1: k− 1, xk)p(xk | xk− 1, θk− 1). Ten, the posterior

distribution of uncertain physical parameters θ can be
expressed as

p
N
enkf θ(s)

T ∣ y
(s)
1: T􏼐 􏼑 �

1
Z

􏽢L
N

enkf θ(s)
T􏼐 􏼑p θ(s)

1􏼐 􏼑

�
1
Z

p θ1( 􏼁􏽙

T

t�2
p

N
enkf y

(s)
k ∣ y

(s)
1: k− 1, x

(s)
k􏼐 􏼑p x

(s)
k | x

(s)
k− 1, θ

(s)
k− 1􏼐 􏼑,

(26)

l 1 2 3
l1

l2

(a) (b)

Figure 2: Description of the sparse grid. (a) Comparison between a full grid and a sparse grid. (b) Example of interpolation for a semicircle.
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where Z is the normalized constant (also called evidence)
and x

(s)
k􏽮 􏽯

N

s�1 and θ(s)
k􏽮 􏽯

N

s�1 are the N samples at the previous

time k − 1. x
(s)
k􏽮 􏽯

N

s�1 is sampled from penkf (x
(s)
k ∣ y

(s)
1: k, 􏽢θ

(s)

k )

following equation (23), and θ(s)
k􏽮 􏽯

N

s�1 is obtained by the
following resampling approach.Temean of samples at time

k − 1 is chosen as the initial sample of the chain at time k
[71]. Subsequently, candidates θ(s)∗

k are generated by sam-
pling from the proposal distribution centered on the pre-
vious point θ(s− 1)

k . Ten, these candidate parameters θ(s)∗
k are

rejected or accepted according to the Metropolis algorithm.
Te acceptance rate is given by

α(s)
k �

p
N
enkf y

(s)
k ∣ y

(s)
1: k− 1, x

(s)
k􏼐 􏼑p x

(s)
k | x

(s)
k− 1, θ

(s)∗
k􏼐 􏼑q θ(s)

k− 1 ∣ θ
(s)∗
k􏼐 􏼑

p
N
enkf y

(s)
k− 1 ∣ y

(s)
1: k− 2, x

(s)
k− 1􏼐 􏼑p x

(s)
k− 1 | x

(s)
k− 2, θ

(s)
k− 1􏼐 􏼑q θ(s)∗

k ∣ θ
(s)
k− 1􏼐 􏼑

. (27)

Te process is followed by generating a uniform dis-
tribution in the interval (0,1) and selecting a number, u,
randomly. If u< αk, the candidate is accepted, that is,
θ(s)

k � θ(s)∗
k , otherwise θ(s)

k � θ(s)
k− 1. However, the above steps

are specifc to single-chain MCMC. Since there exist N
samples θ(s)

k􏽮 􏽯
N

s�1, the above process can be replaced by
a resampling approach used in TMCMC [72]:

θ(s)
k+1 � θ(p)∗

k w. p.
α(p)

k

􏽐
N
p�1 α

(p)

k

, p � 1, . . . , N. (28)

If N is large, θ(s)
k􏽮 􏽯

N

s�1 will be distributed as the posterior
distribution. Te overall scheme is illustrated in the fol-
lowing Algorithm 1.

3. Case Study: Shaking Table Experiment

Te proposed SG-EnMCMC method has been successfully
implemented in a shaking table experiment conducted on
a 3-storey reinforced concrete structure. Te prototype of
the test specimen featured a frame in the transverse direction
(frame direction) and a frame-wall interacting system in the
longitudinal direction (wall direction). Te natural vibra-
tional periods were determined to be 0.47 seconds and
0.69 seconds in the x- and y-directions, respectively. Ad-
ditionally, the base shear coefcients were established at 0.12
and 0.09 in the x- and y-directions, respectively.

Te test specimen, depicted in Figure 3, had plan di-
mensions of 4700mm in the x-direction and 3000mm in the
y-direction, with a storey height of 2300mm. Te total
height, encompassing the foundation beam, was measured at
7300mm.Te test model was scaled to 1/2 of the geometry of
the prototype structure and adopted identical materials to
the prototype, maintaining a scale ratio of 1.0 for stress and
acceleration. Te masses of the three-storey structures were
15.51 t, 15.32 t, and 14.66 t, respectively. Dynamic response
data were acquired using strong zero-mean motion records,
specifcally the JMAKobe records, which were scaled to peak
ground accelerations of 0.07 g, representing the service-level
earthquake for reinforced concrete, uniaxially applied in
either the x- or y-directions. Tese seismic motions were
applied frst in the x-direction, denoted as Working Con-
dition 1 (WC1), and then in the y-direction, denoted as
Working Condition 2 (WC2). Te bidirectional white

Gaussian noise was introduced for system identifcation
purposes before and after each seismic motion. Te white
noise had a bandpass frequency of 0.5–50Hz and a duration
of 240 s.

In the tests, the interstorey drift measurement is
implemented by the computer vision-based measurement
approach proposed by Cai et al. [73], as Figure 3 shows. A
sampling frequency of 50Hz was set in the cameras. Te
identifed displacement time history is subjected to difer-
entiation, yielding the corresponding acceleration time
history. Subsequently, the proposed methodology is
employed to estimate the physical parameters of the
structure.

Te acceleration obtained by loading the initial structure
with white noise, along with the storey mass, can be used to
calculate the storey shear. Additionally, by combining the
displacement time history, the approximate undamaged
storey stifness ku

xi and ku
yj (i, j � 1, 2, 3) value is determined,

which is listed in Table 1. Te reference storey stifness for
each working condition is additionally determined through
the application of a white noise load following seismic
loading, employing this method. Tis paper defnes the ratio
of damaged storey stifness to the undamaged storey stifness
θx1, θx1, θx3, θy1, θy2, and θy3 as the updated parameter
(θxi � kd

xi/k
u
xi, θyj � kd

yj/k
u
yj), due to intuitively representing

the damage degree of storey stifness and the requirements
for parameter normalization in sparse grid interpolation.
For each working condition, the updated parameters are the
unscaled storey stifness in the same direction as the seismic
motion. Te parameters are assumed to be independent and
identically distributed following uniform prior distributions
U (0.7, 1). Te damping of the structure adopts Rayleigh
damping.

An ensemble of 500 members is drawn from the prior
distributions and used to update the space state vector.Ten,
the state space vector is recursively calculated, and the mesh
size l� 6. Based on the proposed method, displacement and
storey stifness of the building can be efectively identifed.
Figures 4 and 5 present qualitative comparisons of the es-
timated time history of storey drifts using diferent methods.
Te calculation of storey drifts time history involves the
subtraction of the storey displacements from that of the
preceding storey. In both working conditions, the drifts
estimated by the proposed algorithm tend close to the
reference drifts. In contrast, the drifts obtained by the EKF
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method show a relatively larger deviation from the reference
drifts, particularly in the y direction, which seems obvious
after 10 s. Overall, from a qualitative standpoint, the pro-
posed algorithm exhibits superior performance compared to
the conventional EKF method.

Figure 6 demonstrates the convergences of the iden-
tifed storey stifness θx1 and θy2 by the proposed method
and the EKF due to space limitations.Tis fgure refects the
trend of the most probable value (MPV) in the identif-
cation parameter samples obtained at each step of the
MCMC iteration using two methods, with black lines
representing reference data. It is noteworthy that the

stifness parameters identifed through both methods ex-
hibit rapid convergence, indicating that the duration of the
measurement responses needed for accurate parameter
estimation is relatively short. However, the proposed
method converges earlier than the EKF method. Besides,
the EKF method is more violent and susceptible than the
proposed method in the initial steps. Tis efciency in
convergence suggests the efectiveness and efciency of the
employed identifcation methods in capturing the essential
structural characteristics. A conclusion can be drawn that
the proposed method is superior to EKF-based model
updating in terms of convergence speed.

Input: proposal Gaussian distribution q(θ ∣ θ∗); prior distribution p(θ); iteration steps T; number of ensemble N; for i� 1, 2, . . ., N
sample x

(i)
0 from the initial state distribution; stifness, mass, and damping matrices K, M, C

For k� 1, . . ., T do
(1) For the state recursion equation, use sparse grid interpolation for simplifcation, and compute x

(i)
k from x

(i)
k− 1

(2) Compute estimates of the forecast mean and variance 􏽢μk∣k− 1 and 􏽢Σk∣k− 1
(3) Compute the EnKF approximation pN

enkf (yk ∣ y1: k− 1, θk) � N(H􏽢μk∣k− 1 + DM− 1Bfk; P􏽢μk∣k− 1, P􏽢Σk∣k− 1P′ + S)

(4) Compute the acceptance rate αk and resample θ by equation (28)
(5) Compute the approximate Kalman gain, and update state vector by equation (22).
End

ALGORITHM 1: Proposed SG-EnMCMC method.
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Figure 3: Shaking table experiment: (a) test specimen, (b) side view in x direction, and (c) side view in y direction.

Table 1: Initial mass and stifness of each storey.

Storey mass (ton) Storey stifness in
x direction (kN/mm)

Storey stifness in
y direction (kN/mm)

1st storey 4.75 20.85 5.48
2nd storey 6.64 9.23 3.29
3rd storey 7.95 8.37 4.21
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Te most probable value (MPV) and the variance in the
two working conditions are presented in Table 2. In WC1,
the identifed MPV of unscaled storey stifness using the
proposed method is 0.8946, 0.9315, and 0.9558, while that of

EKF is 0.8756, 0.9382, and 0.9324. Te reference data are
0.9079, 0.9179, and 0.9424. In WC2, the identifed MPV of
unscaled storey stifness using the proposed method is
0.9396, 0.9577, and 0.9189, while that of EKF is 0.9474,
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Figure 4: Interstorey drift responses in WC1 in (a) the 1st storey, (b) the 2nd storey, and (c) the 3rd storey.
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Figure 5: Interstorey drift responses in WC2 in (a) the 1st storey, (b) the 2nd storey, and (c) the 3rd storey.
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Figure 6: Convergences of the identifed storey stifness (a) theta_x1 and (b) theta_y2.
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0.9287, and 0.9245. Te reference data are 0.9147, 0.9428,
and 0.8926. Additionally, the parameter variance identifed
by the proposed method is also smaller than that of the EKF
method.

Figures 7 and 8 show the marginal posterior PDFs of the
parameters of the two methods under the two working
conditions. It is evident that when the proposed method is
employed, the spread of the updated parameters is reduced,
confrming less variance, which is consistent with the
conclusion obtained from Table 2. From observations in
Table 2 and Figures 7 and 8, it can be concluded that updated
parameters for the two working conditions have been well
identifed and the structural damage can be quantifed. Te
proposed method efectively enables parameter identifca-
tion and damage quantifcation, which outperforms the EKF
method in convergence speed and identifed accuracy.

4. Case Study: Full-ScaleNonstructural Element
Simulator on Shake Table (NEST)

To further evaluate the viability of the proposed SG-EnMCMC
algorithm, a three-foor test specimen called the NEST is also
conducted. As illustrated in Figure 9, the NEST substructure
loading unit is a steel structure system comprising a three-tier
platform confguration. Four large friction pendulum supports,
each with a diameter of 1300mm, are strategically positioned
between the frst-foor platform and the vibrating table. Sep-
arating the frst-foor and second-foor platforms is a steel
support frame, divided into upper and lower sections by four
natural rubber supports. Te second-foor structure in-
corporates four 450mm diameter friction pendulum supports,
along with a series of horizontal springs arranged around the
frame’s perimeter, to provide additional lateral stifness.

Te loading device itself has a weight of 10.36 tons,
signifcantly below the maximum load capacity of the
shaking table, which is rated for 30 tons. Tis surplus ca-
pacity allows for the adjustment of the mass of each platform
within the loading device through counterweights, as well as
the installation of nonstructural components for testing.
Each platform within the test frame features reserved holes
(as depicted in Figure 9), enabling the addition of coun-
terweights to fne-tune the mass of the NEST layers within
a certain range. Moreover, the stifness of each NEST layer
can be adjusted within a defned range by replacing the
isolation supports located between the platforms.

Flexibility in design is a notable feature of the NEST
system. It allows for the locking together of layers, both
among themselves and between the frst layer and the

shaking table. Tis adaptable confguration permits the
NEST system to be adjusted to accommodate single-layer,
two-layer, or three-layer test frames, depending on the
specifc requirements of various application scenarios.

A full-scale trial was performed on the 5m-by-5m shake
table. To ensure the rigidity of the system during vibration,
the braced steel frame exhibited a signifcantly high stifness.
Table 3 provides details on the foor masses, and storey
stifnesses are identical in both directions. Te input is
derived from the recorded intense groundmotion data at the
MZQ station during the 2008 M8.0 Wenchuan earthquake.
Tis seismic record is notable for its pulse-like character-
istics and the presence of abundant long-period content.

Four three-way acceleration sensors are arranged in the
frst, second, and third storey of the shaking table and test
frame. Te interstorey displacement of the frst and second
foor of the test frame is measured by a specially arranged
interstorey displacement meter. Troughout the shaking
period, the displacements and the accelerations of each
storey were meticulously recorded using accelerometers and
displacement transducers. Te data acquisition occurred at
a high-frequency interval of 0.001 seconds to capture precise
and detailed information about the structural response.
Subsequently, during the data processing phase, the col-
lected data underwent resampling to a frequency of 50Hz.
Te acceleration obtained by loading the initial structure
with white noise, along with the storey mass, can be used to
calculate the storey shear. Additionally, by combining the
displacement time history, the approximate undamaged
interstorey stifness ku

i (i � 1, 2, 3) value is determined. In
order to obtain the damage degree of storey stifness in-
tuitively, this paper defnes the ratio of damaged interstorey
stifness to the undamaged storey stifness θ1, θ2, and θ3 as
the updated parameter (θi � kd

i /k
u
i ). Te parameters are

assumed to be independent and identically distributed
following uniform distributions U (0.7, 1). Te damping of
the structure adopts Rayleigh damping.

An ensemble comprising 500 members is drawn from
the prior distributions and utilized to update the state space
vector. Te state space vector is then iteratively calculated
with a mesh size of l� 6. Figure 10 presents qualitative
comparisons of the estimated time history of storey drifts
using two methods. Te drifts estimated by the proposed
method closely align with the reference data. In contrast,
drifts obtained using the EKF method deviate a little largely
from the reference data. A similar conclusion is drawn that
the proposed method exhibits superior performance in
convergence compared to the conventional EKF method.

Table 2: MPV and variance of the updated parameters in the shaking table experiment.

Working condition Variables Reference data
Kalman flter Proposed method

MPV Variance MPV Variance

WC1
θx1 0.9079 0.8756 0.1369 0.8946 0.1034
θx2 0.9197 0.9382 0.1427 0.9315 0.1189
θx3 0.9424 0.9324 0.1307 0.9558 0.1068

WC2
θy1 0.9147 0.9474 0.1467 0.9396 0.0967
θy2 0.9428 0.9287 0.1512 0.9577 0.1012
θy3 0.8926 0.9245 0.1447 0.9189 0.0987
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(c) (d)

Figure 9: Overview and illustrations of the test specimen: (a) general view, (b) side view in the x direction, (c) arrangement of the
displacement transducer, and (d) arrangement of the accelerometers.

Table 3: Mass and stifness of each storey of substructure loading device.

Storey mass (ton) Storey stifness (kN/mm)
1st storey 4.75 0.118
2nd storey 6.64 1.995
3rd storey 7.95 0.239
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Figure 10: Interstorey drift responses in (a) x direction of the 1st storey, (b) x direction of the 2nd storey, (c) x direction of the 3rd storey,
(d) y direction of the 1st storey, (e) y direction of the 2nd storey, and (f) y direction of the 3rd storey.
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Table 4 presents the MPV and variance. Te identifed MPV
of unscaled storey stifness using the proposed method is
0.9252, 0.9421, and 0.9007, while that of EKF is 0.9056,
0.9324, and 0.8918. Te reference data are 0.9318, 0.9467,
and 0.9157.Te posterior variance of the proposedmethod is
0.1134, 0.0967, and 0.0994, while that of EKF is 0.1279,
0.1465, and 0.1298. Additionally, the parameter variance
identifed by the proposed method is smaller than that of the
EKF method.

Figure 11 displays the marginal posterior PDFs of the
parameters for both methods. It is evident that the use of the
proposed method results in a reduced spread of the updated
parameters, confrming lower variance, which is consistent
with the conclusion drawn from Table 4. Observations from
Table 4 and Figure 11 lead to the conclusion that parameters
for the two working conditions have been efectively
identifed, enabling quantifcation of structural damage. Te
proposed method proves to be efcient in parameter
identifcation and damage quantifcation, surpassing the
EKF method in terms of convergence speed and identifed
accuracy.

5. Conclusion

A novel SG-EnMCMC method based on the sparse grid
interpolation, the ensemble Kalman flter, and MCMC is
proposed formodel updating and damage identifcation.Te
sparse grid method and EnKF are used to simplify the
calculation of state space vectors and state equations, en-
suring their applicability in high-dimensional and nonlinear
situations. By introducing the EnKF method, the estimation
of the updated physical parameters is transformed into an
MCMC process. Te efciency and accuracy of the proposed
SG-EnMCMC method are assessed through validation in

two shaking table experiments. Results indicate its ability to
efectively identify physical parameters, demonstrating su-
periority over the traditional Extended Kalman Filter (EKF).
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